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Abstract. We develop a low-rank approach for image restoration by exploiting the image’s nonlocal self-sim-
ilarity. We assume that the matrix stacked by the vectors of nonlocal similar patches is of low rank and has
sparse singular values. Based on this assumption, we propose a new image deconvolution algorithm that decou-
ples the deblurring and denoising steps. Specifically, in the deblurring step, we involve a regularized inversion of
the blur in the Fourier domain, which amplifies and colors the noise and corrupts the image information. Hence, in
the denoising step, a singular-value decomposition of similar packed patches is used to efficiently remove the
colored noise. Furthermore, we derive an approach to update the estimation of noise variance for setting
the threshold parameter at each iteration. Experimental results clearly show that the proposed algorithm out-
performs many state-of-the-art deblurring algorithms such as iterative decoupled deblurring BM3D in terms of
both improvement in signal-to-noise-ratio and visual perception quality. ©2015 SPIE and IS&T[DOI: 10.1117/1.JE1.24.6

.063013]
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1 Introduction

Image deconvolution is a long-standing challenge existing in
the field of image processing, including optical, astronomi-
cal, physical, and medical applications.

The degradation procedure is often modeled as the result
of a convolution with a low-pass filter,

9= h Xorig +7, (1)

where g and x,;, are the observed and original images, respec-
tively. y is generally assumed to be independent and identically
distributed, and is sampled from a zero mean density of vari-
ance 7%, h is the point spread function (PSF) of a linear time-
invariant system, and * denotes the convolution operation.
There are two main classes of image deconvolution meth-
ods: one relies on a preprocessing step followed by denois-
ing,'™ whereas the other is based on a variational optimiza-
tion problem which minimizes a cost function composed of
fidelity and penalty terms.>~ The ForWaRD,' shape-adaptive
discrete cosine transform,” and block-matching and 3D filter-
ing deblurring* are examples of the first category. They pre-
serve the features like edges but suffer from ringing artifacts
near edges. On the other hand, the total variance model,'”
Lo-analysis-based sparse (ABS),'! nonlocally centralized
sparse representation (NCSR),'” and iterative decoupled
deblurring BM3D (IDDBM3D)’ belong to the second cat-
egory. These methods are well known for their detail-preserv-
ing property. As far as we know, NCSR and IDDBM3D
achieve the state-of-the-art image deblurring performance.
Due to the property of image nonlocal self-similarity, one
can obtain many patches similar to a given one across the
image. In this work, we can stack the vectors of these similar

*Address all correspondence to: Hang Yang, E-mail: yanghang09 @ mails.jlu
.edu.cn
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patches to a low-rank matrix and design denoising algo-
rithms by approximating the low-rank matrix. We integrate
the low-rank method into an iterative deconvolution method.
The iterative process consists of two parts: deblurring and
denoising. The output of the deblurring process is a sharp
but noisy estimated image. During the denoising process,
the low-rank matrix approximation method is applied to the
output of the deblurring step to suppress the noise and arti-
facts. Furthermore, the noise variance plays an important
role in our method. We update the estimation of noise vari-
ance to compute a threshold parameter in each iteration.
Experiments manifest that the proposed algorithm outper-
forms many state-of-the-art schemes in both numerical and
visual perception.

To our knowledge, IDDBM3D is a block-matching three-
dimensional transform-based image deconvolution method,
and NSCR is a dictionary learning-based restoration method,
whereas our method is a singular-value decomposition
(SVD)-based approach. There are two differences between
the first two approaches and our: first, we use a decoupled
iterative scheme with SVD shrinkage, which is different from
IDDBM3D and NCSR. An efficient deblurring method
based on a fast Fourier transform (FFT) can be used in
the deblurring step and an effective SVD-based denoising
method is used in the following step; the other two methods
must obtain a dictionary for the image denoising in the iter-
ation. Second, we estimate the variance of colored noise; it is
useful to set the threshold for denoising, whereas the other
two use a fixed threshold in the experiment.

1.1 Paper Organization

The remainder of this paper is organized as follows.
Section 2 gives a brief overview of low rank. Section 3
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shows how the low rank is used for regularizing the decon-
volution problem and how to estimate the variance of the
leaked noise. Section 4 demonstrates the effectiveness of
our approach via simulation. Section 5 provides concluding
remarks.

2 Low-Rank Minimization

The low-rank matrix recovery problem aims to estimate a
low-rank matrix X from its noisy observation matrix ¥.'*7!3
This is a nonconvex problem, and Cai et al.'* proposed to
solve it by convex relaxation with the following nuclear
norm:

X =arg min|[X[l.. st [[Y =X} <n. 2)

The || X||, denotes the nuclear norm of a matrix X. It is defined

as the sum of X’s singular values, that is, ||X], =

>0i(X), where ¢;(X) means the ith singular value of X.
In the SVD domain, the following method is used:

U, V)=arg min [|[Y -UZV|}+ ) 6,(X), 3)
UzV)=arg min | I8 +3 (%)

where U and V are the orthonormal matrices. In Ref. 14,
the authors have proved that the optimal solution of the min-
imization problem [Eq. (3)] can be simply achieved by the
singular soft-thresholding operation,

Z=5.(2) ’ @

{ (U,Z,V) =SVD(Y)
where S, denotes the soft-thresholding operator with thresh-
old 7, and the reconstructed data matrix X is conveniently
obtained by X = UXVT.

Now, we explore a nonlocal self-similarity approach
based on the SVD. Given a reference patch p from a
noisy image, we select a group of patches in the image
which are similar to p. The similarity is defined in Ref. 4.
Let us consider that there are N'(p) such similar patches
(including p) which are labeled as j, where 1 <j<
N (p). Next, we stack these similar patch vectors to form
amatrix Y, = [y, ¥, ... - ,yw(p”]ja\/(m, which is a
low-rank matrix and has sparse singular values. Therefore,
the low-rank minimization method [Eq. (3)] can be used
to design filtered algorithms.

3 Low-Rank-Based Image Deconvolution

3.1 Proposed Deconvolution Algorithm

Our algorithm is based on the decoupling of the deblurring
and denoising steps in the restoration process: (1) a regu-
larized inversion of the blur in the Fourier domain in the
deblurring step and (2) a denoising step using a low-rank
approach. We will describe these two steps in detail in this
section.

In the deblurring step, we proposed the cost function as
follows:

V= arg min{2]ly =2k {13 + [l y = gll3}. )

where k is the current iteration number, x’jE is a pre-estimated
image, and 1% > 0 is the weight for the regularization term.
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Alternatively, we diagonalized derivative operators after
FFT for speedup. These yield solutions in the Fourier
domain:

F(h)" - F(g) + AF(xp)
[ F(m)]? + 2 ’

Fh) = (6)

where F is the FFT operator and F (-)* denotes the complex
conjugate. The plus, multiplication, and division are all com-
ponent-wise operators.

The deblurred image y* depends greatly on the regulari-
zation weighting AX. In this work, the parameter 1% (kth step)
in Eq. (6) is obtained using the following method:

N21’I2

20—
lg—E(9)|3 = N*n*

)

/1k+1 — ﬂ/lk, (8)

where the image size is N X N and E(g) denotes the mean
of g.

The goal of deconvolution is to restore a sharper image. In
the deblurring step, Eq. (6) has the negative side effect of
introducing new artifacts. To suppress the amplified noise
and artifacts introduced in Eq. (6), in the denoising step,
we applied the low-rank minimization method to filter the
estimated image y*.

The low-rank approach has shown promising perfor-
mance in the image denoising problem; hence, we integrate
it into the deconvolution model in this work.

Algorithm 1 Low-rank-based image deconvolution algorithm.

Input: Blurry and noisy image g, noise variance ;2.

1: Initialize: pre-estimated image x2 = 0

2:for k=1: K do

3: Use x&~1 to obtain the noisy image y* via Eq. (5).

4: Noise variance update: re-estimate 72 from y* via Eq. (20).

5: for each patch y, in y* do

6: Find similar patch group Y,

7: SVD for each noisy data matrix Y ,: (U,, 2, V) = SVD(Y))
8: Thresholds update: compute 7, using Eq. (12).

9: Get the estimation using singular value thresholding

[Eq. (11)] with computed z,,.
11: end for

12. Image update: obtain an improved image x¥ by weighted
averaging all patches, and set x& = xk.

13: end for

Output: Deblurred image xX.
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Fig. 1 Example for the output of the deblurring algorithm prior to denoising with Barbara (scenario 5).
From left to right, top to bottom, the 1st iteration, 10th iteration, 22nd iteration, and 34th iteration.

For each local patch y, (size: b X b) from image yk, we
can search a group [number: N (p)] of its nonlocal similar
patches in the image (in practice, in a large-enough image
area) by block matching. To accomplish this, we define
the block distance as the />-norm of the difference between
the two blocks,

- 1 -
d(ypvyp):ﬁ”yp_ypnz’ (9)

where y, is an arbitrary block in the search neighborhood.
We selected NV'(p) patches with a minimum block distance,
and N (p) is fixed as 20 in this work.

By stacking these similar patches’ vectors into a
b* x N'(p) matrix, denoted by Y,, we get ¥, =X, + T,
where X, and TI', are the patch matrices of the clean
image and noise, respectively.

Then, the singular values of the matrix formed by these
patches are calculated by SVD. For the natural image,
X, should be a low-rank matrix; thus, we can use the
low-rank matrix approximation [Eq. (11)] to estimate X,
from Y ,:

X,

) = arg min] X,

st |lY, =X, |2 <2 (10)

%2

The [|X,||, denotes the nuclear norm of a matrix X ,.
The optimal solution can be obtained by the singular soft-
thresholding operation,
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{ (U,.Z,.V,) =SVD(Y,) an

s, =5.(%,) ’

where U » and v, are the orthonormal matrices. The recon-

structed data matrix )/(\p is obtained by )/(; =U pfl;VIT,.
Then the whole image can be recovered by aggregating

all the denoised patches.'® We integrated a low-rank minimi-

zation method into the deconvolution problem, leading to

a powerful algorithm.

Table 1 Experimental settings with different blur kernels and different
values of noise variance o2 for pixel values in [0,255].

Tests Point spread function (PSF) c?

1 h(i,j) =1/(1 + % + j2), for 2
ihj=-7,...,7

2 h(i,j) =1/(1 + 2 + j2), for 8
ihj=-7,...,7

3 his a 9 x 9 uniform kernel (boxcar) ~0.3

4 h = [14641]T[14641]/256 49

5 his a 25 x 25 Gaussian PSF with 4

standard deviation 1.6

6 his a 25 x 25 Gaussian PSF with 64
standard deviation 0.4
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Table 2 Comparison of the output improvement in signal-to-noise-ratio [ISNR (dB)] of the proposed deblurring algorithm. Blurred signal-to-noise
ratio (BSNR) is defined as BSNR = 10log,oVar(g)/N?s?, where Var() is the variance.

Scenario Scenario
1 2 3 4 5 6 1 2 3 4 5 6
Method Cameraman (256 x 256) House (256 x 256)
BSNR 31.87 25.85 40.00 18.53 29.19 17.76 29.16 23.14 40.00 15.99 26.61 15.15
TVS 7.41 5.24 8.56 2.57 3.36 1.37 7.98 6.57 10.39 4.49 4.72 2.44
LO-ABS 7.70 5.55 9.10 2.93 3.49 1.77 8.40 712 11.06 4.55 4.80 2.15
SURE-LET 7.54 5.22 7.84 2.67 3.27 2.45 8.71 6.90 10.72 4.35 4.26 4.38
IDDBM3D 8.85 712 10.45 3.98 4.31 4.89 9.95 8.55 12.89 5.79 5.74 7.13
NCSR 8.78 6.69 10.33 3.78 4.60 4.50 9.96 8.48 13.12 5.81 5.67 6.94
Our method 8.90 7.05 10.70 3.99 4.62 4.62 10.09 8.67 13.49 6.03 6.22 6.74
Scenario Scenario
1 2 3 4 5 6 1 2 3 4 5 6

Method Lena (512 x512) Barbara (512 x 512)
BSNR 29.89 23.87 40.00 16.47 27.18 15.52 30.81 24.79 40.00 17.35 28.07 16.59
TVS 6.36 4.98 7.87 3.52 3.61 2.79 3.10 1.33 3.49 0.63 0.75 0.59
LO-ABS 6.66 5.71 7.79 4.09 4.22 1.93 3.51 1.58 3.98 0.73 0.81 1.17
SURE-LET 7.71 5.88 7.96 4.42 4.25 4.37 4.35 2.24 6.02 1.13 1.06 1.20
IDDBM3D 7.97 6.61 8.91 4.97 4.85 6.34 7.64 3.96 6.05 1.88 1.16 5.45
NCSR 8.03 6.54 9.25 4.93 4.86 6.19 7.76 3.64 5.92 2.06 1.43 5.50
Our method 8.25 6.78 9.31 5.13 5.08 6.13 8.31 5.17 6.95 2.34 1.70 5.37
3.2 Variance Estimation of Deblurred Image Fy*Hh = j:(x(’gjigl) + F(is11) + Fis12)s (13)
In the application of denoising, the larger the singular values
are, the less energy should be shrunk. Obviously, the where
key issue now is the determination of threshold 7. With a 5 t
spatially adaptive Laplacian prior, we can set the threshold Xkl = 1 ('J:(h) |- F (orig) + A" (Xori) )7 (14)
parameter, one | F(h)|? + A

- cri F(hy - F(y)
7,(i) = > > ’ 12) Yir11 = 7:_1< 2 k)’ 3)

\/max[o;(X, )2/ N (p) = 1. 0] + 0.001 FmP+2

where ¢ > 0 is a constant, N'(p) is the number of similar . yls }‘(yk)
patches, and 7, denotes the local threshold at position p. Visro =F |F(R)P+a%) (16)

In this work, we present an algorithm to update the esti-
mation of noise variance 5?7 at each iteration. Th :

. . . en we can compute the variance of as

In Eq. (5), we can see that the noise of the image y**! is P Vi1
contained by two parts: y;1; and yxi12. Yi+1,1 18 the feed- F(h)* 2
back of regularized noise from g, and y,, is the leaked Meos = E( <vipi0 710 > 1) =n?| FOP+# I -
noise in the image x§ = x,, + 7*. From Eq. (6), one can
find that 17
Journal of Electronic Imaging 063013-4 Nov/Dec 2015 « Vol. 24(6)

Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 05/29/2016 Terms of Use: http://spiedigitallibrary.or g/ss/'Ter msOfUse.aspx



Yang et al.: Low-rank approach for image nonblind deconvolution with variance estimation

b) (c) (d)

(f) (9
Fig. 2 Visual quality comparison of image deblurring on gray cameraman image. (a) Original image,
(b) noisy and blurred image (scenario 3), (c) NCSR [improvement in signal-to-noise-ratio (ISNR) =
10.33 dB], (d) iterative decoupled deblurring BM3D (IDDBM3D) (ISNR = 10.45 dB), (e) our method
(ISNR = 10.70 dB), (f) difference image between the ground truth and nonlocally centralized sparse

representation (NCSR) results, (g) difference image between the ground truth and the IDDBM3D results,
and (h) difference image between the ground truth and our results.

(

(b)

(f) (9

Fig. 3 Details of the image deconvolution experiment on image Barbara. (a) Original image, (b) noisy and
blurred image (scenario 2), (c) SURE-LET (ISNR = 2.24 dB), (d) IDDBM3D (ISNR = 3.96 dB), (e) our
method (ISNR = 5.17 dB), (f) difference image between the ground truth and the SURE-LET results,
(g) difference image between the ground truth and the IDDBM3D results, and (h) difference image
between the ground truth and our results.

Similar to y;;;, we can estimate the variance of leaked
noise y;., in the denoised image x* as

where 72 is the noise variance of y*, Var() denotes the vari-
ance, ||y — x*||3 is the variance of the removed noise, and
co > 0 is a scaling factor controlling the re-estimation of

2 = Var(y")| A ”2 (18) the noise variance.
Mer12 = 4 \F(h)?+ k" Finally, the noise variance of y**! is updated as
— 2 2
Var(r*) = co(n? = ||y* = x*[3), (19) Mt = CiyMipra F M1 20 (20)
Journal of Electronic Imaging 063013-5 Nov/Dec 2015 « Vol. 24(6)
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(@)

(c) (d) (€) (f)
(9) (h) (i 1),

(b)

Fig. 4 Visual quality comparison of image deblurring on house image. (a) Original image, (b) noisy and
blurred image (scenario 5), (c) LO-analysis-based sparse (ABS) (ISNR = 4.80 dB), (d) NCSR (ISNR =
5.67 dB), (e) IDDBM3D (ISNR = 5.74 dB), (f) our method (ISNR = 6.22 dB), (g) difference image between
the ground truth and the LO-ABS results, (h) difference image between the ground truth and the NCSR
results, (i) difference image between the ground truth and the IDDBM3D results, and (j) difference image

between the ground truth and our results.

where c¢; > 0 is a scale factor. In Egs. (12) and (13), we can
see that the two noises, y; | and y; ,, are not independent to
each other, so we use c; to control the estimation of noise
variance.

Equation (20) can be described as follows: when the iter-
ation starts, only strong image details can be retained after
soft-thresholding shrinkage and contribute to the initial
estimation of x; however, the partially recovered image
will be fed back to the blurred and noisy observation through
Eq. (5), which helps to reduce noise.'® In return, weaker
image details can be identified and added to the image esti-
mate. As the iteration progresses, we observe that the esti-
mated noise variance monotonically decreases; meanwhile,
image details are progressively recovered.

The whole deconvolution algorithm is summarized in
Algorithm 1.

4 Experimental Results

In all the simulations, we set § = 1.25 in Eq. (8). The choices
of ¢y in Eq. (14) and ¢; in Eq. (20) are largely heuristic in
nature. We have empirically found that ¢, € [0.3,0.5] and
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¢y € [1.1, 1.4] generally yield good results and have accord-
ingly set co = 0.4 and c¢; = 1.25, respectively. We have
found that the improvement in signal-to-noise-ratio (ISNR)
generally reaches the peak value when ¢ € [1.05, 1.55]. We
fix this parameter value to 1.2 in our experiments.

In our experiments, we set the size of the patch as 4 x 4 (i.
e., b = 4), and we selected the first reference patch from the
top left of image and used step 3 in both rows and columns to
go from one reference patch to the next. For a 256 X 256
image, 84 X 84 patches are used for processing.

All the experiments are performed in MATLAB 7.11.0 on
an Intel(R) Core CPU i75600U processor (2.60 GHz),
8.0 GB memory, and Windows 7 operating system (notebook
PC). To estimate the complexity of our method, for an
N X N image, we assume that the average time to compute
similar patches for each reference patch is 7. The SVD of
each group with a size of Bx ¢ is O(B X ¢?). The FFT
costs O(N? log N) for the iterative update on deblurring
and denoising. Hence, the total complexity for image decon-
volution is O[N*(B x ¢? + T + log N)]. For a 256 X 256
image, the proposed algorithm requires about 3.55 s for

Nov/Dec 2015 « Vol. 24(6)
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b

(9) (h) (i) ()

Fig. 5 Details of the image deconvolution experiment on Lena image. (a) Original image, (b) noisy and
blurred image (scenario 1), (c) TVS (ISNR = 6.36 dB), (d) LO-ABS (ISNR = 6.66 dB), (e) IDDBM3D (ISNR
=7.97 dB), (f) our method (ISNR = 8.25 dB), (g) difference image between the ground truth and the TVS
results, (h) difference image between the ground truth and the LO-ABS results, (i) difference image
between the ground truth and the IDDBM3D results, and (j) difference image between the ground
truth and our results.

" ' 55 ' '

10 5k N 4

9 R 45¢F -

8 4 e d
e 7 | o 35F ]
z z
& &

6 4 3t 4

5 25} E

4 2

3 Cameraman | 15 Lena |4

House B Barbara
2 A 'S A A l A A A A
0 10 20 30 40 50 0 10 20 30 40 50
Iterations Rerations

(a) (b)
Fig. 6 Change of the ISNR with iterations for the different setups of the proposed algorithm. (a) Scenario
3 for cameraman, and Scenario 5 for house, (b) Scenario 4 for Lena, and Scenario 2 for Barbara.
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Fig. 7 Test images.?' From left to right, top to bottom: Img1, Img2,
Img3, and Img4.

Fig. 8 Blur kernels.?' From left to right, top to bottom: PSF1, PSF2,
PSF3, and PSF4.

one iteration, where the time for searching similar patches
requires about 2.12 s, and it is observed that about 35 iter-
ations are typically sufficient. We have posted code online."”

In Fig. 1, we show an example for the output of the
deblurring algorithm prior to denoising.

4.1 Benchmark Problems

The standard images cameraman, house, Lena, and Barbara
are tested in our experiments. The experimental settings are
presented in Table 1. Table 1 describes the different PSF and
different amounts of white Gaussian additive noise. They are
used in other papers*!' and go from weak-blur/strong-noise
to strong-blur/weak-noise cases.

We compare the proposed method with four state-of-the-
art algorithms: TVS,!® L0-AbS,!! SURE-LET,”® NCSR,"
and IDDBM3D? in standard test settings for deconvolution.

Journal of Electronic Imaging

Table 3 Experimental settings with different blur kernels and different
levels of noise.

Tests Images PSFs BSNRs
1 Img1 PSF1 15
2 Img1 PSF2 20
3 Img2 PSF3 15
4 Img2 PSF4 20
5 Img3 PSF2 15
6 Img3 PSF1 20
7 Img4 PSF4 15
8 Img4 PSF3 20

Table 4 Comparison of the output ISNR (dB) of the proposed deblur-
ring algorithm.

Methods 1 2 3 4 5 6 7 8

IDDBM3D 6.04 756 542 1133 7.13 865 7.19 8.56

FHLD 505 6.92 4.82 1047 554 645 7.69 5.71
DFD 435 6.27 410 876 559 454 1043 6.47
Ours 6.37 845 6.47 1225 8.62 9.73 1225 9.72

063013-8

Table 2 lists the comparison of ISNR results for six typical
deblurring experiments. The highest ISNR results in the
experiments are labeled in bold. The ISNR is defined as

L 2
ISNR = 10log,, 4orig = 7115 Y”% : 2n
”uorig - M||2

where u is the corresponding estimated image. It is clear
that our algorithm achieves the highest ISNR results in
most cases, as labeled in bold. In particular, for image
Barbara(512 x 512) with rich textures, our method outper-
forms current state-of-the-art methods, NCSR and
IDDBM3D, by more than 0.9 dB in scenarios 2 and 3.

The visual comparisons of the deblurring methods are
shown in Figs. 2 and 3, from which one can observe that the
proposed method produces cleaner and sharper image edges
and textures than other competing methods. Figure 2 shows
that our result [Fig. 2(e)] is more visually pleasant than those
in Figs. 2(c) and 2(d). In Fig. 3, our result [Fig. 3(e)] pre-
serves most details on Barbara’s trousers.

We provided more visual comparisons in Figs. 4 and 5.
Here, we provided empirical evidence to illustrate the stabil-
ity of the proposed deconvolution method. Figure 6 plots the
evolutions of ISNR versus iteration numbers for test images
in the cases of scenario 3 for cameraman, scenario 5 for
house, scenario 4 for Lena, and scenario 2 for Barbara. It is
observed that with the growth of iteration number, all the
ISNR curves increase monotonically and ultimately become
flat and stable, exhibiting good stability of the proposed
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Fig. 9 Example of the deconvolution results with Img1 image in experiment 2. (a) Original image,
(b) noisy and blurred image (scenario 5), (c) fast hyper-Laplacian based deconvolution (FHLD)
(ISNR = 6.92 dB), (d) directional filters based deconvolution (DFD) (ISNR = 6.27 dB), (e) IDDBM3D
(ISNR = 5.42 dB), and (f) our method (ISNR = 8.45 dB).

model. One can also observe that 35 iterations are typically We compare the proposed method with four state-of-
sufficient. the-art algorithms: IDDBM3D,’ fast hyper-Laplacian based

deconvolution (FHLD),?? and directional filters based decon-
4.2 More Complicated Point Spread Function volution (DFD)* in the test settings for deconvolution. The
we provide simulations with more images (shown in Fig. 7) results for IDDBM3D, FHLD, and DFD are obtained using
and blur kernels (shown in Fig.8) database used in Ref. 21. the software available online. We use the default parameters

Fig. 10 Visual quality comparison of the results with Img2 image in experiment 3. (a) Original image,
(b) noisy and blurred image (scenario 5), (c) FHLD (ISNR = 4.82 dB), (d) DFD (ISNR = 4.10 dB),
(e) IDDBMS3D (ISNR = 7.56 dB), and (f) our method (ISNR = 6.47 dB).
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Fig. 11 Algorithm’s sensitivity to different levels of noise. (a) The testimage is Img1 and the blur kernel is
PSF1, (b) the test image is Img2 and the blur kernel is PSF2.

suggested by the authors of the algorithms. The experiment
settings are presented in Table 3. The comparison of ISNR
results is listed in Table 4. The highest ISNR results in the
experiments are labeled in bold.

The visual comparisons of the deblurring methods are
shown in Figs. 9 and 10. One can see that our results are
more visually pleasant than the others. Results have shown
that the proposed method obtains a deblurring result with
better quantitative and visual performance.

We provide the algorithm’s sensitivity to different levels
of noise with the same blur kernel and latent sharp image in
Fig. 11. The test images are Imgl and Img2. PSF1 and PSF2
are used in the experiments, respectively. To each blurred
image, Gaussian noise is added such that the blurred sig-
nal-to-noise ratios (BSNRs) of the observed images are
10, 15, 20, 25, 30, and 35 dB. From Fig. 11, we can find
that the ISNR values are monotonically increasing on BSNR.

5 Conclusion

A low-rank (SVD-based) approach which models nonlocal
similarity in images was proposed, leading to a conceptually
simple image deconvolution algorithm with the decoupling
of the deblurring and denoising steps. We also proposed a
simple and effective method of estimating the noise variance
via computing the thresholds in each iteration. The experi-
mental results showed that our algorithm can not only lead to
visible ISNR improvements over state-of-the-art methods,
such as IDDBM3D and NCSR but also much better preserve
the image local structures and greatly reduce visual artifacts.
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