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In wireless sensor networks, the fusion center collects the dates from the sensor nodes andmakes the optimal decision fusion, while
the optimal decision fusion rules need the performance parameters of each sensor node. However, sensors, particularly low-cost
and low-precision sensors, are usually displaced in harsh environment and their performance parameters can be easily affected by
the environment and hardly be known in advance. In order to resolve this issue, we take a heterogeneous wireless sensor network
system, which is composed of both low-quality and high-quality sensors. Low-quality sensors are inexpensive and consume less
energy while high-quality sensors are expensive and consume much more energy but provide high accuracy. Our approach uses
one high-quality sensor as the guidance sensor, which enables the fusion center to estimate the performance parameters of the
low-quality sensors online during the whole sampling process, and optimal decision fusion rule can be used in practice. Through
using the low-quality sensors rather than the high-quality sensormost of the time, the system can efficiently reduce the system-level
energy cost and prolong the network lifetime.

1. Introduction

Wireless sensor networks are usually deployed in the observa-
tion area in order to observe and analyze certain phenomena.
The main goal of wireless sensor networks is to collect
relevant information from the environment. The recent
progress in microelectronics, wireless communication, and
information processing enables the deployment of wireless
sensor networks consisting of a large number of sensor nodes
in order to accomplish tasks, such as event monitoring and
location. Usually a wireless sensor network is composed of
a base station and a large number of sensor nodes. The base
station and these sensor nodes can communicate with each
other through a single hop or multiple hops. The sensor
nodes collect the information from the environment and send
the information to the base station while the base station is
responsible for combining this information and making the
final assessment [1].

Distributed detection is an important research field of
wireless sensor networks. Due to the limit communication
energy of the sensor nodes [2], each sensor node processes

its raw observation data and makes its own decision about
whether an event occurs and then sends its decision to the
cluster node or the base station to make the final decision.
The cluster node or the base station can be considered as
the fusion center which is used to fuse the decisions of
the sensor nodes based on some decision fusion rules. The
decision fusion rules have been studied in the previous
research articles. In [3], the author extends the classical
detection theory to the case of distributed sensors based
on the classical method of statistical hypothesis testing. In
[4], the data fusion problem for fixed binary detectors with
independent decisions is solved by minimizing the system-
level error probability.The author in [5] proposes the optimal
decision fusion rules for correlation local binary decisions.
The channel aware decision fusion rule is assumed in [6], and,
in [7], the decision fusion rule considering the channel fading
environment in multihop sensor network is proposed. A
likelihood ratio-based fusion rulewhich requires the statistics
information of the channel has been studied in [8].

The optimal decision fusion rules need to know the error
probabilities of each sensor like the detection probability
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and the false alarm probability. This can be considered to
be feasible in early detection systems like radar or sonar
systems. But in wireless sensor networks, as the low-cost
and low-precision sensors are usually displaced in the harsh
environment, the parameters of the low-end sensors can
hardly be known and may change when the environment
changes. The author in [9, 10] uses the total number of
decisions of the sensor nodes to make the final decision but
this final decision is not the optimal result even when the
number of the sensors is large enough. In [11] a local vote
decision fusionmethod is proposed.The author in [12] shows
that when the number of the sensors is large enough, the
system performance can be guaranteed by using the majority
rules. Enough sensor nodes are needed in these methods,
while, in practice, it is hard to place such a large number of
sensors due to the limited space. In order to reach the optimal
fusion result, the optimal decision fusion rule is needed.

It is necessary to know the performance parameters of
the sensors in order to achieve the optimal decision fusion
rules in wireless sensor networks. In [13, 14], the weights used
in the optimal decision fusion rules are estimated directly
through reinforcement learning and only the decisions falling
in the reliable ranges are included in the adaptive process,
but the optimal reliable ranges can hardly be chosen during
the process and there exists an error between the true value
and the estimated value. In [15], the author finds the relation-
ships between the unknown parameters of the sensors and
the statistical combinations of different decisions. Through
solving a nonlinear equation, the unknown parameters can
be calculated without biases. But the algorithm complexity
of this method is so high that this method can not apply
to the wireless sensor network. In [16], the minimax robust
data fusion schemes are proposed, while the observations
of the sensor nodes are characterized by using statistical
uncertainty. In [17], the author analyzed the robust detection
method and discussed the data compression scheme for
different sensors. Even though thesemethods provide us with
some useful methods to determine the unknown parameters
of sensors, they need high computational complexity and
are not suitable in the area of sensor networks. In sensor
networks, we need some simple but effective methods to
obtain the parameters of the sensor nodes.

Energy consumption is another concern for sensor net-
works. Many energy-efficient techniques have focused on
the communication and network levels. These methods
include routing algorithms [18], clustering algorithm [19],
data aggregation [20, 21], and MAC protocols [22]. Consid-
ering the distributed detection problems in sensor networks,
the author in [23] uses the ordered transmissions mechanism
to reduce the average number of transmissions, which can be
proved to reduce the energy consumption. Per-sensor censor
mechanism has been discussed in order to reduce the system-
level cost in [24, 25]. However, this method solves the energy-
efficient problems from different perspectives in the area
of distributed detection without considering the uncertain
performance of the sensor nodes.

Many practical wireless sensor networks have multiple
sensor modalities [26]. In [27], a surveillance system has
both low-end passive infrared sensors and high-quality
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Figure 1: A heterogeneous wireless sensor network system.

pan-tilt-zoom cameras. High-quality sensors have higher
precision and the environmental change has little impact
on the performance of the high-quality sensors, but the
high-quality sensors usually are expensive and these high-
quality sensors cannot be deployed in large numbers. The
high-quality sensors may consume much more energy than
the low-end sensors. So in practice, low-precision and cheap
sensors are largely deployed and used in practice. In [28], the
author proposes an adaptive calibration for wireless sensor
networks; the high-quality sensor is used as the feedback
to adjust the decision threshold while the low-end sensors
collaborate to detect the targets through combining the
observations of the low-quality sensor nodes.

In this paper, we propose a novel approach for adaptive
decision fusion in a heterogeneous sensor network which
contains one high-quality sensor and several low-quality sen-
sors. We propose a mechanism to reach the optimal decision
fusion adaptively. During the estimation phase, we can esti-
mate the parameters of the low-quality sensor nodes through
comparing the decisionsmade by the high-quality sensor and
the low-quality sensor nodes.Thismethod is simple but effec-
tive and the estimated values can coverage in limited steps.
During the observation phase, through using the method in
Section 5, the system can reach the optimal decision fusion
result, and the system can also detect the possible change of
the low-quality sensor nodes. Considering the huge energy
consumption and the limited energy supply of the whole
sensor system, this mechanism can reduce the system-level
energy consumption and prolong the lifetime of the system.

The organization of this paper is as follows. The prob-
lem formulation is introduced in Section 2. The distributed
detection model and the optimal decision fusion rules used
in the wireless sensor network are reviewed in Section 3.
The method which is used to estimate the performance
parameters of the low-end sensors is given in Section 4. The
adaptive decision fusion method using the guidance sensor
is showed in Section 5. Simulation results with analyses are
given in Section 6. Conclusion is provided in Section 7.

2. Problem Formulation

A heterogeneous wireless sensor network consists of a high-
quality sensor and several low-quality sensors as Figure 1
shows. The objective of this system is to make the decision
of whether the event appears in the observation area. The
low-quality sensors like infrared sensors are cheap and
consume low energy but have limited sensing performance.
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In addition, the parameters of the low-quality sensors can
be affected due to the change of the environment [12]. In
contrast, the high-quality sensors like cameras [29] or radars
[30] usually have high measurement accuracy with high
energy consumption.

There are two main phases in our method: the observa-
tion phase and the estimation phase. During the estimation
phase, the high-quality sensor node is used to compare the
decision made by itself with the decisions made by the
low-quality sensor nodes as in Section 4. In this way, the
performance parameters of the low-quality sensors can be
estimated in limited steps. The high-quality sensor node is
responsible for the task of detection in this period in order
to ensure the system-level performance. After the estimation
phase, the cluster node will get to know the parameters of
each low-quality sensor node; then the high-quality sensor
goes to sleep to reduce the energy consumption.The optimal
decision fusion rules known as the Chair-Varshney rules are
used to make the decision by combing the decisions made
by the low-quality sensor nodes. However, the performance
parameters of the low-quality sensor may change with the
time, so the high-quality sensor node will be awaken when
the cluster node makes the decision “1” in order to supervise
the results of the optimal decision fusion rules. When the
parameters of the low-quality sensor nodes change, the
mechanism in Section 5 will detect the changes and go into
the estimation phase to estimate the performance parameters
of the low-quality sensors again.

3. Distributed Detection Model and Optimal
Decision Fusion Rule

In this section, the distributed detection model is presented
in order to fuse the decisions made by the low-quality sensor
nodes during the observation phase. Suppose that𝑁 sensors
are displaced in the observation area. Each sensor node
processes its observation andmakes the decision based on its
observation. Then each sensor node sends its decision to the
fusion center through the wireless channel.The fusion center
makes the final decision based on some rules.

Here suppose that the a priori probabilities of the two
hypotheses are denoted by 𝑃(𝐻

0
) = 𝑃
0
and 𝑃(𝐻

1
) = 𝑃
1
. Each

sensor node uses a decision rule such as the Bayesian decision
rule to make its decision 𝑢

𝑖
, 𝑖 = 1, . . . , 𝑛:

𝑢
𝑖
=
{

{

{

0 if local decision is 𝐻
0

1 if local decision is 𝐻
1
.

(1)

After making its decision, the sensor node sends its
decision to the fusion center in order to make the final
decision. The fusion center determines the final decision 𝑢
based on these individual decisions:

𝑢 = 𝑓 (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
) . (2)

The likelihood ratio test can be written as follows [4]:

𝑃 (𝑢
1
, . . . , 𝑢

𝑛
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)
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0

𝑃
1

. (3)

The quantity on the left-hand side is the likelihood ratio and
the Bayes optimum threshold is on the right-hand side. The
optimum decision fusion rule is the Chair-Varshney fusion
rule which can be written as follows:

𝑢 = 𝑓 (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
) =
{

{

{

1 if Λ > 0

0 otherwise,
(4)

where
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∑
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𝑖
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𝑓𝑎𝑖

] + ln
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1
)

𝑃 (𝐻
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)
. (5)

From the equation, the optimal decision fusion rule needs
the performance parameters of each sensor node like the
detection probability and the false alarm probability. But in
practice, the performance parameters of the low-end sensor
can hardly be known due to its limited performance.The low-
quality sensors are also easily affected by the environment.
In order to use the optimal decision fusion rules, we need
to know the performance parameters of these low-quality
sensors in order to reach the optimal result.

4. Estimation of the Performance
Parameters of the Low-Quality Sensors
Using the Guidance Sensor

The method which is used to estimate the performance
parameters of the low-quality sensors during the estimation
phase is given in this section. Here we derive the estimated
values of the performance parameters 𝑃

𝑓𝑎𝑖
and 𝑃

𝑑𝑖
of the

low-end sensor 𝑖 based on the detection history of low-end
sensors and the decision made by the high-quality sensor.
This approach need not know whether the event happens at
some time. Through the simulation results, we can see that
the estimated values can coverage to the true values in limited
steps.

We note that the detection probability of the high-quality
sensor is 𝑃

𝑑𝐻
while the false alarm probability of the high-

quality sensor is 𝑃
𝑓𝑎𝐻

. The miss-detection probability of the
high-quality sensor is 𝑃

𝑚𝐻
.

For low-end sensor 𝑖, the detection probability and the
false alarm probability are𝑃

𝑑𝑖
and𝑃
𝑓𝑎𝑖
, respectively.Themiss-

detection probability of the low-end sensor is 𝑃
𝑚𝑖
.

Suppose that the number of the estimation steps is 𝑀,
and 𝑛

𝑓𝑎𝑖
and 𝑛

𝑑𝑖
are the number of false alarms and correct

detections made by the low-end sensor 𝑖, while 𝑛
𝑚𝑖

is the
number of miss detections made by the low-end sensor 𝑖.
These numbers are actually unknown in practice.

During the estimation period, we suppose that 𝑛
𝑓𝑎𝐻𝑖

and
𝑛
𝑑𝐻𝑖

are the numbers of decision 1 made by the low-end
sensor 𝑖 but regarded to be false alarms and correct detections
by the high-quality sensor. 𝑛

𝑚𝐻𝑖
is the number of decision

0 made by the low-end sensor 𝑖 but regarded to be miss
detections by the high-quality sensor, respectively. These
counting numbers can be obtained by comparing between
the decisionmade by the high-quality sensor and the decision
made by each low-end sensor node.
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Then we have the following equations:

𝑛
𝑓𝑎𝐻𝑖
≈ 𝑛
𝑓𝑎𝑖
(1 − 𝑃

𝑓𝑎𝐻
) + 𝑛
𝑑𝑖
(1 − 𝑃

𝑑𝐻
) , (6)

𝑛
𝑑𝐻𝑖
≈ 𝑛
𝑓𝑎𝑖
𝑃
𝑓𝑎𝐻
+ 𝑛
𝑑𝑖
𝑃
𝑑𝐻
, (7)

𝑛
(1−𝑓𝑎𝐻𝑖)
≈ 𝑛
(1−𝑓𝑎𝑖)
(1 − 𝑃

𝑓𝑎𝐻
) + 𝑛
𝑚𝑖
(1 − 𝑃

𝑑𝐻
) , (8)

𝑛
𝑚𝐻𝑖
≈ 𝑛
(1−𝑓𝑎𝑖)
𝑃
𝑓𝑎𝐻
+ 𝑛
𝑚𝑖
𝑃
𝑑𝐻
. (9)

Consider (6); 𝑛
𝑓𝑎𝐻𝑖

is the number of decision 1 made
by the low-end sensor 𝑖 but regarded to be false alarms
by the high-quality sensor node (the high-quality sensor
node decision is 0). It contains two cases. When 𝐻

0
actually

happens, 𝑛
𝑓𝑎𝑖
(1 −𝑃

𝑓𝑎𝐻
) represents the number of false alarms

made by the low-end sensor and the high-quality sensor node
makes the decision 0 at the same time, while the probability
of this case for high-quality sensor is 1 − 𝑃

𝑓𝑎𝐻
. When 𝐻

1

actually happens, 𝑛
𝑑𝑖
(1 − 𝑃

𝑑𝐻
) represents the number of

correct detections made by the low-end sensor and the high-
quality sensor node makes the wrong decision 0 at the same
time, while the probability of this case for high-quality sensor
is (1−𝑃

𝑑𝐻
). Using the similar analyses, we can obtain the other

three equations.
From the above equations, we can get the estimated values

of the unknown parameters 𝑛
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as follows:
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𝑛
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≈

𝑛
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𝑓𝑎𝐻
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𝑃
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𝑃
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𝑓𝑎𝐻

,

𝑛
(1−𝑓𝑎𝑖)
≈

𝑛
(1−𝑓𝑎𝐻𝑖)
𝑃
𝑑𝐻
− 𝑛
𝑚𝐻𝑖
(1 − 𝑃

𝑑𝐻
)

𝑃
𝑑𝐻
− 𝑃
𝑓𝑎𝐻

,

𝑛
𝑚𝑖
≈

𝑛
𝑚𝐻𝑖
(1 − 𝑃

𝑓𝑎𝐻
) − 𝑛
(1−𝑓𝑎𝐻𝑖)
𝑃
𝑓𝑎𝐻

𝑃
𝑑𝐻
− 𝑃
𝑓𝑎𝐻

.

(10)

Then we can obtain the estimated values of the detection
probability and the false alarm probability of the low-quality
sensor 𝑖 as follows:

�̂�
𝑑𝑖
≈

𝑛
𝑑𝑖

𝑛
𝑑𝑖
+ 𝑛
𝑚𝑖

,

�̂�
𝑓𝑎𝑖
≈

𝑛
𝑓𝑎𝑖

𝑛
𝑓𝑎𝑖
+ 𝑛
(1−𝑓𝑎𝑖)

.

(11)

Through the simulation in Section 6, we can see that the
estimated values can coverage to the true values of the sensor
parameters approximately, which proves the effectiveness of
the methods. In addition, we can notice that as long as we
know the parameters of the high-quality sensor node, we can
estimate the performance parameters of the low-end sensor
nodes even if the performance of high-quality sensor node is
limited.

· · · · · · · · ·

Sampling time

Detection
window

Detection
window

The performance parameters of the low-quality
sensors may change at some time

Figure 2: Detection window illustration.

5. Adaptive Decision Fusion Using
the Guidance Sensor

After estimating the detection probability and the false alarm
probability of each low-end sensor node, we can use the
optimal decision fusion rules to make the final decision in
order to reach the optimal result. However, as the environ-
ment may change with the time, we need to adjust the esti-
mated values of the parameters adaptively. If the performance
parameters of the low-end sensor nodes change, then the
optimal decision fusion rules may give the wrong decisions
which affect the system-level performance.

In order to detect the possible wrong decisions made
by fusing the low-end sensors, the high-quality sensor is
supposed to be responsible for supervising the decisions
made by fusing the low-quality sensors. Here a detection
window (DW) is defined to tackle this problem in Figure 2.
The detection window (DW) divides the whole sampling
period into different parts as the figure shows. In order to
detectwhether the sensor parameters have changed,when the
decision made by fusing the decisions of the low-end sensor
nodes is “1,” the cluster node awakes the high-quality sensor
node to make the decision about whether the event happens.
Support that 𝑛

𝑓𝑎𝐻𝑜
and 𝑛

𝑑𝐻𝑜
are the numbers of decision 1

made by fusing the decisions of the low-end sensor nodes but
regarded to be false alarms and correct detections by the high-
quality sensor during the window period. 𝑛

𝑓𝑎𝑜
and 𝑛

𝑑𝑜
are

the practical numbers of false alarms and correct detections
made by fusing the decisions of the low-end sensors. Similar
to Section 4, we can have the following equations:

𝑛
𝑑𝐻𝑜
≈ 𝑛
𝑓𝑎𝑜
𝑃
𝑓𝑎𝐻
+ 𝑛
𝑑𝑜
𝑃
𝑑𝐻
,

𝑛
𝑓𝑎𝐻𝑜
≈ 𝑛
𝑓𝑎𝑜
(1 − 𝑃

𝑓𝑎𝐻
) + 𝑛
𝑑𝑜
(1 − 𝑃

𝑑𝐻
) .

(12)

Then the number 𝑛
𝑑𝑜

can be calculated through using the
following equation:

𝑛
𝑑𝑜
≈

𝑛
𝑑𝐻𝑜
(1 − 𝑃

𝑓𝑎𝐻
) − 𝑛
𝑓𝑎𝐻𝑜
𝑃
𝑓𝑎𝐻

𝑃
𝑑𝐻
− 𝑃
𝑓𝑎𝐻

. (13)

The ratio |𝑛
𝑑𝐻
/DW| will remain unchanged basically when

the performance parameters of each sensor remain because
the optimal decision fusion rules are based on the detection
probability and the false alarm probability of each sensor
node. We can use the following equation to estimate the ratio
𝑛
𝑑𝐻
/DW in every detection window. 𝑃

𝑜𝑝
(1 | 𝐻

1
) means

the detection probability through using the optimal decision
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fusion rules by fusing the decisions made by the low-quality
sensor nodes. Consider

𝑛
𝑑𝑜

DW
≈ 𝑃 (𝐻

1
) 𝑃
𝑜𝑝
(1 | 𝐻

1
) . (14)

When the parameters of certain sensor nodes change, as
the optimal decision fusion rules depend on the detection
probability and the false alarm probability of each sensor
node, the detection probability of the optimal fusing decision
𝑃
𝑜𝑝
(1 | 𝐻

1
) will change, so the ratio |𝑛

𝑑𝑜
/DW| will change

between different detection windows. If the ratio 𝑛
𝑑𝑜
/𝑊 has

changed (|(𝑛
𝑑𝑜
/𝑊)
+
−(𝑛
𝑑𝑜
/𝑊)
−
| > threshold) ((𝑛

𝑑𝑜
/𝑊)
+ and

(𝑛
𝑑𝑜
/𝑊)
− represent 𝑛

𝑑𝑜
/𝑊 of the current and last detection

windows, resp.; the superscripts, + and −, have similar
meanings elsewhere) between the two consecutive windows,
it means that the performance parameters of certain sensors
have changed. The system then goes into the estimation
phase; the cluster node will evoke the high-quality sensor
and use the estimation methods in Section 4 to estimate
the performance parameters of the low-end sensor nodes;
meanwhile, the decisionmade by the high-quality sensor will
be sent to the collection point to ensure the system-level
performance.

The threshold can be determined by the following equa-
tion:

threshold = 1
2
∗ 𝑃 (𝐻

1
)

∗ (

𝑃
𝑜𝑝
(1 | 𝐻

1
)
+
− 𝑃
𝑜𝑝
(1 | 𝐻

1
)
−
) + 𝜀

=
1

2
∗ 𝑃 (𝐻

1
) ∗ 𝛿 + 𝜀.

(15)

The ratio |𝑛
𝑑𝑜
/𝑊| changes the minimum when the per-

formance parameters of the sensors change at the time of
the middle of the window rather than other moments during
each window period. The “1/2” represents the possibility
that the change may happen at the time of the middle of
the window period. 𝛿 represents the change range of the
detection probability of the optimal decision fusion rules. 𝜀
represents the tolerant deviation as limit counting steps are
used to approximate the probability.

6. Simulation Results and Analyses

In this section, we assume one high-quality sensor and three
low-quality sensors are deployed in the surveillance area to
detect the event. Each low-end sensor node processes its
observation and makes the decision about whether the event
happens; then each sensor node sends its decision to the
cluster node which can be thought of as the fusion center.
This fusion center makes the final decision using the deci-
sions gathered from the low-end sensor nodes based on the
optimal rules. The high-quality sensor is used to supervise
the fusing results during the observation phase and estimate
the performance parameters of the low-quality sensor nodes
during the estimation phase.

Estimated detection probability of sensor 1
Estimated false alarm probability of sensor 1
Estimated detection probability of sensor 2
Estimated false alarm probability of sensor 2
Estimated detection probability of sensor 3
Estimated false alarm probability of sensor 3
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Figure 3: Estimation of the performance parameters of the sensors.

6.1. The Convergence of the Estimation Algorithm. In this
simulation, we verify the estimation methods in Section 4.
Here the detection probabilities of the three low-end sensor
nodes are 0.9, 0.8, and 0.7 while the false alarm probabilities
of the three sensor nodes are 0.3, 0.2, and 0.1. The a priori
probabilities of the event are set to 𝑃(𝐻

0
) = 0.7 and 𝑃(𝐻

1
) =

0.3. The detection probability and the false alarm probability
of the high-quality sensor node are set to 0.99 and 0.01which
are assumed to be known. We can estimate the performance
parameters of the low-end sensors online and use the optimal
decision fusion rules in practice.

In Figure 3, the estimated values of the detection prob-
abilities and the false alarm probabilities of the low-end
sensors can converge to the true values (the black dotted line)
in limited steps. This result shows that we need limited steps
to get the estimated value in practice which just cost limited
resources of the sensor nodes.

6.2. Adaptive Decision Fusion with the Guidance Sensor. In
this simulation, we show the adaptive algorithm with 105
sampling steps. At first, the detection probabilities of the
three low-quality sensor nodes are 0.9, and the false alarm
probabilities of the three low-quality sensor nodes are 0.2;
then when the number of the sampling steps reaches 5 ∗ 104,
the detection probabilities of the three low-quality sensor
nodes change to 0.7, and the false alarm probabilities of the
three low-quality sensor nodes change to 0.1, respectively.
The detection probability and the false alarm probability of
the high-quality sensor are set as 0.99 and 0.01 in this section.
The size of the detection window used in the observation
phase and the number of the estimation steps used in the
estimation phase are both set to 2000.
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Figure 4: Estimation of the performance parameters of the sensor
in 105 samplings, 𝛿 = 10%, 𝜀 = 0.02.

The energy consumption is also considered; as all types
of the sensor nodes observe, process, and send the 1-bit
decisions to the cluster node, we simply assume the energy
consumptions of the high-quality sensor node as 𝐸

𝐻
and

the low-quality sensor node as 𝐸
𝐿
for every decision. In this

simulation, 𝐸
𝐻
is set to 200 nJ and 𝐸

𝐿
is set to 10 nJ.

In Figure 4, the simulation gives the result of the esti-
mated values of the performance parameters of the low-
quality sensors in the whole sample steps; 𝛿 in Section 5 is
set to 10% and 𝜀 is set to 0.02. From the figure we can see
that when the performance parameters change, the adaptive
algorithm can detect the change soon and the system goes
into the estimation phase to estimate parameters again in
order to ensure the system-level performance.The figure also
compares the energy consumption between the three low-
quality sensors with the guidance and only one high-quality
sensor in the sensor network system. It can be seen that the
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Figure 5: Estimation of the performance parameters of the sensor
in 105 samplings, 𝛿 = 5%, 𝜀 = 0.01.

adaptive algorithm reduces the energy consumption com-
pared with the method using only one high-quality sensor.

As the algorithm calculates the ratio |𝑛
𝑑𝑜
/𝑊| in the

limited size of the detection window, the ratio may fluctuate
in different detection windows. In Figure 5, the value of
𝛿 is changed to 5% while 𝜀 is set to 0.01; that is to say,
the threshold decreases compared with Figure 5. In this
simulation, we can see that the number of the estimation
phases increases as the fluctuation of the counting number
impacts the system evaluation of the low-quality sensors.
The algorithmmay awake the high-quality sensor to estimate
the parameters of the low-quality sensors. Even though the
system consumes more energy, the system becomes more
sensible to the change of the sensor performance parameters
so that the algorithm can improve the system-level detection
performance with low threshold. In addition, Figure 5 shows
that even though the energy consumption increases with the
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decrease of the threshold, the system still costs less energy
than only one high-quality sensor due to the relative low
energy consumption of the low-quality sensor nodes.

In Figure 6, we change the threshold from “0.015” to
“0.040” and all these thresholds can ensure that the algorithm
can detect the change of the parameters of the low-quality
sensor nodes when the sampling time reaches 5 ∗ 104.
Through 5000 Monte Carlo experiments, we can see that the
system-level energy consumption is reduced as the effect of
counting-number fluctuation is reduced, which means the
number of estimation phases in the whole sampling time is
reduced.

In Figure 7, we change the probability of hypothesis 𝐻
1

from “0.35” to “0.10”; through 5000 Monte Carlo experi-
ments, we can see that the system-level energy consumption
is reduced when the a priori probability of hypothesis 𝐻

1

decreases, which means that the number at which the high-
quality sensor node is awaken decreases during the whole
sampling period.

7. Conclusion

Wireless sensor networks usually consist of different kinds of
sensors. The low-end sensors are cheap and consume little
energy but the precision of each low-end sensor is limited
and the performance parameters of the low-end sensors may
change with the environment. The high-quality sensors like
cameras are expensive and consume a lot of energy, but
the precision of the high-quality sensor is high and the
performance parameters of this kind of sensor are stable.
In this paper, we use one high-quality sensor which can
be thought of as the guidance sensor to estimate the per-
formance parameters of low-end sensors online adaptively.
Through the simulations and the analyses, we can see that
the estimated values can converge to the true values without
biases.Thismethod is valuable as this system can achieve high
precision and consume low energy in practice.
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