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a b s t r a c t

The modal warping method is extended to a floating frame of reference formulation to combine modal
warping formula with rigid body simulation. The highly nonlinear mass matrix because of the inertia coupling
between the reference and the elastic displacements is approximated using the linear theory of elastody-
namics. By kinematics analysis of infinitesimal deformation, the calculation of rotation deformations is derived.
Then modal warping method is used to model deformations for numerical accuracy and computation
efficiency. The rigid-flex multibody model for a leaf spring landing gear system is developed. The accuracy of
the proposed method is examined by experimental/simulation comparison.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Testing of dynamics behavior and control algorithms for an unm-
anned air vehicle (UAV) is difficult due to the delicate and expensive
nature of UAV systems. Meanwhile field trial is very critical and high
risk in autonomous UAV design. For these reasons the development
life cycle of UAV system typically involves a period of simulation. Real-
time simulation such as hardware in loop (HIL) simulation is often a
component of virtual prototyping used to study the dynamics of UAV
system prior to actual hardware development. HIL simulation can be
used to test the UAV autopilot hardware reliability, test the closed loop
performance of the overall system and tuning the control parameter
[27,28]. However a real-time simulation may have difficulties in mee-
ting real-time constraints for complex dynamics vehicle model simul-
ations [29]. For the demand of enhancing the speed of real-time
analysis, calculation time can be reduced by linearizing vehicle dyn-
amics equations. It is also important to acknowledge the degree of
accuracy lost when linearized equations are used [30,31]. Therefore a
compromise between accuracy and speed should be reached in real-
time simulation of UAV.

Developing a representative mathematical model involves quite a
laborious process, especially for the landing gear system dynamics that
is still an active research subject in the aircraft community. The
landing gear can be modeled to different levels of details, ranging

from a simple second order model for quantitative behavior to a sop-
hsticated, modularized model to study the complex ground handling
qualities with parametric analysis of the system [1,2]. In general the
landing gear is regarded as an assembly of strut suspension with non-
linear suspension stiffness [3]. Collins [4] performed drop tests to
study the damping of a landing gear system on a small aircraft that
utilizes cantilever spring landing gear. Khapane [5] studied the gear
walk instability by using flexible multibody dynamics simulation met-
hods in SIMPACK.

However many small UAVs equipped with non-retractable landing
gear use a cantilever beam system to provide stiffness to the gear, and
these types of gear are popular due to their minimal weight and low
aerodynamic drag. Since the leaf spring landing gear absorbs the
impact kinetic energy by its elastic deformations, traditional modeling
methods based on the type of shock absorber landing gear are not
suitable for it. A lumped spring model is used based on an assumption
that a multi-layered leaf spring can be modeled by a tapered beam [6].
This approach is too simple to take into account the effect of different
deformation modes of the leaf spring in vehicle suspensions since all
the spring characteristics are modeled by an equivalent spring con-
stant. Rill et al. [7] divided leaf spring of a commercial vehicles into five
rigid links connected to each other via rotational stiffnesses, and five
links seem to be a reasonable compromise that achieve a fast
simulated model but still captures the essential spring characteristics.
They designed the leaf spring models as generalized force elements
where the position, velocity and orientation of the axle mounting give
the reaction forces in the chassis attachment positions.

Another approach used in modeling the leaf springs is based on
using detailed finite element (FE) models that elastic component is
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approximated to a continuous set of degree of freedom (DOF) [8,9]. In
order to reduce the number of DOF and, thus, to increase computa-
tional efficiency, a wide-spread method is modal analysis that vibra-
tions mode shapes are used to replace the n-coupled differential equa-
tions with n-uncoupled equations, where each uncoupled equation
represents the motion of the system for that mode of vibration [10]. In
this technique, a body's deformation can be approximated by a linear
superposition of pre-selected shape functions. Then, the problem of
calculating the deformation is transformed to that of finding the weig-
hts of the modes and good approximate solutions can be obtained via
superpositionwith only first fewmode shapes. The primary advantage
of this method is that, due to the orthogonal property of normal
modes, the transformed equations decouple, provided that the equa-
tions for the physical system are linear. Another advantage of modal
superposition is that generally the number of equations to predict the
response of the structure with reasonable accuracy in modal space is
significantly less than the number of equations that represent the phy-
sical system [11]. So the modal method has been a popular technique
for the analysis of structures and real-time simulations [12,13].

However, the linear approximated modal method is based on a
linear strain tensor and it does not account for rotational deformations.
Some recommendations regarding the limits of this assumption are
given by Mayo [14]. Meanwhile large displacement response of the
leaf spring landing gear may be caused by a high impact velocity, and
the magnitudes of its bending or twisting deformations are relatively
large. Therefore the linear modal method can exhibit significant errors
when applied to leaf spring modeling. Recent research has occurred to
address the limitation of the linear method. For large deformations,
many authors take the approach of partitioning the stiffness and
damping matrices into linear and nonlinear parts, and the nonlinear
parts are as a vector of pseudo-forces [15,16]. On the other hand, the
effects of rotational deformation of some cantilever components e.g.
leaf spring and wings cannot be ignored, for the deformation of these
components may be subjected to small deformations but relative large
rotations. Sugiyama et al. [17] developed a nonlinear elastic model of
leaf springs for use in the computer simulation of multibody vehicle
systems. The distributed inertia and stiffness of the leaves of the spring
are modeled using the finite element floating frame of reference
formulation that accounts for the effect of the nonlinear dynamic
coupling between the finite rotations and the leaf deformation. Wang
et al. [18] investigated a homotopy analysis method to calculate the
large deformation of a cantilever beam under point load at the free tip.
They also give explicit analytic formulas for the rotation angle at the
free tip, which provide a convenient and straightforward approach to
calculate the vertical and horizontal displacements of a cantilever
beam with large deformation. Pai et al. [19] presented a total-
Lagrangian displacement-based finite-element formulation for general
anisotropic beams undergoing large displacements and rotations. To
improve the computational efficiency, Müller et al. [20] proposed a
stiffness warping method that is stable and fast like linear models, in
the case of tetrahedral elements that track the rotation of each node
and warps the stiffness matrix. Ngan et al. [21] extended the stiffness
warping to more complex nonlinear elements, particularly hexahedra
and quadratic tetrahedral.

The modal warping method [32] was introduced by Choi and Ko,
and it is an approach to eliminate the linearization artifacts while
retaining the efficiency of modal analysis. The basic idea of the modal
warping approach is to embed a local coordinate frame at each
simulation node, and tracks the local rotations that occur during the
deformation based on the infinitesimal rotation tensor, and warps the
pre-computed modal basis in accordance with the local rotations of the
mesh nodes. Guo and Qin [33] exploited modal warping technique into
their meshless simulation framework to achieve real-time manipula-
tion and deformation. However typical applications for above appr-
oaches are generally in graphics computers such as virtual surgery,
virtual sculpting, video games, etc. To demonstrate the advantages of

the approach, researchers also compared it to a linear and a non-linear
model through numerical simulation [20,32]. While further compar-
ison between experimental data and numerical results are required to
show that results from theory correlate well to experiment before the
modal warping approach is implemented into real-world systems such
as a land gear system or a UAV multibody system.

Choi and Ko's work [32] focuses primarily on extending the modal
warping method to cope with manipulation constraints for simulating
constrained deformable objects attached to rigid supports which is
motivated by the work of Hauser et al. [13]. This paper is a contri-
bution to extend the modal warping method to a floating frame of
reference formulation (FFRF) to model a deformable body undergoes
both large rigid body motion and small deformations which can be
used for a real-time simulation. The objective of this work is to model
a leaf spring landing gear system for dynamics analysis. Another
objective of this study is to investigate the potential of the proposed
approach to be used in UAV multibody system modeling for HIL simu-
lations in the future. The accuracy and computational speed of the
proposed method are also acknowledged in this study. Based on this
model, a rigid-flex multibody model for the real-time simulation of a
UAV system with a leaf spring landing gear can be further developed.
The focus holds on the following aspects:

� A detailed description of the calculation of rotational deforma-
tion is given to show how rotational part of deformations can
be easily and effectively obtained.

� Describe how to extend the modal warping method to a
multibody system based on FFRF, and linear theory of elasto-
dynamics is used to reduce calculation time.

� Show that a simplified flexible multibody with deformations
computed using the modal warping method can offer signifi-
cant accuracy and efficiency advantages.

In the next section a brief overview of a general modal method is
summarized. More details are available in [22]. In Section 3, kinematics
of infinitesimal deformation is investigated firstly to obtain the rota-
tion matrix for every vertex. Then in order to integrate the rotational
deformations, a local coordinate frame is embedded which is used to
measure the local rotations with respect to the global coordinate
frame. Section 4 introduces a simplified flexible multibody dynamics
that the highly nonlinear of the mass matrix caused by the limited
rotation of the deformation is approximated using the linear theory of
elastodynamics. Section 5 presents numerical examples and experi-
ments followed by conclusions in Section 6.

2. Modal theory

2.1. Modal superposition

The necessary background on modal vibration analysis is bri-
efly summarized here. The modal analysis of a physical system
begins with a linear set of equations that describe the system's
behavior. The elastodynamic equations for a finite element model
have a general form:

M €uþC _uþKu¼ f ð1Þ
whereM, C, and K are respectively known as the system's stiffness,
damping, and mass matrices, u and f respectively are the vector of
generalized displacements and forces. The displacement vector u
is then expanded in a modal displacement basis,

uðtÞ ¼ΦηðtÞ ð2Þ
where Ф denotes the modal matrix, a matrix whose ith column Фi

represents the ith mode shape, and η(t) is the vector of modal
coordinates. An important property is that the modal matrix Ф is
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independent of time, and completely characterized by values at mesh
vertices.

Substituting Eq. (2) into (1) and premultiplying by ФT,

Mη €ηþCη _ηþKηη¼ Q ð3Þ
in which

Mη ¼ΦTMΦ¼ I ð4Þ

Kη ¼ΦTKΦ¼ diagðw2
i Þ ð5Þ

Cη ¼ΦTCΦ ð6Þ

Q ¼ΦT f ð7Þ
where Mη denotes an identity matrix and Kη is a diagonal matrix
that contains in its ith column the squared eigen frequency ωi

corresponding to mode number i.
The damping matrix is defined as a linear combination of M

and K according to the Rayleigh form:

C ¼ αMþβK ð8Þ
where α is mass proportional Rayleigh damping coefficient, β is
the stiffness proportional Rayleigh damping coefficient. We know
that M and K are diagonalized by operating on them with the
modal matrix. When C is a linear combination of M and K, then the
damping matrix C is also diagonalized by the same pre- and post-
multiplication operations by the modal matrix as with the M and K
matrices

Cη ¼ αIþβKq ð9Þ
Define the critical damping Ccr ¼ 2

ffiffiffiffiffiffiffiffi
KM

p
[10] and rewrite Cη as

Cηi ¼ αþβω2
i ¼ 2ξiωi ð10Þ

where ξi is the percentage of critical damping for the ith mode,
defined as

ξi ¼
Ci

Ccr

� �
i
¼ Ci

2
ffiffiffiffiffiffiffiffiffiffiffi
KiMi

p ð11Þ

Then,

ξi ¼
αþβω2

i

2ωi
ð12Þ

This type of damping is known as proportional damping, where
the damping for each mode is proportional to the critical damping
for that mode. For lightly damped systems, proportional damping
can be added, while still allowing the equations to be uncoupled.
Then Eq. (3) is transformed into a set of single DOF equations in
modal space:

€ηiþ2ξiωi _ηiþω2
i ηi ¼Qi ð13Þ

The set of single DOF corresponding to individual modes can be
compute independently and combined by linear superposition
using Eq. (2).

2.2. Modal reduction

A specific characteristic of the FE model is a very high number of
nodes n. Since each node has 3 translational DOFs, the system dim-
ension is 3n. In order to reduce this high number, we can discard
modes that will have no significant effect on the deformation. Rem-
oving modes that are too stiff and too high frequency to be observed
will not change the appearance of the resulting simulation, but
removing them will greatly reduce the simulation's cost [23].

Then the next step in creating the elastic model is to sort
vibration modes so that only the most important modes are kept.
Frequency response analysis is used to determine the

contributions of each mode to the deformation. Generally the
model of ela-
stic deformation is a multiple input multiple output (MIMO)
model. The desired magnitude can be extracted as Zi/Fj, where Zi
is the DOF whose displacement is desired and Fj is the DOF where
the force is applied [10].

3. Modeling deformation

In this section the kinematics of infinitesimal deformation is
commenced to show how such deformations can be decomposed
into a strain and a rotation. Then this decomposition is used to
extend modal analysis so that it keeps track of rotations, while still
retaining the basic framework of modal analysis.

3.1. Kinematics of infinitesimal deformation

As shown in Fig. 1, vector x denotes the position of point P0 in
the undeformed state, which moves to a new position a(x) due to a
displacement vector u(x). The position of P in the deformed state is

aðxÞ ¼ xþuðxÞ ð14Þ
Differentiating both side of the above equation with respect to

x as

da¼ ðIþ∇uÞdx ð15Þ
Where ∇u is the gradient of the displacement vector, and ∇ is
written as

∇¼ ∂
∂x1

iþ ∂
∂x2

jþ ∂
∂x3

k ð16Þ

Since both u(x) and x are first-order tensor, the gradient of the
displacement vector ∇u is a second-order tensor and can be
written as

∇u¼
ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

2
64

3
75 ð17Þ

in which

εij ¼
∂ui

∂xj
ð18Þ

where 1r ir3, 1r jr3, generally εijaεji, so the gradient of the
displacement ∇u is not symmetric. Since ∇u is a second-order
tensor, it can be represented as the sum of a symmetric and

u(x)

a(x)

p

X1

x

p0

O

X3

X2

Fig. 1. Kinematics of infinitesimal deformation.

Z.-P. Xue et al. / International Journal of Mechanical Sciences 93 (2015) 22–3124



antisymmetric tensor, that is

∇u¼ εþω ð19Þ
where

ε¼ 1
2

∇uþ∇uT� �¼
e11 e12 e13
e21 e22 e23
e31 e32 e33

2
64

3
75 ð20Þ

ω¼ 1
2

∇u�∇uT� �¼
0 ω12 ω13

ω21 0 ω23

ω31 ω32 0

2
64

3
75 ð21Þ

in which 2eij ¼ 2eji ¼ εijþεji, 2ωij ¼ εij�εji ¼ �2ωji, ε is the infinite-
simal strain tensor, which measures the change in the squared length of
dx during an infinitesimal deformation, and ω is the infinitesimal
rotation tensor, whichmeasures themean rotation of a volume element.

The rotation vector w is defined as

w¼ 1
2
∇� u ð22Þ

Then the skew-symmetric tensor ω can be written as

ω¼ 1
2
ð∇u�∇uT Þ ¼ 1

2
ð∇� uÞ � ¼w� ð23Þ

where w� denotes the standard skew symmetric matrix of vector
w.

By substituting Eq. (19) and (23) into (15), we obtain

da¼ dxþεdxþw � dx ð24Þ
which shows that an infinitesimal deformation consists of a strain
and a rotation, and the rotational part can be extracted by
calculating the curl of the displacement as Eq. (22).

3.2. Rotational deformation of finite element

In this section the rotation vector w(t) will be represented in
modal coordinates, and the effect of it is integrated into the
calculation of the displacement field u(t).

3.2.1. Rotation vector of finite element
Finite element modeling involves decomposing a body into a

set of discrete volumetric elements, each associated with a set of
boundary nodes and shape functions that interpolate a quantity
within the element from the quantity's nodal values. The displace-
ment of an arbitrary node in element e can be approximated as

uðxÞ ¼NeðxÞue ð25Þ
where ue¼[uTe,1|…| uTe,k] is the vertex displacement of element e,
and k is the number of vertex nodes in the element. Ne(x) is the
linear shape function of the element. Substituting Eq. (25) into Eq.
(22) yields the rotation vector of element e

weðxÞ ¼
1
2
ð∇�ÞNeðxÞue ¼Weue ð26Þ

Note that because Ne(x) is a linear function of x, We is constant.
For the rotation vector of a node, the average of the rotation
vectors of all the elements sharing the node is used. Let W be the
global matrix that contains We of all the elements, and expanding
ue with Eq. (2) gives

wðtÞ ¼WuðtÞ ¼WΦηðtÞ ¼ΨηðtÞ ð27Þ
Equation above provides an efficient way to represent the rota-

tion vector w(t) at each node in terms of η(t). Both W and Ф are
constant over time; therefore the modal rotation matrix Ψ can be
precomputed.

3.2.2. Building matrix W
As Eq. (26) shows the Matrix W can be written as

W ¼ 1
2
ð∇�ÞNðxÞ ð28Þ

For simplicity, linear tetrahedral elements are used. ue¼[uTe,1|
uTe,2| u

T
e,3|u

T
e,4] is the vertex displacement of element e, in which the

displacement of vertex i is uTe,i¼[xei, yei, zei]T. The shape function
Ne(x) can be written as

Ne ¼
N1 0 0
0 N1 0
0 0 N1

N2 0 0
0 N2 0
0 0 N2

N3 0 0
0 N3 0
0 0 N3

N4 0 0
0 N4 0
0 0 N4

2
64

3
75

ð29Þ
where Ni is the linear function of the vertex node i.

A tetrahedral element is shown in Fig. 2, and a point P inside it
divides the tetrahedron in four sub-tetrahedrons. The tetrahedral
barycentric coordinates of the point P are given by

L1 ¼
VP234

V1234
; L2 ¼

VP134

V1234
; L3 ¼

VP124

V1234
; L4 ¼

VP123

V1234
ð30Þ

where Vijkl is the volume of the tetrahedron with vertices at i, j, k
and l. Hence, the coordinates of vertex 1 are (1,0,0,0), those of
vertex 2 are (0,1,0,0), etc. The transformation from physical to
tetrahedral coordinates is

1
x

y
z

8>>><
>>>:

9>>>=
>>>;

¼

1 1 1 1
x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

2
66664

3
77775

L1
L2
L3
L4

8>>><
>>>:

9>>>=
>>>;

ð31Þ

where the coordinates xi, yi, zi correspond to the vertex i. There-
fore, the tetrahedral barycentric coordinates can be written as

L1
L2
L3
L4

8>>><
>>>:

9>>>=
>>>;

¼ 1
6V1234

a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
a4 b4 c4 d4

2
666664

3
777775

1
x
y

z

8>>><
>>>:

9>>>=
>>>;

ð32Þ

in which

ai ¼ det

xj
xk
xl

yj
yk
yl

zj
zk
zl

2
64

3
75; bi ¼ �det

1
1
1

yj
yk
yl

zj
zk
zl

2
64

3
75

ci ¼ �det

yj
yk
yl

1
1
1

zj
zk
zl

2
64

3
75; di ¼ �det

yj
yk
yl

zj
zk
zl

1
1
1

2
64

3
75 ð33Þ

P

1

2

3

4

Fig. 2. Tetrahedral element.
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In Eq. (32) the linear function is represented in terms of
tetrahedral coordinates, which means that Ni¼Li, then the matrix
W for node i can be written as

Wi ¼
1
2
ð∇�ÞNiðxÞ ¼

1
2

0 � ∂
∂z

∂
∂y

∂
∂z 0 � ∂

∂x

� ∂
∂y

∂
∂x 0

2
664

3
775

Li
Li

Li

2
64

3
75 ð34Þ

Assembling the matrix We of element e as

We ¼ ½W1;W2;W3;W4� ð35Þ

3.3. Modal warping implementation

In sections above, a brief approach to compute the rotation of
deformation is given. To further integrate the effect of the rota-
tional part into the calculation of displacement, a local coordinate
frame is embed to measure the local rotations with respect to the
global coordinate frame as shown in Fig. 3. The displacement
vector ui in Eq. (1) represents the displacement of vertex i from its
original position, measured in the global coordinate frame, and ui

L

is defined as the displacement of vertex i, measured in the local
coordinate at node i. Let Di(t) be the rotation matrix representing
the orientation of local coordinate at node i. Then the displace-
ment vector u can be written as

uðtÞ ¼DðtÞuLðtÞ ¼DðtÞΦηLðtÞ ð36Þ

where ηLðtÞ is the vector of local modal coordinates. Instead of
solving Eq. (3) for u, we can convert the equation into local
coordinate that can be solved for uL. Based on the modal warping
method [32] Eq. (3) is rotated to local coordinate using the inverse
D�1. The local modal displacements are then computed in this
local coordinates and then rotate back to global coordinates using
D. Therefore Eq. (3) in local modal coordinates can be written as

Mq €η
LþCq _ηLþKqηL ¼ΦTD�1f ð37Þ

in which

D¼ Iþ ~ν sin θþ2 ~ν2sin2θ
2
�

�
ð38Þ

Rodrigues' formula is used to convert the rotation vector w(t) of
each node into the rotation matrix. It expresses the rotation matrix
in terms of the angle θ¼ ‖wðtÞ‖ and the unit axis ν¼wðtÞ=‖wðtÞ‖
of rotation.

4. Simplified flexible multibody dynamics

4.1. System equations of motion

The most frequently used approach in multibody simulation to
consider body flexibility is the FFRF as demonstrated [24–26]. The
configuration of each deformable body in the multibody system is
identified by using two sets of coordinates: reference and elastic
coordinates. Reference coordinates define the location and orien-
tation of a selected body reference. Elastic coordinates, on the
other hand, describe the body deformation with respect to the
body reference. The global position of an arbitrary point B on the
deformable body i is thus defined as

rBi ¼ riþAiðxBþuBÞ ð39Þ

where ri is the position vector of the origin body reference, Ai is the
transformation matrix, xB is the position vector of the point B in
undeformed state, and uB is the vector of elastic coordinates which
can be represented by Eq. (36). Thus, we can define the coordi-
nates of body i as

qi ¼
Ri

θi

qif

2
664

3
775 ð40Þ

where Ri and θ i are the reference coordinates and qif is the elastic
coordinates.

The equations of motion of Lagrangian formalism in multibody
systems have been proposed in [24]. It will not be reviewed in the
present paper. The final form of the equations of motion expressed
in generalized coordinates is

mi
RR mi

Rθ mi
Rf

mi
θθ mi

θf

symmetric mi
f f

2
6664

3
7775
2
6664
€R
i

€θ
i

€qif

3
7775þ

0 0 0
0 0 0
0 0 Ki

f f

2
64

3
75

Ri

θi

qif

2
664

3
775þ

CT
Ri

CT
θi

CT
qi
f

2
6664

3
7775

λ¼
ðQi

eÞR
ðQi

eÞθ
ðQi

eÞf

2
664

3
775þ

ðQi
vÞR

ðQi
vÞθ

ðQi
vÞf

2
664

3
775 ð41Þ

under the constraints

CðR; θ; qf Þ ¼ 0 ð42Þ

wheremij represents mass submatrices, Kff is the stiffness matrix, λ
is the vector of Lagrange multiplier, matrix CT represents the

Fig. 3. Deformation of cantilever with the rotation of local coordinates frames.
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transposition of the constraint Jacobian matrix, Qe is the vector of
external force and Qv is the vector of quadratic velocity.

4.2. Linear theory of elastodynamics

To introduce the dynamics formulation based on the linear
theory of elastodynamics, we rewrite Eq. (41) in the following
partitioned form:

mi
rr mi

rf

mi
f r mi

f f

2
4

3
5 €qir

€qif

2
4

3
5þ

0 0
0 Ki

f f

" #
qir
qif

" #
¼

Q
i
r

Q
i
f

2
4

3
5 ð43Þ

where qir ¼ RiT θiT
h iT

is the vector of reference coordinates of body
i; Q

i
is the vector of generalized forces, including the external

forces, reaction forces, and the quadratic velocity force as

Q
i ¼ Qi

eþQi
v�CT

qiλ ð44Þ

Rigid body motion and flexible deformation interact with each
other though inertial effects. The mixed set of reference and elastic
coordinates of deformable body leads to a highly nonlinear mass
matrix as a result of the inertia coupling between the reference
and the elastic displacements, and the mass matrix must be
iteratively updated. The deformation body is rotating rapidly,
neither these effects will be significant. Therefore to increase
computational efficiency, a solution strategy that has been used
in the past to treat the multibody system first as rigid body
systems as Eq. (45). In this assumption, the effect of the elastic
deformation on rigid body motion is ignored. Then the term mi

rf
€qif

in Eq. (43) is neglected as
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Eq. (45) can be solved for the inertia and reaction force by
general multi-rigid-body computer programs. These forces are
then introduced to the elastic deformable model as Eq. (46) to
solve for the deformation displacements. The total motion of a
deformable body is then obtained by superimposing the small
elastic deformation on the gross rigid body motion.

mi
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i
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Rewrite Eq. (46) in modal coordinates based on modal warping
formula, we have

Mη €η
LþCη _ηLþKηηL ¼ΦTD�1ðQi

f �mi
f r €q

i
rÞ ð47Þ

Then the simplified flexible multibody dynamics can be accom-
plished by combing the modal warping method with a standard rigid-
body dynamics program. The modal warping formula is embedded in
a rigid-body reference frame, and both systems evolve over time.

4.3. Algorithm

Summarize the entire flexible multibody simulation algorithm

1. Precomputed
– Modal datum: eigenvalues and eigenvectors
– Assembling matrix W
– Modal rotation matrix Ψ
– Rigid body system parameters

2. Loop
– Rigid body simulation solve:

Inertia and reaction force, rigid body motion
– Elastic deformation solve (modal warping method):

Deformation displacements

– Deformable body motion:
Superimpose deformation on rigid body motion

5. Application cases

In this section, a simple cantilever beam and a drop system are
chosen to show the effectiveness of the proposed method. The
eigenvalues and the corresponding eigenvectors are calculated by
finite element analysis program Nastran.

5.1. Cantilever beam

This experiment is to compare the results generated by the
linear modal method, modal warping method and nonlinear FEM.
The dimensions of the beams are 40 mm in width, 20 mm in
thickness and 200 mm in length, with a load force at the tip. The
parameters of the structure are: a density of 2700 kg/m3 and a
Young modulus of 70�106 Pa. Its FE model has 82 nodes and 196
tetrahedral elements. The beam is assumed to be straight and
undeformed in its initial configuration. Fig. 4 shows several linear
and warped mode shapes respectively.

The three methods indicated previously are used respectively
to deform the cantilever under different forces. The nonlinear FE
analysis is implemented in program Nastran, and the results of it
are taken to compare with the other two methods. Table 1 shows
the vertical displacements of the tip node by the three methods.

Results obtained by nonlinear FEM are as the ground truth, and
the relative vertical displacement errors are shown in Fig. 5. Com-
parison with the linear method shows that the proposed modal
warping method really improves the accuracy of deformations. Note
that the relative errors in both methods increases as the forces/
deformations increases, and the error of warping model with 4000 N
case is only 10%, while the error of linear model is larger than 40% in
this case. Fig. 6 shows the snapshots taken at the equilibrium states
of the cantilever, which shows the relative volume change with
respect to the initial volume. A large relative volume error can be
observed in the linear model as the load force increases, while it was
not easy to visually discriminate between the results produced by
modal warping and nonlinear FEM, unless the load force is bigger
than 2500 N. It can be found in Figs. 5 and 6 that the numerical res-

Fig. 4. Linear and warped mode shapes of cantilever.

Table 1
Vertical displacements at tip node (mm).

Method Load force(N)

500 1000 1500 2000 2500 3000 3500 4000

Linear 22.20 44.40 66.60 88.79 110.99 133.16 155.39 177.59
Warped 22.24 44.15 65.04 84.40 101.63 116.27 127.88 136.13
Nonlinear 22.43 44.12 63.73 80.61 94.74 106.43 116.11 124.15
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ults obtained by the modal warping method show a good agreement
with the results given by nonlinear FEM.

5.2. Main landing gear

The cantilever simulations have shown a high accuracy of the
modal warping in statics analysis. This section will demonstrate its
stability and manipulation capability in dynamics analysis. Leaf
spring landing gear is made with layers of different composite
materials. Its FE model has 471 nodes and 1110 tetrahedral
elements. The first 6 modes are rigid body modes resulting from
a free-free modal analysis. Table 2 shows the 7th to 18th modes.

We define the vertical direction is the Z direction and Y direction
is corresponding to the lateral direction. Fig. 7 shows respectively,
the frequency response for vertical displacement (Z–Z) and lateral
displacement (Z–Y) due to a unit vertical force at the node
connected the leaf spring with the wheel, using the first 50 modes
except the rigid modes. The contributions of modes decrease as
their frequencies increase. Note that the amplitude values for 13th
and 17th mode are almost same. The modes which are eliminated
have low magnitude relative to the 17th mode. Therefore we use 11
vibration modes from 7th to 17th to construct the flexible model of
leaf spring. Fig. 8 shows exemplarily selected mode shapes of the
leaf spring. Modes 7, 10, 11 and 17 are modes which involve motion
only in the Y–Z plane, bending type motions.

5.2.1. Statics experiments
Fig. 9 shows the statics experiment setup of the leaf spring. The

leaf spring is mounted on a test bench with a load mass at the tip.
The results of it are taken to compare with the two modal methods.
In Table 3 the vertical displacements of simulation results and

experimental records at the measuring point for different load

masses are presented.
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Fig. 5. Error analysis of the displacements shown in Table 1.

Fig. 6. Cantilever deformed by the linear modal (green), by modal warping (red), and by nonlinear FEM (blue) under different load forces. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
Modal results of leaf spring (rad/s).

Modes Frequency Modes Frequency

7 107 13 1927
8 322 14 2945
9 494 15 3393

10 641 16 3453
11 1261 17 3849
12 1294 18 4234

Frequency(rad/s)
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Fig. 7. Frequency response analysis of leaf spring.
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11th mode 17th mode

Fig. 8. Mode shapes of leaf spring.
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The relative vertical and lateral displacement errors are shown
in Fig. 10. A load mass of 100 kg is the design landing mass at each
gear, and the relative errors are below 5% for both the linear modal
and modal warping method; therefore the accuracy for two
methods is very good when the load mass is less than 100 kg.
The error on the displacement increases with the increasing load

mass. Even though the load has reached to 180 kg which repre-
sents the maximum realistic condition for landing, the error of the
modal warping method remains within 10%, while the error of
linear modal has been more than 35%.

5.2.2. Drop experiments
The drop system as shown in Fig. 11 basically consists of four

parts: a landing gear, a pair of wheels, a load mass and measuring
unit. A drop test is performed to simulate actual landing loads
experienced from a 1.8 m/s impact with the landing mass 100 kg.
The drop mass is attached to the top of the landing gear. Initially,
all the wheels are at rest. Video footage is used to capture the
vertical and lateral displacements. Fig. 12 shows the frames of
video footage when wheels are undergoing, respectively, fully
compressed, maximum rebound and stationary state. Freedom of
lateral movement to the gear legs is given so that lateral stiffness
or damping would not be influenced by other motion-induced
stiffness components.

The flexible multibody dynamics with deformation computed
using modal warping method (warping-multibody) is carried out by
using the Matlab/Simulink program and SimMechanics library is
used to model the rigid-body system. The heights of the landing
gear's center of gravity (CG) for both experimental records and the
simulation are shown in Fig. 13. The heights of experimental records
are taken from the frames of video footage for every 50 ms. The
simplified flexible multibody analysis highlights a good agreement
between the drop experimental data and simulation results. It is,
however, very difficult, if not impossible, to tune the damping in such
a way that it perfectly corresponds for the drop test.

For comparison we also implement a drop simulation with defor-
mation computed using linear method (linear-multibody). Fig. 14
shows the experimental records and the simulation results when the
landing gear undergoes fully compressed. The difference between the

Measuring
point

Load
mass

Fig. 9. Statics experiment setup of leaf spring.

Table 3
Vertical displacements at measuring point (mm).

Method Load force(N)

20 40 60 80 100 120 140 180

Linear 10.16 20.33 30.48 40.64 50.80 60.96 71.13 91.44
Warped 10.08 20.84 30.36 39.60 49.11 56.83 65.00 73.57
Experiment 10.26 21.02 30.06 39.14 48.56 55.12 61.48 67.24
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Fig. 10. Displacement errors of the leaf spring in static analysis. (a). Vertical errors (b). Lateral errors.

Fig. 11. Drop test setup of leaf spring landing gear.
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drop test and the warping-multibody simulation is almost indistin-
guishable on the volume. While a considerable large volume error can
be observed from the linear-multibody simulation at the first fully
compressed time. The linear-multibody and warped-multibody appr-
oach still yield stable simulation even for a time step of 3 ms.

In summary, both the cantilever beam example and leaf spring
statics experiments show that the modal warping method has
higher accuracy of calculation than linear modal method for large
relative rotational deformations. Then the drop simulation/experi-
mental comparison proves the accuracy of the warping-multibody
model and a high-speed multibody dynamic analysis is realized.

6. Conclusions

A general and systematic methodology has been presented to
integrate the modal warping method into FFRF for modeling leaf
spring landing gear. The proposed analysis method is an approxi-
mated solution; therefore, it is important to evaluate the degree of
error. Both of the accuracy of modal warping method and warping-
multibody method are examined by simulation/experimental com-
parison. Linear modal method, however, fails to capture accurate
deformations as the result of the limitation of linear approximation,
while the FEM leads to a large number of discretized DOFs in order to
achieve accurate solutions. Then the performance of simplified
warping-multibody formulation that combines modal warping for-
mula with rigid body simulation was investigated. Based on the
results of this study, the following main conclusions can be drawn:

� One of the key properties of the modal warping method is that all
expensive computations for matrix are precomputed. Therefore
the modal warping method maintains as much of the

computation efficient as possible. Meanwhile a good agreement
(errors less than 10%) can be observed between the results of the
modal warping method and nonlinear FEM.

� The accuracy of the linear modal method is almost same with the
modal warping method for small deformations. We also conducted
elastic models for some other objects and the performance of the
linear modal method is as good as the modal warping method. The
exceptions are long, thin, or highly deformable objects. Note that
the calculation errors of the both methods increases as the forces/
deformations increases.

� The key step of this modeling process consists in reducing the
highly number of DOFs to first few modes by a frequency
response analysis. 10 modes and 11modes are used respectively
to construct the elastic models of cantilever beam and leaf
spring landing gear. The accuracy of elastic model does not
improve significantly when more modes are used.

� A more accuracy elastic model of leaf spring landing gear can
be obtained by using the modes measured from modal experi-
ment to replace the first and/or second mode.

� The drop simulation/experimental errors are introduced both by
the modal warping method and by the uncoupling between rigid
body motion and deformation. Experimental/simulation compar-
ison proves an acceptable accuracy of the developed model. How-
ever, the error of the proposed method may be largely increased
when high speed, light weight mechanical systems are considered.
Future studies with this model should focus on leaf spring design
and UAV model development.

Generally speaking, we observe that the modal warping model is
suitable for free floating reference frame formulation to dynamics
analysis of cantilever beam type objects especially leaf spring landing
gear. It is also effective offering a good potential to be applied to more
complex cases such as the ground multibody dynamics analysis of
UAV and the gear walk analysis.
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Fig. 12. Drop test – frames of video. (a) Fully compressed, (b) maximum rebound, and (c) stationary state.
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