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Abstract: We present an analytical treatment for the relatively new spectral 
disperser termed virtually imaged phased array (VIPA). Angular spectrum 
representation of the input Gaussian beam helps us obtain an exact analytic 
dispersion model and a dispersion law for a general VIPA by using the 
principle of multiple-beam interference. The consideration of the optical 
aberrations caused by refractions makes our model more accurate and 
practical than previous models. The validity of the proposed dispersion law 
has been validated theoretically by comparing with previous results. Some 
considerations of using a VIPA are also provided. 
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1. Introduction 

The virtually imaged phased array (VIPA) is a multiple-beam interference spectral disperser 
that provides several advantages over the diffraction gratings, which includes large angular 
dispersion, low polarization sensitivity, simple structure and low cost, and compactness [1]. It 
was introduced by Shirasaki as a device that could achieve wavelength division multiplexing 
and dispersion compensating in optical communication systems [1–3]. Over the past decade, 
these researches have been further improved [4–7] and greatly extended to applications such 
as optical arbitrary waveform generation [8,9] and ultrafast optical pulse shaping [10,11]. 
Moreover, combining a VIPA with a diffraction grating which creates a two dimensional 
spectral dispersion leads to some other promising fields of applications including spectral 
encoded ultrafast imaging [12], molecular spectroscopy [13], spectral domain optical 
coherence tomography [14,15] and simultaneous endoscopic imaging and microsurgery 
[16,17]. Due to the superior optical performance and the potential value in application, 
researchers spare no effort to establish an accurate theoretical model to describe the spectral 
dispersion property of the VIPA. As a pioneer, Yang [18] presented an interfering distribution 
formula for the simple air-spaced VIPA by using the Fourier-transform, and found it was a 
function of diffraction angle. Vega et al. [19] proposed a dispersion equation via a qualitative 
analysis that the phase difference satisfies the constructive interference conditions. Xiao et al 
[20,21] derived a dispersion law by using the Fresnel diffraction analysis, which has been 
widely adopted in current reported applications. However, this dispersion law exists a subtle 
error and the effect of this error has been never analyzed. Mokhtari et al [22,23] formulated a 
more rigorous model for the VIPA and the output profile of a Gaussian beam array has been 
fully studied in a numerical method, while the most important dispersing performance of the 
VIPA is seldom considered. Recently, Gauthier [24] corrected a fundamental error existed in 
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Vega’s model. Despite this correction combined with Weiner’s [25] discussions about it 
provides a better understanding of the VIPA, the above mentioned theoretical models are not 
appropriate and accurate enough to describe the significant spectral dispersion of a general 
VIPA, especially for a solid VIPA. 

In this paper, we present an effective and intuitional method to accurately describe the 
spectral dispersion of a general VIPA, as well as to overcome the drawbacks of the previous 
models. As a result of the diffraction divergence of the input Gaussian beam, it is 
considerably difficult to analyze the VIPA in real space. By taking advantage of the powerful 
diffraction theory of angular spectrum of plane waves, the input beam is decomposed into 
plane waves propagating with different directions (Sec. 2) which provides a fundamental 
precondition to study the extremely complicated diffraction propagation and interference 
behaviors of the output divergent beam series in angular space with a simple and 
straightforward geometrical approach. An intuitional spectral dispersion model of the VIPA is 
deduced in detail based on the interference theory and an exact analytical treatment of the 
previous model is also presented briefly (Sec. 3). By comparing the derived dispersion law 
with previous ones, the validity of the proposed model is validated theoretically. In addition, 
the effect of the optical aberrations to the dispersion law are analyzed (Sec. 4). 

2. Fundamental principle 

2.1 Working principle of VIPA 

The VIPA resembles a windowed Fabry-Perot etalon in geometric structure, which mainly 
consists of two reflecting surfaces and an air-spaced or solid plane-parallel cavity as shown in 
Fig. 1. The back surface is coated with a partially reflective film (R2≈95%), while the front 
surface is coated with a total reflective film (R1≈100%) except for an antireflection coated 
area used as the entrance window, so that the energy efficiency of the input beam can be 
significantly enhanced [26,27]. The incident beam, which is typically a collimated 
fundamental mode (TEM00) Gaussian beam, is weakly focused onto the back surface by a 
cylindrical lens and is coupled into the VIPA through the transparent window. Then, multiple 
back and forth reflections of the input beam at the two reflective films produce series of 
divergent beams transmitted from the back surface which satisfy the interference condition 
approximately. The interference of these beams not only leads to the output angles precisely 
varying with wavelength, but also leads to a narrow distribution of energy in angular space 
for any specific wavelength. Therefore, a hyperfine angular dispersion can be achieved. As 
the interference pattern is located at infinity, a focusing lens is usually used to observe the 
intensity distribution of this interference pattern at the back focal plane. From the above 
mentioned operating principle, the VIPA can be treated as a classical optical multiple beam 
interference device, more specifically, a Lummer–Gehrcke plate [28]. 

 

Fig. 1. Schematic geometry of the VIPA spectral disperser. 

2.2. Angular spectrum representation of the input beam 

As the input beam of the VIPA is generally only focused in one dimension (x direction) while 
the other dimension (y direction) still remains collimated, so the input beam is actually an 
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elliptical Gaussian beam located in xy plane. Then the amplitude distribution at beam waist 
plane (z = 0) will be given by: 

 ( )
2 2

0 2 2
0 0

, ;0 exp ,
x y

x y
E x y E

w w

 
= − −  

 
 (1) 

where E0 is a constant amplitude, w0x = λ fc /(πW) and w0y = W are the spot size of the 
Gaussian beam in direction of x and y, respectively, fc is the focal length of the cylindrical 
lens, W is the beam radius of the collimated beam and λ is the wavelength in the propagation 
media. 

By using angular spectrum of plane waves, the diffraction propagation of this Gaussian 
beam owing to its non-uniform amplitude distribution can be described as a superposition of 
plane waves propagating with direction cosines ek = (cosα, cosβ, cosγ), and the diffraction 
field (dropping the evanescent waves) follows the integral equation [29]: 

 ( ) ( ) ( ) ( )22
, ; , exp 2 1 ,x y x y x y x yE x y z A f f j f x f y f f z df dfπ λ λ

+∞ +∞

−∞ −∞

  = + + − −      (2) 

where the spatial frequencies are related to the direction cosines via fx = cosα/λ and fy = 
cosβ/λ, respectively, A(fx, fy) is defined as the angular spectrum of the field distribution E(x, y; 
0) and it is given by the following Fourier transform: 

 ( ) ( ) ( ), , ;0 exp 2 .x y x yA f f E x y j f x f y dxdyπ
+∞ +∞

−∞ −∞

 = − +    (3) 

Letting θx = π/2 − α and θy = π/2 − β, then fx = cosα/λ = sinθx /λ and fy = cosβ/λ = sinθy /λ, 
where θx and θy corresponding to a definition of the field of view (FOV) are the output angle 
of diffraction. Substituting Eq. (1) into Eq. (3) yields the following expression that is the 
angular spectrum of the Gaussian beam [30]: 

 ( ) ( ) ( )
2

2 2 2 2
0 0 0 0, , exp sin sin ,

4x y x y x x y y

k
A f f A E w wθ θ θ θ ′= = − + 

 
 (4) 

where E0' = E0π w0xw0y and k = 2π/λ. In arriving at Eq. (4), the well-known integral formula of 
2 2exp( ) exp[ (4 )]x i xα β π α β α

+∞

−∞
− + = − is used twice independently, and the spatial 

frequencies fx = sinθx /λ and fy = sinθy /λ is used to simplify the result. According to Eq. (2), 
the diffraction of the input Gaussian beam of E(x, y; z) can be investigated equivalently in 
angular space by using the plane wave components: 

 ( ) ( ) ( )2 2
0, ; , exp sin sin 1 sin sin ,x y x y x y x yP z A jk x y zθ θ θ θ θ θ θ θ = + + − −  

 (5) 

where A0(θx, θy) and ek = [sinθx, sinθy, (1− sin2θx − sin2θy)
1/2] are treated as the amplitude and 

direction cosines of the plane wave in physical optics, respectively. Note that, by using Eq. 
(4) then Eq. (2) can be integrated in paraxial approximation to carry out the distinguished 
representation of a Gaussian beam [30]. 

3. Theoretical treatment of the VIPA 

When analyzing a typical interference device, the ray-based geometry method is generally 
used to give a clear description of the phase difference which is the basis of studying 
interference phenomenon [28]. The angular spectrum representation of the input beam as 
given by Eq. (5) makes it possible to analyze the spectral dispersion of the VIPA in such a 
similar intuitional geometry method. But in this case, the rays should be considered as the 
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“diffracted rays”, which corresponds to the geometrical theory of diffraction [31], instead of 
the ordinary rays of geometrical optics. 

3.1. Theoretical derivation of the proposed model 

Without loss of generality, we consider an oblique incidence of the plane wave described in 
Eq. (5) on a solid VIPA of thickness h (and of refractive index n′) surrounded by a medium of 
refractive index n. When n′ = n = 1, the following derivation will correspond to the air-spaced 
VIPA. If the symmetry plane of the VIPA is located in xz plane and the tilt angle of the VIPA 
in xz plane is denoted by φ, then the normal vector can be given by en = (−sinφ, 0, cosφ) as 
shown in Fig. 2(a). For the plane wave components with direction cosines ek = [sinθx, sinθy, 
(1− sin2θx − sin2θy)

1/2], the incident angle Θ is given by: 

 2 2cos cos 1 sin sin sin sin .x y xΘ ϕ θ θ ϕ θ= ⋅ = − − −e en k  (6) 

The optical path differences (OPD) of the adjacent reflected waves can be simplified to ∆ 
= 2n′h cosΘ ′ by using the geometric relationships shown in Fig. 2(a), and the corresponding 
phase difference δ = k ∆ is given by: 

 ( )
1

2 22 2 2 2 22 cos 1 sin sin sin sin .x y xkh n n nδ ϕ θ θ ϕ θ   ′= − − − + −   
 (7) 

In arriving at Eq. (7), the Snell’s Law n′sinΘ ′ = n sinΘ and Eq. (6) have been utilized. As 
shown in Fig. 2(b), the optical path from O to P causes an additive phase δl which is given by: 

 cos sin ,
cos cos

x
l z

df
k dδ γ γ

γ η
 = + − 
 

 (8) 

where cosγ = (1− sin2θx − sin2θy)
1/2, sinη = tanθy /sinγ, θx = arctan(xf /f), θy = arctan(yf /f), f is 

the focal length of the focusing lens, dz is the distance from the beam waist to the lens and dx 
is the displacement of the lens in the x direction. 

 

Fig. 2. (a) Sketch map of optical paths in the incident plane used to calculate the optical path 
differences (OPD) for the neighboring transmitted rays. The OPD is ∆ = n′(OA + AB) − nOC = 
2n′hcosΘ ′. (b) In the auxiliary plane, the optical path from the output plane to the back focal 
plane can be represented by the chief ray (red line) passing through the center of the lens. The 
incident plane and the auxiliary plane will be in the same cross-section if and only if θy = 0. 

As the beam enters the VIPA through the transparent window, we neglect the transmission 
coefficients of this window area, and let the amplitude reflection and transmission 
coefficients of the back surface be denoted by r2 and t2, respectively. According to the 
principle of multiple-beam interference [28], the complex amplitude of the transmitted waves 
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is given by 0 2 1 20
( ) ,l

Mj j m
t m

A A t e r r eδ δ
=

=  then the intensity distribution It = At ·At* will be 

written as: 
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1 ( ) 2( ) cos( )
.

1 2 cos

M M

t

R R r r M
I A T

R R r r

δ
δ

+ −
=

+ −
 (9) 

Letting R1 = |r1|
2 = 1, R2 = |r2|

2, T2 = |t2|
2 = 1− R2, and using the parameters defined in Eq. (1) 

and Eq. (4), through a proper simplification of Eq. (9), we obtain the intensity distribution of 
the interference pattern: 
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exp sin sin ,

1 sin 21
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f W

W F

δ
θ θ
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 (10) 

where Fi = 4r1
ir2

i (1− r1
ir2

i)−2, i = (1, M), M ≈L/(2htanφ′) is the number of reflection due to the 
finite length L of the VIPA and φ′ is related to the tilt angle through n′sinφ′ = nsinφ. In Eq. 
(10), the exponential term forms an envelope function while the remainder term results in the 
modulation of the intensity. Such an intensity modulation function is similar to the intensity 
distribution of the Lummer−Gehrcke plate [28]. The addition term [FM sin2(M δ/2)] / [1 + 
F1sin2(δ/2)] broadens the line-width or the Full-width half-maximum (FWHM), but it does 
not affect the positions of the absolute maxima. Thus the intensity It will reach the maxima 
when the phase difference δ = 2mπ, where m is an integral. 

So far, we achieve a rigorous description of the 2-D spectral dispersion for a VIPA, that 
is, the resonance conditions δ = 2mπ or termed the dispersion law: 

 ( )
1

2 22 2 2 2 22 cos 1 sin sin sin sin 2 .x y xkh n n n mϕ θ θ ϕ θ π   ′− − − + − =   
 (11) 

Considering that the input Gaussian beam generally is collimated in y direction, so we neglect 
the divergence angle θy, which is restricted by the diffraction angles λ /(πW) typically less 
than 0.5mrad. If we let θy = 0 and θx = θ for simplification, the phase difference will be given 
by δ = 2n′k hcosΘ ′ = 2n′k hcos(φ + θ)′. And the 2-D spectral dispersion law Eq. (11) will be 
transformed into a more useful 1-D spectral dispersion law: 

 ( )2 2 22 cos( ) 2 sin 2 ,n kh kh n n mϕ θ ϕ θ π′ ′ ′+ = − + =  (12) 

by using the Snell’s laws n′sin(φ + θ)′ = n′sin(φ′ + θ ′) = nsin(φ + θ) and n′sinφ′ = nsinφ. 
Based on the spectral dispersion law Eq. (12), some useful relations can be obtained 

accordingly. The relation of the peak output wavelength λ and the output angle θ is given by: 

 ( ) ( )2 2 2 2 2 2
0

2
= = sin sin ,

h
n n n n

mθλ λ λ ϕ θ ϕ ′ ′Δ − − + − −   (13) 

where mλ0 = 2n′hcosφ′ and mλ = 2n′k hcos(φ + θ)′. The angular dispersion factor which 
represents the change in angle θ with the constructive interference wavelength is given by: 

 
( )

( )

2 2 2

2

2 sin
,

sin 2

n nd

d n

ϕ θθ
λ λ ϕ θ

′ − + = −
+

 (14) 

and the free spectral range (FSR) which represents the wavelength difference corresponding 
to a displacement of one order ( 2δ πΔ = ) is given by: 
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( )

2

2 2 2
( ) .

2 sin
FSR m h n n

λ λλ
ϕ θ

Δ = =
′ − +

 (15) 

Another important relation is the spectral resolution ∆λ or spectral resolving power R = 
λ/∆λ. Letting the intensity modulation function [1 + FM sin2(M δ/2)] /[1 + F1sin2(δ/2)] in Eq. 
(10) equal to 0.5, we will receive a transcendental equation about the FWHM εM [28] which 
can be solved approximately in numerical analysis methods. Then the spectral resolving 
power will be obtained by using the relation of|∆δ| = εM = 4πn′h(∆λ/λ2) cos(φ + θ)′ = 
2πm(∆λ/λ) as follows: 

 
( )2 2 22 sin2

.
M M

kh n nm
R

ϕ θλ π
λ ε ε

′ − +
= = =

Δ
 (16) 

For convenience consideration, the effect of FM in Eq. (10) is usually dropped and the FWHM 
ε1 = 4.15(F1)

−1/2 will be given easily to replace εM. 
In order to compare with previous works, the proposed dispersion law Eq. (12) can be 

rearranged as another equivalent form as follows 

 ( )2 cos cos tan sin 2 .kh n n mθ ϕ ϕ ϕ θ π′ ′ ′ ′− + =    (17) 

In addition, by using the first order Taylor series expansions of the trigonometric functions of 
sin(φ′ + θ ′) = sinφ′ + cosφ′·θ ′ + o(θ ′) and sin(φ + θ) = sinφ + cosφ·θ + o(θ) together, we 
acquire the approximate relation θ ′≅ θ·ncosφ/(n′cosφ′). Substituting this relation into the 
second order Taylor series expansion of cos(φ′ + θ ′) = cosφ′ − sinφ′·θ ′− cosφ′·θ ′2 /2 + o(θ 
′2), then Eq. (12) is transformed into an approximate dispersion law: 

 
2 2

2cos
2 cos 2 tan cos 2 .

cos

n
kh n n m

n

ϕϕ ϕ ϕ θ θ π
ϕ

 ′ ′ ′− ⋅ − = ′ ′ 
 (18) 

3.2. Accurate description of the previous virtual sources model 

In previous model, the VIPA is regarded as a phase array consisting of virtual sources and the 
input beam is assumed to be a 1-D Gaussian beam. In this case, only θx is considered in Eq. 
(5) and the subscript is neglected (θx = θ) for simplicity. As show in Fig. 3(a), the space 
position distribution of the virtual sources is obtained through ideal imaging of the central ray 
of the focused beam. Not only the virtual beam waists themselves but also their transverse 
and longitudinal spacing are assumed to be identical. 

According to Fig. 3(b), the transverse and longitudinal geometrical spacing of adjacent 
sources can be simplified to ∆x0 = 2htanφ′cosφ and ∆z0 = 2hnr cosφ′, respectively, where nr = 
n′/n represents the relative refractive index. These virtual sources are arranged in line at a 
certain direction determined by ψ1 = arctan(∆x /∆z), while in previous analysis [1,32] an 
unreasonable conclusion is given that ψ1 = φ, which is satisfied only for the specific condition 
nr = n′/n = 1. The OPD of the adjacent diffracted rays with direction cosines ek = (sinθ, 0, 
cosθ) can be simplified to ∆′ = n (∆z0cosθ − ∆x0sinθ). Taking advantage of the phase 
resonance conditions δ = k∆′ = 2mπ, we obtain the accurate dispersion law of the previous 
model as follows: 

 ( )2 cos cos tan cos sin 2 .kh n n mϕ θ ϕ ϕ θ π′ ′ ′− =  (19) 
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Fig. 3. Sectional view of a VIPA irradiated by the line-focused Gaussian beam for previous 
virtual sources model. (a) Considering the ideal reflection imaging of the beam waist, the 
geometrical spacing in the surrounding medium are ∆x0 = BC = 2htanφ′cosφ and ∆z0 = (S0A + 
AB)n′/n− S0C = 2hnr cosφ′ . (b) For the diffracted rays with output angle of θ emitted from the 
adjacent sources, the OPD is describe as ∆′ = nS1C = n(S1D − EF) = n(∆z0cosθ − ∆x0sinθ). 

Furthermore, by using the second order approximation sinθ ≅ θ and cosθ ≅ 1− θ2/2, Eq. 
(19) is transformed into an approximate dispersion law: 

 22 cos 2 tan cos cos 2 ,kh n n n mϕ ϕ ϕ θ ϕ θ π′ ′ ′ ′ ′ − ⋅ − ⋅ =   (20) 

which is identical to the dispersion law predicted by the paraxial wave theory [21]. Note that 
Xiao et al. [20] make an error [the Eq. (14)] while extending the theoretical derivation for the 
air-spaced VIPA to that of a solid VIPA, and this error is not found [the Eq. (4.33)] in Xiao’s 
master thesis [21]. Therefore, Eq. (20) is the correct form of dispersion law deduced from 
Xiao’s dispersion model. 

4. Comparison and discussion 

It is important to compare our results with previously proposed dispersion laws of the VIPA. 
As far as we know, there are only two detailed previous dispersion laws for the VIPA 
published by Vega et al. [19] and Xiao et al. [20], respectively. These two laws are all based 
on the assumption used in previous virtual sources model described at Section 3.2. Vega’s 
dispersion law is given by [19]: 

 ( )2 cos tan sin 2 ,kh n n mϕ ϕ ϕ θ π′ ′ ′− + =    (21) 

and Xiao’s dispersion law which existing a subtle error in processes of simplification is given 
by [20]: 

 22 cos 2 tan cos cos 2 .kh n n n mϕ ϕ ϕ θ ϕ θ π′ ′ ′ ′ ′ − ⋅ − ⋅ =   (22) 

Note that, in Eq. (21) and Eq. (22), the refractive index of the surrounding medium is 
assumed to be air (n = 1) in the following discussion and the descriptive symbols of the 
parameters have been changed to facilitate analytical comparison. 

By comparing Eq. (21) and Eq. (17), we find that the difference is only caused by the 
coefficient of cosθ ′ in the first term of Eq. (17). This is because in Vega’s theoretical 
derivation only the central ray component of the input beam is considered, where θ ′ = 0 so 
cosθ ′ = 1. The divergence of input beam after the beam waist can be interpreted as the 
inherent diffraction of the Gaussian beam. However, it is only considering the central ray 
component that results in the fundamental error found by Gauthier [24]. Actually, the 
diffraction propagation of the Gaussian beam can be equivalently described by using the 
plane wave components as shown in Eq. (5). Thus the result of our model Eq. (17) or the 
equivalent form Eq. (12) based on the plane wave method is obviously more effective than 
Vega’s dispersion law. Since Xiao’s dispersion law Eq. (22) based on the paraxial wave 
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theory is widely adopted when a VIPA is used, we focus our attention on it in the following 
comparison. 

For the air-spaced VIPA (n′ = n = 1, φ′ = φ), Eq. (19) is perfectly equivalent to Eq. (12), 
that is, 2khcos(φ + θ) = 2mπ. Meanwhile, Eq. (22) is reduced to 2kh[cosφ(1− θ2/2) − θ·sinφ] = 
2mπ, which is equivalent to Eq. (20). These two equivalent relations demonstrate that for the 
air-spaced VIPA the proposed model is completely equivalent to previous model, and Xiao’s 
dispersion law Eq. (22) is an approximate representation of our dispersion law Eq. (12) in 
Fresnel approximation. So we can conclude that both our accurate law and Xiao’s 
approximate law are appropriate to describe an air-spaced VIPA. Such a coincidence can be 
attributable to the assumption that the ideal reflection imaging of the Gaussian beam is 
perfectly acceptable in previous model. All of the virtual images are plane beam waist which 
is identical to that of the input Gaussian beam. 

However, for a solid VIPA, the formation of the virtual images becomes extremely 
complicated because of the emergence of the optical aberrations generated by the refractions 
of the divergent beams at interfaces between two different media, including the transparent 
input area of the front surface and the whole back surface. In previous virtual sources model, 
such inherent optical aberrations were neglected and the assumption of ideal imaging of the 
input Gaussian beam was adopted. The virtual source array is obtained by only using the 
refraction and reflection imaging of the central ray as shown in Fig. 3(a) and Fig. 4(a), then 
the diffracted rays with wave-vector of kθ are assumed to be emitted from the these virtual 
source array. In other words, these diffracted rays except for the special treated central ray do 
not get through real refraction and reflection. In our proposed model, all rays with different 
wave-vectors are treated equally and they have got through real refraction and reflection 
independently while emitted from the back surface of the VIPA as shown in Fig. 4(a). In 
order to study the impact of the aberrations to the periodicity of the spatial distribution for the 
virtual sources, we consider the transverse and longitudinal geometrical spacing by using the 
relationship shown in Fig. 4(b), and define the variations of the geometrical spacing attribute 
to the optical aberrations to be ∆ξ = ∆xθ − ∆x0 and ∆η = ∆zθ − ∆z0. After a proper 
simplification, we have: 
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When nr = n′/n = 1 (φ′ = φ), ∆ξ = 0 and ∆η = 0, there is no aberrations existed, which 
corresponds to our analysis of the air-spaced VIPA. But for the solid VIPA, these aberrations 
result in the ideal planar beam waists vanished. As shown in Fig. 4(b), for every FOV with 
output angle θ the aberrations introduce a perturbation to the virtual source P depicted by 
using the central ray, so that the actual virtual source will be the point Q. The trajectory of the 
virtual source Q constitutes the first image S1(θ) of the incident beam, the other images Si(θ) can 
still be obtained likewise. So far, it is clear that when aberrations is considered the VIPA can 
still be treated similarly as a virtual phased array defined in previous model. But the 
corresponding spatial period changes from the previous constant of ∆x0 and ∆z0 [Fig. 3(a)] 
which depending on only the tilt angle φ to ∆xθ = ∆ξ + ∆x0 and ∆zθ = ∆η + ∆z0 which is a 
function of output angle θ. 

The angular spectrum representation of the input beam allows us to effectively solve the 
ultimately useful phase difference of δ = k∆ in a ray-based method as shown in Fig. 2(a) that 
the aberrations are considered indirectly. It is the above mentioned optical aberrations that 
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lead to the distinct difference in phase difference between dispersion laws Eq. (19) and Eq. 
(12) respectively given through previous model and the proposed model. In fact, such distinct 
difference in phase difference caused by optical aberrations impose effects not only on the 
dispersion law but also on the angular dispersion factor, the free spectral range (FSR) and the 
spectral resolving power, because they are all defined through the phase difference. Further, 
they are all in proportion to the phase difference. The above analysis demonstrates that our 
dispersion law Eq. (12) or its equivalent form Eq. (17) is the more reasonable and accurate 
dispersion law for a general VIPA because the intrinsic aberrations of refractions have been 
considered. 

 

Fig. 4. Comparison of diffracted rays in a solid VIPA for the proposed model and the previous 
model. (a) In previous model, the virtual source array (red points) is depicted by using the 
refraction and reflection of central ray (green line), and other diffracted rays (red dashed line) 
are assumed to be emitted from these virtual sources. In proposed model, all rays are depicted 
by their real refraction and reflection (blue line). (b) Referring to Fig. 3(b), the OPD of the 
previous model can be describe as ∆′ = nPH = n(∆z0cosθ −∆x0sinθ), and for the proposed 
model that is ∆ = nQK = n(∆zθ cosθ − ∆xθ sinθ) = 2n′khcos(φ + θ)′. With the help of another 
relation of S0K = EF + S0D = BC, we have ∆zθ sinθ + ∆xθ cosθ = 2htan(φ + θ)′cos(φ + θ). Then 
the spatial period ∆zθ and ∆xθ can be solved easily. 

In Fig. 5, we illustrate the absolute deviations in phase difference as functions of the 
output angle and the tilt angle, which intuitively reflects the absolute error of the previous 
work as compared with the proposed model. Results in Fig. 5(a) show that absolute value of 
the deviations increase as the output angle increases when the tilt angle is fixed, and the 
results in Fig. 5(b) show that the deviations increase slowly as the tilt angle increases when 
the output angle is fixed except for that of Vega. The deviations between previous model Eq. 
(19) and the proposed model Eq. (12) depicts the effect of the optical aberrations given 
through Eq. (23) and Eq. (24). The deviations between Eq. (19) and Eq. (20), as well as Eq. 
(18) and Eq. (12) depict the effect of Taylor's series approximation. It is clearly shown in Fig. 
5(a) that the extremely small deviations duo to Taylor's series approximation is insignificance 
when compared with the notable deviations duo to aberrations. 

Another interesting result from Fig. 5(a) is that the correct form of Xiao’s dispersion law 
Eq. (20) gives rise to a larger deviation than the original form of it Eq. (22) where an error 
exists compared with the proposed model that considering aberrations. In other words, 
although Eq. (22) is the incorrect result of the previous model, still it is an acceptable 
practical approximation law because the notable difference in phase difference caused by 
aberrations in the previous model is tremendously reduced by accident. Such a valuable 
coincidence in Eq. (22) can be easily explained in theory by comparing Eq. (18), Eq. (20) and 
Eq. (22). It can be seen that the discrepancies of these equations are only centralized on the 
quadratic terms related to output angle θ. Compared with the quadratic term of n′cosφ′·θ2 in 
Eq. (20), the term of cosφ′·θ2/n′ in Eq. (22) is more close to the term of cos2φ·θ2/(n′cosφ′) in 
Eq. (18) since n′ > n = 1 and the practical tilt angle is usually small (φ = 4°). The accuracy 
and precision of Xiao’s dispersion law Eq. (22) is in close proximity to the approximate 
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dispersion law Eq. (18) deduced by our proposed model as shown in Fig. 5(a), the deviation 
between them can be given by: 

 
2 2

2 2cos cos
( ).

cos

n
kh o

n n

ϕ ϕδ θ θ
ϕ

′ 
Δ = − + ′ ′ ′ 

 (25) 

Considering the deviations described by Eq. (25) is extremely small, so Eq. (22) can be 
treated as a useful empirical dispersion law because it neither a correct form of previous 
model nor a correct form of the proposed model. In addition, as we discussed above Xiao’s 
dispersion law Eq. (22) is an acceptable practical approximation law and it has been verified 
by experiments [33]. Thus we can conclude that the proposed model and the corresponding 
dispersion law are appropriate to describe the VIPA accurately. Note that Eq. (25) can be 
used as the absolute correction value in phase difference for previous works which have 
adopted Xiao’s dispersion law Eq. (22). 

 

Fig. 5. Absolute deviations in phase difference for different dispersion laws, normalized by 2π, 
(a) as a function of output angle θ with tilt angle φ = 4°, and (b) as a function of the tilt angle φ 
with output angle θ = 3°, while n′ = 1.5, n = 1.0, h = 1.5mm and λ = 1.55μm. The parameter 
values referenced from [33]. 

Finally, it is worth noting that in our analytical treatment the phase-shift caused by optical 
aberrations is considered, while the phase-shift related to the polarization of light is neglected 
because the effect of the polarization strongly depends on the specific characteristics of the 
reflective coatings [28]. It is quite difficult to obtain a general analytical expression for the 
polarization phase-shift, but we can qualitatively conclude that the polarization phase-shift is 
smaller than π which is much less than the deviations caused by optical aberrations depicted 
in Fig. 5. A numerical analysis of the polarization for the VIPA refers to the work of 
Mokhtari et al [23]. Furthermore, it is particularly meaningful to point out that the analytical 
spectral dispersion law Eq. (12) derived from our plane wave method is a general accurate 
dispersion law for the VIPA, which is both valid whether the paraxial approximation is 
satisfied or not. This means that through a proper reshaping of the input beam to enlarge the 
divergence angle we may get rid of the restrictions of the paraxial approximation used in 
previous works. In this case, the diffraction envelope function in Eq. (10) will be changed but 
the dispersion law of Eq. (12) remains unchanged. In addition, the distance (dz) from the 
output plane of the VIPA to the front focal plane of the focusing lens can be changed 
arbitrarily as the specific needing of optimization, and it is unnecessary to keep this distance 
equal to the focal length of the lens because dz has no effect on the interference intensity 
distribution [described in Eq. (10)] observed at the back focal plane. 

5. Conclusion 

We have proposed an analytical spectral dispersion model for the VIPA based on the theory 
of the multiple-beam interference. By using the angular spectrum approach, the diffraction 
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propagation and multiple reflections of the input beam for a general VIPA are studied. A clear 
theoretical treatment of the VIPA is given and a rigorous analytical spectral dispersion law is 
obtained. It is demonstrated in a comparison with the previous reported laws that the 
proposed law is more reasonable to describe the spectral dispersion of a general VIPA 
because the optical aberration is considered. In addition, our model provides a clear physical 
interpretation of the phase-matching condition, which is conducive to the understanding of 
the spectral dispersion property of the VIPA. Our analytical treatment and results are useful 
for the design and optimization of the devices and optical systems based on VIPA spectral 
dispersers as mentioned in the introduction. 

Acknowledgments 

The authors would like to acknowledge the financial supports from the National Major 
Scientific Instruments and Equipment Development Project (NO. 2013YQ14051702) and the 
Project of Jilin Province Science and Technology Hall (NO. 20140204030GX). 

#217519 - $15.00 USD Received 21 Jul 2014; revised 29 Nov 2014; accepted 30 Nov 2014; published 5 Jan 2015 
(C) 2015 OSA 12 Jan 2015 | Vol. 23, No. 1 | DOI:10.1364/OE.23.000001 | OPTICS EXPRESS 12 




