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Abstract: A phase unwrapping algorithm for interferometric fringes based 
on the unscented Kalman filter (UKF) technique is proposed. The algorithm 
can bring about accurate phase unwrapping and good noise suppression 
simultaneously by incorporating the true phase and its derivative in the state 
vector estimation through the UKF process. Simulations indicate that the 
proposed algorithm has better accuracy than some widely employed phase 
unwrapping approaches in the same noise condition. Also, the time 
consumption of the algorithm is reasonably acceptable. Applications of the 
algorithm in our different optical interferometer systems are provided to 
demonstrate its practicability with good performance. We hope this 
algorithm can be a practical approach that can help to reduce the systematic 
errors significantly induced by phase unwrapping process for 
interferometric measurements such as wavefront distortion testing, surface 
figure testing of optics, etc. 
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1. Introduction 

Interferometric measurement plays an important role in sensing various physical properties 
such as surface deformation of optics [1], wavefront distortion [2], and so on [3]. In optical 
interferometry, most techniques, for example, phase-shifting method [4], spatial carrier 
method [5], etc., give the wrapped demodulated phase. To retrieve the true physical 
properties, the wrapped phase needs to be further unwrapped in order to yield a continuous 
phase map. Ideally, the unwrapping problem is trivial for phase maps with good quality where 
the signal is free of noise. In realistic conditions, however, the phase unwrapping would be of 
low precision or even fail when the phase map is corrupted by serious noise or there exists 
phase aliasing [6]. Thus, researchers show intensive interests in this topic and many ingenious 
algorithms have been developed to perform practical phase unwrapping. We can generally 
divide these existing phase unwrapping algorithms into three categories. The first are those 
path-following algorithms, in which the unwrapping process starts from a grid point and 
integrates the wrapped phase differences following a pre-chosen path [7–10]. Although the 
path-following algorithms work well for many cases, it is not stable enough because the 
detected phase discontinuity or residue points which are used to generate the unwrapping path 
would be affected by the high noise condition easily. The second type are in the framework of 
minimum-norm, which seek the unwrapped phase whose local derivatives match the 
measured derivatives as closely as possible [11]. However, the residual unwrapping error of 
the minimum-norm method is relatively large sometimes. The third type of phase unwrapping 
algorithms are featured with filtering the phase noise and unwrapping the phase 
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simultaneously, such as the regularized phase-tracking (RPT) phase unwrapping approach 
[12, 13], the recursive phase unwrapping (RPU) system [14–16], the extended Kalman 
filtering phase unwrapping (EKFPU) algorithm [17], etc. It is considered that separated 
filtering and unwrapping processes may impair the phase information irreversibly to some 
extent, thus this type of phase unwrapping algorithms can provide accurate and reasonable 
noise-immune unwrapping. 

The Kalman filter (KF) based techniques have already been extensively used in the signal 
processing realm. Since it can perform optimal estimations for desirable quantities with good 
noise immunity, they also attract many interests in different interferometric applications 
nowadays [17–24]. However, the original KF can only deal with linear problems, and is not 
appropriate for the non-linear phase unwrapping. The extended Kalman filtering (EKF) is a 
variant of the original KF, which adopts linear approximation to the nonlinear problem. 
Although the EKF has already been used to unwrap the interference phase maps as mentioned 
above, the linear approximation process limits the further promotion of unwrapping accuracy 
and sometimes induces algorithm divergence. As an improved version of the EKF, the 
unscented Kalman filter (UKF) introduces the unscented transformation to analyze the 
statistical features of the prediction and correction processes [25], thus it does not require any 
linear approximation to the estimation problem. As of today, few works are done to introduce 
the UKF technique into the application of phase unwrapping except the relevant studies in 
[19, 21], to our knowledge. 

In this paper, we add a new contribution to the phase unwrapping solution for 
interferometric fringes based on the UKF technique. The proposed algorithm involves the true 
phase and its derivative simultaneously in the state vector estimation through the UKF 
process, thus no other assistant local gradient estimator for the phase map is needed, which 
makes for simple algorithm realization and high computation efficiency. Also, the path-
following strategy is unnecessary. We demonstrate that the proposed approach has good 
noise-immune ability and unwrapping accuracy as well as reasonably acceptable computation 
consumption compared to some widely employed phase unwrapping algorithms. This 
algorithm is expected to be a practical choice for the interferometric measurement, such as 
surface figure testing, wavefront distortion testing, etc., to enhance the accuracy during the 
data processing. 

2. Proposed phase unwrapping algorithm 

2.1 Principle and methodology 

The phase unwrapping problem assumes that the modulo 2π  phase can be obtained, which is 
very easy to be satisfied in the phase-shift interferometers and spatial-carrier interferometers 
by converting the arctangent principal value into 2π  interval. The wrapped phase can be 
represented equivalently by its cosine and sine terms: 

 
( ) ( )
( ) ( )

2

2

, cos
,

, sin

C x y

S x y

π

π

φ
φ

=


=
 (1) 

where, 2πφ  is the wrapped modulo 2π  phase. The proposed algorithm unwraps the phase by 

seeking for a smooth and continuous phase map that can produce the same cosine and sine 
results as calculated from Eq. (1), which seems to be a little bit similar with the essence of the 
RPT technique [12]. It should be noted that, the proposed approach would also be potential to 
process the phase retrieval of one real fringe pattern if some other techniques such as the 
Hilbert transformation can be combined to produce the sine term in Eq. (1). In this paper, we 
mainly concentrate on the phase unwrapping problem. 
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Assume that the true phase at an unwrapped pixel, ( )kφ , is differentiable, where, k  is the 

pixel index according to some unwrapping strategy as will be introduced below. In most 
interferometric measurements, this assumption is acceptable because the phase maps 
correspond to continuous physical quantities. Then, we can infer the true phase value at its 
adjacent pixel ( )1kφ +  from ( )kφ  based on the one-order Taylor series expansion model: 

 ( ) ( ) ( )1 .k k k kφ φ φ′+ = + ⋅ Δ  (2) 

where, kΔ  is the discretization step which is one pixel here. If the state vector of the state-

space dynamic model for the phase unwrapping problem is defined as ( ) ( ) T

k k kφ φ′=   x , 

the true state vector 1k +x  at the pixel 1k +  can also be evolved from the value kx  according 

to Eq. (2): 

 ( )1 = , ,k k k k kf+ = +x x v Fx v  (3) 

where, 

 
1 1

,
0 1

 
=  
 

F  (4) 

and kv  is the process error vector using the one-order approximation of Eq. (2). We 

emphasize that, different from the commonly used random walk model in KF technique [19, 
21], the state-space model of Eq. (3) involves the true phase and its derivative into the state 
vector estimation. Thus, no other phase derivative estimator is needed, making the phase 
unwrapping much simpler. 

The observation equation is 

 ( ) ( ), .k k k k kh H= = +y x n x n  (5) 

Herein, ky  represents the observation vector whose elements are the cosine term and sine 

term from Eq. (1), kn  is the observation noise vector, and the operator H  is defined as 

 ( ) ( )
( )

( )
( )

1

1

cos
,

sin

C k x
H

S k x

   
= =   
   

x  (6) 

where, 1x  denotes the first element in the state vector x . 

Based on the state-space equation [Eq. (3)] and the observation equation [Eq. (5)], the 
UKF technique can be employed to unwrap the whole phase map pixel-by-pixel through 
combining the model predicted cosine and sine terms and their real observations to produce 
an optimal estimation for the desirable state vector. Note that, the elements in noise vectors 

kv  and kn  are considered as independent and white random variables, with normal 

probability distributions. 
To perform the UKF technique, we also need to compose an augmented state vector a

kx  

for unwrapping phase at the pixel with index k : 

 .
Ta T T T

k k k k =  x x v n  (7) 

Obviously, this augmented state vector is the direct concatenation of the original state vector, 
the process noise vector and the observation noise vector. Let the state vector covariance 

#251481 Received 9 Oct 2015; revised 19 Nov 2015; accepted 19 Nov 2015; published 8 Dec 2015 
© 2015 OSA 14 Dec 2015 | Vol. 23, No. 25 | DOI:10.1364/OE.23.032337 | OPTICS EXPRESS 32340 



matrix be xP , the process noise covariance matrix be vP  and the observation noise covariance 

matrix be nP . Then, the augmented state covariance matrix is built from 

 .
x

a
k v

n

 
 =  
  

P 0 0

P 0 P 0

0 0 P

 (8) 

The proposed UKF-based phase unwrapping approach is presented in detail as follows, 
which is in the framework of the standard UKF technique. 

 Initialize the UKF algorithm. We can choose a seed pixel ( 1k = ) to start the UKF 
recursive estimation. The true phase of the seed pixel can be designated as the 
wrapped value simply. The augmented state covariance matrix for the seed pixel is a 
diagonal matrix whose elements are the initialized variances of the corresponding 
variables. 

 Repeat the following steps (a)-(c) from 2k =  to k end= , where, end  is the pixel 
total number in a pixel sequence to be unwrapped: 

(a) Generate the sigma points. The sigma points are a minimal set of carefully chosen 
samples that completely capture the true mean and covariance of a random variable. 
When the sigma points propagate through a non-linear system, the outputs can 
capture the posterior mean and covariance of this random variable accurately to the 
3rd order (Taylor series expansion). The sigma points for the augmented state vector 

1
a
k −x  are 2 1N +  vectors around its mean value, where, N  is the dimension of the 

augmented state vector. We can form a sigma point matrix 1
a
k −X  whose i th column 

is the i th sigma point: 

 ( )( )
( )( )

, 1

1

1 1

1 1

, 0,

, 1,..., ,

, 1,..., 2 .

i k

a
k

a a a
k k

i

a a
k k
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i

N i N

N i N N

λ

λ

−

−

− −

− −


=
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x

X x P

x P

 (9) 

In Eq. (9), ( )( )1
a
k

i
N λ −+ P  is the i th column of the matrix square root. 

( )2 N Nλ α κ= + −  is a scaling parameter, where, α  and κ  are tuning factors. 

Generally, κ  is set to zero, and 0 1α≤ ≤ . The sigma point matrix can be partitioned 
as 

 , 1 , 1 , 1 , 1[ ] ,a x v n T
i k i k i k i k− − − −=X X X X  (10) 

where, the superscript x , v , n  mean the corresponding parts of the state vector, 
process noise vector and observation noise vector, respectively. We also need to 
calculate the corresponding weighting coefficients for every sigma vector: 

 

( )
( ) ( )

( )

( )
0

( ) 2
0

( ) ( )

,

1 ,

1 {2 }, 1,...2 .

m

c

c m
i i

W N

W N

W W N i N

λ λ

λ λ α β

λ

= +

= + + − +

= = + =

 (11) 
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where, β  is used to incorporate prior knowledge of the distribution of the 

augmented state vector, and 2β =  is the optimal choice for Gaussian distribution. 

(b) Update the state vector and observation vector for the next pixel to be unwrapped 
based on the current state vector, and estimate the updating mean and covariance 
through the sigma points. In this step, we should use the generated sigma points to 
determine the mean and covariance of the predicted state vector through the state-
space model [Eq. (3)] as 

 

, | 1 , 1 , 1

2
( )

, | 1
0

2
( )

, | 1 , | 1
0

, , 0,1,..., 2 .

,

,
k

x x v
i k k i k i k

N
m x

k i i k k
i

N Tc x x
x i i k k k i k k k

i

f i N

W

W

− − −

−
−

=

− − −
− −

=

 = = 

=

   = − −   





X X X

x X

P X x X x

 (12) 

Similarly, let the predicted sigma point , | 1
x
i k k −X pass through the observation equation 

[Eq. (5)]. Then the observation vector k
−y  is also updated as 

 

, | 1 , | 1 , 1

2
( )

, | 1
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2
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(c) Correct the estimation of the state vector. The last step is the correction for the 
updated state vector incorporating the measured data. In this step, the Kalman gain 

kK  is first calculated by 

 , | 1

2
( )

, | 1
0

1

,

.

k k i k k

k k k

N Tc x
x y i k i k k k

i

k x y y

W
−

− −
−

=

−

   = − −  

=

P X x y y

K P P

 (14) 

Then correct the estimation of the state vector through the Kalman correction 
formula as 

 ( ).k k k k k
− −= + −x x K y y  (15) 

The unwrapped phase at the pixel k  is just the first element of the obtained kx . At 

last, calculate the state vector covariance 
kxP  after the correction in order to initiate 

the phase unwrapping for the next pixel by 

 .
k k k

T
x x k y k

−= −P P K P K  (16) 

To unwrap the whole phase map, we just need to carry out the above procedures 
recursively for all the pixel points, according to some unwrapping strategy. 

2.2 Unwrapping strategy 

From the above algorithm kernel, one can see that the proposed approach unwraps the phase 
of the next pixel based on the already unwrapped neighborhood phase and the measurement 
information. To initiate the phase unwrapping, we should choose a seed pixel and give an 
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arbitrary phase guess for it. Generally, we can directly adopt the wrapped phase of the seed 
pixel as its unwrapped value. Next, perform the phase unwrapping algorithm along a 
continuous pixel path. We will recommend two possible unwrapping strategies for the 
realization of the proposed algorithm in this subsection. 

The first strategy is called column-by-column unwrapping, as illustrated in Fig. 1(a). The 
column that possesses the most number of effective pixels is chosen to be unwrapped firstly. 
For most realistic wrapped phase map, it has a circular effective pixel aperture. Thus, we can 
start unwrapping from the central column of the wrapped phase map. As illustrated in Fig. 
1(a), the pixel A  is chosen as the seed point, and perform the algorithm to estimate the state 
vectors for all the pixels in this column. Next, we unwrap the column that contains the pixel 
C . The state vector and covariance matrix already calculated for the pixel B  should be used 
to initiate the unwrapping for this column so that the estimated phases between different 
columns are continuous. Similar unwrapping process can be made until the right half phase 
map is unwrapped. We emphasize again that when unwrapping the first pixel of each column, 
the state vector and covariance matrix of its unwrapped neighbor pixel should be chosen as 
the initiation values in the recursive processes, such as C D≡ , D E≡ , F G≡ , H I≡ , 
where, the notation “ ≡ ” means the initiation operation. After completing the unwrapping for 
the right half phase map, we can unwrap the left half one in the similar way. This unwrapping 
strategy is proper to be used when there exist no invalid areas in the wrapped phase map, and 
can be a good choice for most of the interferometric measurement applications. 

 

Fig. 1. Two recommended phase unwrapping strategies for the proposed algorithm: (a) 
column-by-column unwrapping and (b) the region growing unwrapping. 

The second strategy we suggest to realize the proposed algorithm is the region growing 
unwrapping presented in Fig. 1(b). In this strategy, we should choose a pixel inside the valid 
wrapped phase map at random or in any prescribed order as the seed pixel, such as point A  in 
Fig. 1(b). Then, establish a queue to store the pixel sequence to be unwrapped. When starting 
the phase unwrapping, push the adjacent wrapped pixels of A  into the queue, such as the 
points B ~ F . Every time, we unwrap the headmost pixel in the queue; once a pixel is 
unwrapped, remove it from the queue, and push its wrapped neighbor pixels into the end of 
the queue. Repeat this process until all the pixels are unwrapped. In theory, this strategy is 
more universal for the proposed phase unwrapping algorithm, even when invalid areas such as 
holes occur in the original phase map. The region growing can bypass the invalid area 
according to the pre-determined phase mask so that the algorithm estimation would not be 
interrupted. The phase mask can be obtained commonly by some general imaging process 
methods combining the fringe modulation. We know that in the effective area of an 
interferogram, the modulation is remarkably large while the area with near zero modulation is 
considered as the useless parts such as holes and the outer boundary of images. Thus the 
modulations in the fringes would be a good metrics to discriminate the invalid areas, which 
can be easily calculated during the demodulation of phase-shift interferometers and spatial-
carrier interferometers [2, 3]. 
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3. Simulation validation 

The proposed phase unwrapping algorithm is first validated through a simulated phase map 
with the size 256 256× , which is generated by wrapping the peaks function in MATLAB, as 
shown in Fig. 2(a). Gauss white noise with the SNR of 15dB is added into the wrapped phase 
map in order to reveal the realistic condition. We employ the column-by-column unwrapping 
strategy simply in this validation. The covariance matrix for the vectors 0v  is set 

to 3 4([10 10 ])diag − − , and that for the vector 0n  is 3 3([10 10 ])diag − − . In fact, the 

performance of the proposed algorithm is not so sensitive to these initiation parameters. 
Generally, we can easily find proper values for them by several trials to guarantee successful 
unwrapping, and once determined, they are rather universal for many other utilities. In the 
following simulations and experiments, the values for these parameters are the same as that 
we have given herein if no other instructions are stated. After performing the proposed 
algorithm, the unwrapped phase is obtained, as shown in Fig. 2(b). We also present the 
unwrapping error in Fig. 2(c), which is the difference between the simulated true phase and 
the unwrapped one by the proposed algorithm. We can see that the peak-to-valley (PV) value 
and the root-mean-square (RMS) value of the unwrapping error are 1.29 rad and 0.16 rad 
respectively, demonstrating the feasibility and excellent phase unwrapping accuracy of the 
proposed algorithm. 

 

Fig. 2. Simulation validation of the proposed phase unwrapping algorithm: (a) the wrapped 
phase with the SNR of 15dB, (b) the unwrapped phase by the proposed algorithm, and (c) the 
phase unwrapping error. The unit of the phase is radian here. 

 

Fig. 3. Simulation validation of the proposed phase unwrapping algorithm: (a) the wrapped 
phase with the SNR of 10dB, (b) the unwrapped phase by the proposed algorithm, and (c) the 
phase unwrapping error. The unit of the phase is radian here. 

The second simulation generates a phase function with Gauss peaks of different variation 
slopes distributed at the four corners of the phase map. At the phase center, a hole is 
introduced to simulate some interferometric application where we do not have a full-field 
phase map. Also, additive noise is introduced with a SNR of 10dB. The original wrapped 
phase map is presented in Fig. 3(a). To unwrap such a phase map, we use the suggested 
region growing strategy, and start the phase unwrapping from a random seed points in the 
valid area of the wrapped phase. Through the proposed algorithm, we obtain the unwrapped 
phase successfully, as shown in Fig. 3(b). The residual unwrapping error in Fig. 3(c) is with 
the PV value of 3.02 rad and RMS value of 0.25 rad. From this simulation, we can find that 
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the proposed algorithm is still stable when processing the wrapped phase that has invalid area, 
and keeps high accuracy even when the phase noise is large. 

To compare the performance of the proposed algorithm with some commonly used phase 
unwrapping approaches, we unwrap a phase map similar to that in Fig. 2 but with lower SNR 
of 5dB. The original phase map with size 256 256×  and the noise-corrupted wrapped one are 
presented in Figs. 4(a) and 4(b), respectively. We choose four typical phase unwrapping 
algorithms, each corresponding to one of the three algorithm categories introduced in Section 
1, to perform the unwrapping together, and compare their results with that of the proposed 
one. The chosen four algorithms are the discrete cosine transform based least-squares (DCT-
LS) method [11], the quality-guided path-following (QG-PF) method [9], the RPU method 
[14–16], and the RPT method [12]. Note that, the SNR of 5dB seems to be quite low which 
would be rare in real interferometric measurements. Testing the performance of these 
algorithms in such a limiting case is beneficial to study their characteristics sufficiently. It 
should be pointed out that, the RPT, with the steepest-descent method, has four degrees of 
freedom, i.e., the regularization parameter λ , the size of the neighborhood Γ , and the step 
size μ of the steepest-descent method. To reach the highest performance of the RPT, we 

made many trials to optimize the parameters determination for it, and the ultimate choices are: 
4λ = , 7Γ =  and 0.001μ =  . The RPU has one parameter τ  that needs to be given first. In 

this phase unwrapping, we found 0.8τ =  is optimal for the RPU. At the same time, we also 

changed the covariance matrix for the vectors 0v  to 2.5 2.5([10 10 ])diag − − , and that for the 

vector 0n  to 1 1([10 10 ])diag − − as for the proposed algorithm. 

 

Fig. 4. Performance comparisons between several typical phase unwrapping algorithms. (a) is 
the simulated original phase map, (b) is the noise-corrupted wrapped phase map with SNR of 
5dB, (c)-(g) are the histograms of residual unwrapping errors by the DCT-LS, the QG-PF, the 
RPU, the RPT, and the proposed algorithm, respectively. The unit of the phase is radian here. 
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Figures 4(c)-4(g) show the histograms of unwrapping errors through the DCT-LS, the QG-
PF, the RPU, the RPT, and the proposed algorithm, respectively. The details for these results 
are given in Table 1. All these simulations are conducted through MATLAB R2014 in a 
computer with the Intel i3 processer of 3.5 GHz. From Fig. 4 and Table 1, it is noticeable that 
the performance of the DCT-LS method is not comparable to other algorithms in this high 
noise situation, although it is very fast. The RPU outperforms the QG-PF in both the 
algorithm accuracy and speed. Our proposed approach has smaller unwrapping error than that 
of the RPU, while its time consumption is a little more than that of the RPU. Moreover, it is 
noteworthy that the RPT approach has the best accuracy while it needs far more processing 
time than other algorithms (more than 20 times that of our approach, for example). Obviously, 
it is the result of excessively recursive searching in the RPT process in order to minimize the 
cost function. Considering the algorithm accuracy and speed comprehensively, our approach 
and the RPU are no doubt the very practical choices for the phase unwrapping of 
interferometric fringes. 

Table 1. Details of the phase unwrapping accuracy and time consumption through 
different algorithms. 

Algorithm DCT-LS QG-PF RPU RPT proposed 
PV/rad 19.26 4.51 3.95 1.43 3.19 
RMS/rad 2.59 0.56 0.46 0.16 0.34 
Time/s 0.3 67.2 2.5 242.5 11.9 

 
The DCT-LS method has the worst unwrapping accuracy in this case because it reduces 

the dynamic ranges of the true phase map in the serious noise condition, which is a drawback 
of the least-squares method in the phase unwrapping application, as already known in this 
realm. The accuracy of the QG-PF method is intermediate among these algorithms due to its 
lack of noise filtering ability. The RPU can filter out the noise to some extent during the 
unwrapping process because of the essence of infinite impulse response (IIR) low-pass filter. 
The noise suppression abilities of the RPT and the proposed algorithm are much more 
obvious from the smaller error PVs and RMSs than other approaches. As is known, to obtain 
good noise filtering, we should choose a relatively large neighborhood size for the RPT. In 
this case, the iteration times for unwrapping each pixel are also enlarged in order to minimize 
the cost function to an acceptable level (generally, 20~30 iterations are needed to unwrap one 
pixel). Thus, the RPT has very remarkable noise filtering capacity but at the cost of very high 
computation consumption. Although the proposed algorithm unwraps one pixel just through 
one-step prediction and one-step correction, it can also resist the phase noise quite well. This 
should attribute to the optimal estimation characteristic of the UKF technique. Therefore, our 
algorithm can provide satisfactory accuracy even in the severe noise situation while using 
relatively low time cost. It is interesting to note that the RPU can also be considered as a 
predictor-corrector model [15]. However, comparing to the proposed algorithm, the RPU 
cannot give the optimal data fusion of the prediction and observation. This may be the reason 
why our algorithm has better accuracy and noise suppression capacity than the RPU. 

Based on these simulation validations, we are confident that the proposed approach is very 
practical for the phase unwrapping of interferometric fringes considering the high accuracy, 
good noise suppression and low computation cost. 

4. Experimental test 

In this section, we will give some real application examples of the proposed phase 
unwrapping algorithm to demonstrate its feasibility and capacity. These examples stem from 
different optical interferometer systems developed by our team. In fact, the proposed 
approach has been an important part in the data analysis software of our interferometer 
instruments recently. 
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Figure 5 illustrates the application of the proposed algorithm in the field-widened 
Michelson interferometer (FWMI) characterization experiment. We are developing an FWMI 
to act as a spectral filter in a high-spectral-resolution lidar (HSRL) instrument [26]. In the 
process of FWMI establishment, we need to estimate the field-widening characteristic of the 
interferometer. The interferogram during the FWMI optimization is the circular fringes as 
presented in Fig. 5(a). A simple 4-step phase-shifting demodulation algorithm is employed to 
retrieve the phase variation corresponding to Fig. 5(a). The wrapped phase map after the 4-
step phase-shifting demodulation is shown in Fig. 5(b), and after phase unwrapping by the 
proposed algorithm, the continuous phase map is obtained shown in Fig. 5(c). The 
unwrapping result seems to be very good, although we cannot know the true phase value to 
estimate the unwrapping error, as done in the simulation section. However, since the accuracy 
and noise suppression ability of the algorithm have already been demonstrated sufficiently in 
Section 3, we believe that the unwrapped phase here is rather accurate. 

 

Fig. 5. The application of the proposed algorithm in the field-widened Michelson 
interferometer system. (a) one of the original interferogram for the 4-step phase-shifting 
demodulation, (b) the wrapped phase map after the 4-step phase-shifting demodulation, and (c) 
the unwrapped phase map through the proposed method. The unit of the phase is radian here. 

Figure 6 gives the application example of the proposed phase unwrapping algorithm in our 
developed point diffraction interferometry (PDI) for spherical surfaces measurement [27, 28]. 
The interferogram in this interferometer contains straight fringes, as shown in Fig. 6(a). It also 
employs the phase-shifting technique to modulate the testing wavefront carrying the surface 
figure information, which interferes with the pinhole diffraction reference wavefront. After 
demodulating by the phase-shifting method, the wrapped phase is presented in Fig. 6(b). 
Performing the phase unwrapping through the proposed algorithm, we get the unwrapped 
phase successfully as given in Fig. 6(c). The unwrapped phase map lays the foundation for 
subsequent data processing such as eliminating the constant term and tilt term in the phase 
map using the Zernike polynomial decomposition in order to obtain the ultimate tested surface 
figure. 

 

Fig. 6. The application of the proposed algorithm in the phase-shift point diffraction 
interferometer system. (a) one of the original interferogram for the phase-shifting 
demodulation, (b) the wrapped phase map after demodulation, and (c) the unwrapped phase 
map through the proposed method. The unit of the phase is radian here. 
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The proposed phase unwrapping algorithm is also verified in an off-axis cyclic radial 
shearing interferometer (OCRSI) which is also developed by our team to measure centrally 
blocked transient wavefront [29], for example, in transient measurement of hypersonic flow 
field with a model in a wind tunnel. The OCRSI adopts the spatial carrier technique and 
Fourier transform method to retrieve the tested wavefront [2]. Figure 7(a) shows the typical 
interferogram the OCRSI formed, and the wrapped wavefront map is presented in Fig. 7(b) 
through the Fourier transform demodulation. From Figs. 7(a) and 7(b), we can see clearly that 
the center part of the aperture is blocked. The unwrapped phase via the proposed algorithm is 
shown in Fig. 7(c), where, the phase unwrapping is also very successful. 

 

Fig. 7. The application of the proposed algorithm in the off-axis cyclic radial shearing 
interferometer system. (a) the original spatial carrier interferogram, (b) the wrapped phase map 
after the Fourier transform demodulation, and (c) the unwrapped phase map through the 
proposed method. The unit of the phase is radian here. 

To test the practical performance of the algorithm further, we would like to unwrap a more 
complicated phase map here. Figure 8(a) shows one of phase-shifting interferograms 
generated intentionally via our non-null annular sub-aperture stitching interferometry 
(NASSI) for steep aspheric and free-form surface measurement [1]. Note that, such 
interferograms are in fact very rare in the normal usage of NASSI system. We just produce 
these special fringes to verify the algorithm robustness. The wrapped phase map is shown in 
Fig. 8(b) through the phase-shifting demodulation. After performing the proposed algorithm, 
the unwrapped phase can be obtained successfully which is shown in Fig. 8(c). 

 

Fig. 8. The application of the proposed algorithm for unwrapping a complicated phase map 
generated in the non-null annular sub-aperture stitching interferometry. (a) one of the original 
interferogram for the phase-shifting demodulation, (b) the wrapped phase map after 
demodulation, and (c) the unwrapped phase map through the proposed method. The unit of the 
phase is radian here. 

5. Conclusion 

A phase unwrapping algorithm based on unscented Kalman filter technique is proposed which 
is intended for applications in the interferometric measurements, such as the wavefront 
testing, surface figure testing of optics, etc. Two unwrapping strategies for the proposed 
algorithm are introduced, i.e., column-by-column unwrapping and region growing 
unwrapping. We tested the performance of the proposed algorithm by simulations with 
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different phase maps incorporating different levels of noise and good unwrapping accuracy is 
verified. We also compare its performance with some most used phase unwrapping 
approaches such as the DCT-LS method, the QG-PF method, the RPU method, and the RPT 
method. Results demonstrate the satisfactory accuracy and noise filtering characteristic of the 
proposed one. Also, the time consumption of the algorithm is reasonably acceptable. The 
algorithm has already been used in our different interferometer systems, such as the FWMI, 
the PDI, and the OCRSI, successfully, and very good performance is obtained. We hope that 
this algorithm can be a practical solution for the phase unwrapping of interferometric fringes 
to enhance the measurement accuracy. 
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