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We present what is to the best of our knowledge the first implementation of a trust region method for derivative-free
optimization (TRDF) in a wavefront sensorless (WFSless) adaptive optics (AO) system. We compare the trust region
methodwith the simulated annealing (SA) algorithm and stochastic parallel gradient descent (SPGD) algorithm. The
experimental results demonstrate that the trust region method is superior to both the SA algorithm and SPGD algo-
rithm with respect to convergence rates. These results indicate that the trust region method is a promising approach
for correcting static or slowly changing wavefront aberrations in practical applications. © 2015 Optical Society of
America
OCIS codes: (010.1080) Active or adaptive optics; (010.7350) Wave-front sensing.
http://dx.doi.org/10.1364/OL.40.001235

Static or dynamic aberrations can be corrected by the
adaptive optics (AO) technique. In a traditionalAOclosed-
loop control procedure, a wavefront sensor (WFS) is used
to directly measure instantaneous wavefront aberrations.
Based on the computed wavefront information, the corre-
sponding correction that is deduced using a proper
control algorithm can be implemented by the active
correction elements.
In contrast to these common AO systems, some wave-

front sensorless (WFSless) AO systems have emerged
that do not need a WFS to measure the wavefront aber-
rations. Instead, they use the sensor signal that is non-
linearly related to the wavefront aberrations as feedback
parameters for the correction elements. By adapting the
correction elements, the aberration is corrected to maxi-
mize the image sharpness metric. Image sharpness is a
measurement of the image performance and, in general,
higher sharpness indicates better image quality.
The inherent nonlinear and nonderivative characteris-

tics of the metric function make it difficult to solve the
WFSless AO technique. There is no direct solution to
the reflection relationship between the correction ele-
ments and the metric function. Iterative optimization al-
gorithms are essential to solving these problems. Various
optimization algorithms have been developed over the
past decades. Gradient descent optimization methods
such as stochastic parallel gradient descent (SPGD) have
attracted much attention in the last decade [1]. In addi-
tion to SPGD, simulated annealing (SA) was proposed to
correct aberrations for WFSless AO systems [2]. A well-
known stochastic optimization algorithm, the real encod-
ing genetic algorithm, has also been adopted to solve
WFSless AO aberration correction [3].
In a common closed-loop WFSless AO system, the con-

trol objective is to maximize the image sharpness metric
f �k� ∈ R at time k by adapting the deformable mirror
(DM) actuator commands u�k� ∈ RN , i.e., maxu�k� f �k�.
As described in [4], it is assumed that the aberration
can be corrected within a short time and by only a static
nonlinearity intensity measurement. Moreover, if using a
finite low-order Zernike aberration x to present the wave-
front aberration, the system can be simplified as

f �k� ≈ g�x� u�k�� �w�k�; (1)

where g represents an unknown static nonlinear wave-
front-intensity mapping and w�k� is the measurement
noise. Therefore, the goal is to maximize f �k� in a black-
box fashion. The above equation considers the aberra-
tion as a disturbance directly applied to the input u�k�,
which allows us to identify the model of the WFSless
AO system based only on u�k� and f �k�, and accounting
for the influence of the aberration.

In the image-plane, the image sharpness metric can be
given by S1 �

R
dxdyI2�x; y� [5]. Because it is difficult to

obtain an accurate model of the above equation, there is
no direct-form solution. Fortunately, a family of tech-
niques called derivative-free methods can be adopted
to tackle this black-box problem [6].

The quadratic approximation trust region method for
derivative-free optimization (TRDF) [7] is adopted in this
Letter. Studies have shown that TRDF is the most
efficient way to solve medium-scale derivative-free
problems [8].

TRDF uses m � �n�1��n�2�
2 points of function f �x� to

construct a quadratic function, solving the original prob-
lem by progressively solving the quadratic optimization
sub-problem. Two trust region radii ρ and Δ are defined
in TRDF, where ρ is monotonically nonincreasing and
controls the distances among the m interpolation points.
An initial ρbeg is assigned to ρ until it descends to a speci-
fied ρend. Radius Δ is used to control the range of new
points.

We denote the m interpolation points as xi�i �
1;…;m� at the beginning of each iteration, and xk is
the point that minimizes the function f �x� among all
the m points. By solving the sub-problem

min
d∈Rn

Q�xk � d�s:t:‖d‖2 ≤ Δ; (2)

we obtain a probe point, whereQ�x� � cQ � gTQ�x − xb� �
1
2 �x − xb�TGQ�x − xb� is a quadratic approximation of
f �x�, Δ > 0 is the trust region radius, and xb is the initial
point specified by the user. When ρ shrinks, xb is
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substituted with the best point determined so far by
TRDF. The values of cQ, gQ, and GQ are determined by
the interpolation conditions Q�xi� � f �xi�, i � 1;…;m.
In other words, for each j � 1; 2;…;m, we derive a
Lagrange interpolation function,

Lj�x� � cj � gTj �x − xb� �
1
2
�x − xb�TGj�x − xb�; (3)

and make

Lj�xi� � δij �
�
1; if i � j; i � 1;…;m

0; if i ≠ j
. (4)

Obviously, Q�x� � P
m
j�1 f �xj�Lj�x�, and hence cQ �P

m
j�1 f �xj�cj , gQ �P

m
j�1 f �xj�gj, and GQ �P

m
j�1 f �xj�Gj.

This framework minimizes f �x� within a fixed accu-
racy and shrinks that accuracy gradually. For a fixed

ρ, a new point xk � d is generated by m points using
the quadratic function. If f �xk � d� < f �xk�, a better point
has been reached. This better point replaces a certain
point in xi�i � 1;…;m� and the iteration continues. If
f �xk � d� ≥ f �xk�, Δ needs to shrink, and a new point
is substituted with a worse interpolation point xj to cor-
rect the model. This is called a model step. When solving
the model step, the algorithm solves the following
sub-problem:

max
d∈Rn

jLj�xk � d�js:t:‖d‖2 ≤ ρ; (5)

where index j corresponds to the moving interpolation
point xj.

To demonstrate the performance of the trust region
method, the system was implemented experimentally
using a He–Ne laser (wavelength 570 nm) as the point
source and a liquid crystal spatial light modulator
(LC-SLM) configured as a wavefront generator. The pupil
diameter was set to 9 mm. An Andor DV860 with 2 × 2
binning mode at 900 Hz was used as an energy collector,
which had an image size of 64 × 64 pixels. Static aberra-
tions were adopted, and a 32 actuator DM was used to
correct the aberration. To estimate the accuracy of the
correction, we used a Hartmann to measure the residual
wavefront aberration. Figure 1 shows the schematic of
our experimental optical setup.

Considering the capacity of the DM, three different
static aberration experiments were performed in this
study. The first row in Fig. 2 shows the three images
degraded by static aberration. The corresponding phase
images are shown in the second row, respectively, and
the approximate initial Zernike coefficients are listed
in Table 1.

The two main parameters used in TRDF are Δ and ρ.
Parameter ρ dominates the change of Δ in the iterations;
thus, the actual parameter setting was for ρ. We set
ρbeg � 0.1 and ρend � 10−6. This setting was fixed for
all three procedures. We adopted Powell’s method [9]
to carry out our experiments.

The experimental results are listed in Fig. 3 and Table 2.
From the first two images, we can see that the diffraction
rings are reconstructed. Although the reconstruction
degrades when the aberration increases, the energy is
still concentrated.

Figure 4 presents the convergence rate and accuracy
curve of TRDF. To demonstrate its performance, we
compared TRDF with a bilateral SPGD and simplex
SA [10]. The termination criterion was reached when the
absolute difference between two adjacent function
evaluations was less than 10−5 within 100 consecutive
evaluations.

Fig. 1. Schematic of the experimental setup. The controller
adapts the control signal u�k� to maximize intensity measure-
ment f �k�.

(a) (b) (c)

original (a) (b) (c)

Fig. 2. Nondegraded images, various aberration-degraded
images, and the aberration phase images.

Table 1. Initial Zernike Coefficientsa

Ex. a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

a 0 0 0.016 0 0.035 0.074 −0.062 0.011 −0.02 −0.038 0.016
b 0.3 0 0.41 0.2 0.14 0.046 −0.192 0.016 −0.12 −0.081 0.156
c −1.0 0.2 0.35 0.1 0.32 0.24 −0.47 0.32 −0.21 −0.33 0.13
aThe piston term is omitted.
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The bilateral SPGD can be described as

u�k� 1� � u�k� � γδf �k�δu�k�; (6)

where δf �k� � δf��k� − δJ
−

�k�, δf��k� � f �u�k��
δu�k�� − f �u�k��, and δf

−

�k� � f �u�k� − δu�k�� − f �u�k��.
Furthermore, γ is the gain factor and δu�k� � fδu1�k�;
δu2�k�;…; δuN�k�g is the perturbed actuator command
in the kth iteration. In addition, δui�k� is independent
and follows a Bernoulli distribution [11], i.e., the magni-
tude jδui�k�j � δ and Pr�δui�k� � �δ� � 0.5. In each iter-
ation, bilateral SPGD requires three function evaluations,
while both TRDF and SA require only one.
From Fig. 4 and Table 3, it is clear that TRDF has a

similar Strehl ratio to SPGD and SA, while TRDF requires
the lowest number of function evaluations to reach the
maximum intensity. SPGD has the worst convergence
rate in our experiments, but that may be caused by
the parameter setting. Optimized parameter tuning could
achieve better results. Simplex SA has a fast convergence
rate because it uses a simplex method such as local
search, as well as annealing to escape from local optima.
In conclusion, the trust region method is a local search

algorithm. This deterministic algorithm can find the
maximal energy of a WFSless AO system and has a fast

convergence rate. Compared with the popular SPGD and
SA algorithms, the trust region method is superior with
respect to convergence rate when the scale of the DM
is medium. We plan a series of continuous wavefront
aberration experiments with white light or segmented
mirrors in the near future.
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Fig. 3. Residual aberration phase images and the recon-
structed images.

Table 2. Comparisons of the Initial Root Mean
Square (rms) and Residual rms Wavefront

Aberrations Calculated by TRDF, as Well as the
Initial p-v and the Residual p-v Wavefront

Aberrations Reached by TRDF

rms λ p-v λ

Ex. Initial TRDF Initial TRDF

A 0.17556 0.0354 1.6308 0.3327
B 0.97084 0.23 8.617 2.7314
C 2.0739 1.0738 18.362 15.5126
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Fig. 4. Convergence rates of TRDF, SPGD, and SA for differ-
ent aberrations. SPGD adopts (a) δ � 0.0001, γ � 3,
(b) δ � 0.0002, γ � 2, and (c) δ � 0.0001, γ � 25.

Table 3. Comparisons of the Strehl Ratio and
Minimum Number of Function Evaluations Required to

Achieve Stabilization

Strehl Ratio Stable Func. Eval.

Ex. TRDF SA SPGD TRDF SA SPGD

a 0.8621 0.8624 0.8620 350 1100 1950
b 0.7049 0.7051 0.6959 1320 8470 59900
c 0.4941 0.5286 0.4979 4400 18670 79160
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