
Orthogonal polynomials describing polarization 
aberration for rotationally symmetric optical 

systems 
Xiangru Xu,1,3 Wei Huang,1,2,* and Mingfei Xu1,3 

1Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 
130033, China 

2State Key Laboratory of Applied Optics, Changchun, Jilin 130033, China 
3University of Chinese Academy of Sciences, Beijing 100039, China 

*huangw@ciomp.ac.cn 

Abstract: Optical lithography has approached a regime of high numerical 
aperture and wide field, where the impact of polarization aberration on 
imaging quality turns to be serious. Most of the existing studies focused on 
the distribution rule of polarization aberration on the pupil, and little 
attention had been paid to the field. In this paper, a new orthonormal set of 
polynomials is established to describe the polarization aberration of 
rotationally symmetric optical systems. The polynomials can 
simultaneously reveal the distribution rules of polarization aberration on the 
exit pupil and the field. Two examples are given to verify the polynomials. 
©2015 Optical Society of America 
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1. Introduction 

Optical lithography has approached a regime of high numerical aperture (NA) and wide field, 
and polarized illumination has become a viable technique to improve imaging quality. 
However, factors such as lens material inhomogeneity, surfaces scattering, intrinsic and 
stress-induced birefringence, and lens coatings can potentially alter the polarization state of 
light to some degree [1]. The transmission difference (i.e., diattenuation) and phase shift (i.e., 
retardance) between the s- and p-polarization components of rays that pass through an optical 
interface are called polarization aberration (PA) [2], which can cause process window 
degradation, critical dimension variation, and pattern placement error. 

PA can be represented by a Jones matrix, and all of the Jones matrices on the exit pupil 
form a Jones pupil. Although a Jones pupil provides a full and accurate description for PA, it 
lacks visualization. Some researchers have attempted to improve the intuition of Jones 
matrices. Chipman [3] and McGuire [4] derived the PA distribution on the exit pupil in terms 
of the incidence angles of chief and marginal ray through paraxial approximation. Totzeck [5] 
presented a decomposition of the Jones pupil by using “Jones Zernikes”. McIntyre [6] 
represented the Jones matrix by Pauli matrices and conducted a comprehensive comparison of 
Pauli representation versus Jones representation. Geh [7] utilized single value decomposition 
(SVD) to break down a Jones matrix into five parts, namely, wavefront, apodization, 
diattenuation, retardance, and rotation. Ruoff and Totzeck [8,9] proposed orientation Zernike 
polynomials (OZP) to decompose the diattenuation and retardance further. However, most of 
these studies focused on the distribution rule of PA on the pupil, and little attention has been 
paid to the field. The PA of a lithographic lens with high NA can be measured [10,11] and 
compensated [12,13] nowadays, and the two main characteristics of modern lithographic 
lenses are high NA and wide field. Thus, the measurement and compensation of PA must be 
operated over a wide field. So, revealing the distribution rule of PA on the field is significant. 
Without using Jones pupil, Sasian [14] provided a proper way to understand PAs by the 
concepts of polarization fields and of wavefronts of two sheets. In this paper, we propose an 
alternative method based on the OZP to reveal the distribution rules of PA on both the pupil 
and the field. 

2. Establishment of Field-orientation Zernike polynomials 

The coordinate system is shown in Fig. 1. The polar coordinates of the field on the object 
plane and the exit pupil are (h, α) and (ρ, θ), respectively. 

 
Fig. 1. Coordinate system. 

By SVD, the Jones matrix J can be defined in terms of physical properties, i.e., a 
homogeneous partial polarizer Jpol, a homogeneous pure retarder Jret, mean transmittance t, 
and mean scalar phase Φ, as shown in Eq. (1): 

 ( , , ) ( , , ),i
pol p p ret r rJ te J d Jψ d φ ψ dΦ= ⋅  (1) 
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where Jpol represents the diattenuation, Jret represents the retardance; d, φ, ψp, and ψr represent 
the diattenuation value, retardance value, bright axis direction and fast axis direction, 
respectively; and δp and δr represent the ellipticity of the diattenuaton and retardance, 
respectively. δp and δr are reportedly very small and can be safely neglected for modern 
lithographic lenses [7]. Jpol and Jret can be expressed as [8]: 

1 cos 2 sin 2
( , ) ,

sin 2 1 cos 2
p p

pol p
p p

d d
J d

d d
ψ ψ

ψ
ψ ψ

+ 
=   − 

(2) 

cos sin cos 2 sin sin 2
( , ) .

sin sin 2 cos sin cos 2
r r

ret r
r r

i i
J

i i
φ φ ψ φ ψ

φ ψ
φ ψ φ φ ψ
− − 

=  − + 
 (3) 

We use OZP to decompose the diattenuation and retardance further: 

1 1
= , = cos ,pol j j ret j j

j j
J I C OZ J I i C OZφ

∞ ∞

= =

+ ⋅ − ⋅∑ ∑ (4) 

where I is the 2 × 2 unit matrix, Cj is the OZP coefficient, and OZj is the OZP term, which is 
defined as 

, ( ) ( ),
m m m

j n nOZ OZ R Oε ερ θ= =  (5) 

where ε = 0 or 1, and Rn
m(ρ) indicates the radial part, which is the same as the radial part of 

Zernike polynomials. The angular part Oε
m(θ) is defined as 

0 1

cos sin sin cos
( ) , ( ) .

sin cos cos sin
m mm m m m

O O
m m m m
θ θ θ θ

θ θ
θ θ θ θ

−   
= =   − − −   

 (6) 

Instead of using the three indices n, m, and ε to label a certain OZP term, a numbering 
scheme is clearly discussed to label OZn,ε

m as OZj in a previous study [8]. The first 20 terms of 
OZP are listed in Table 3 in Appendix A. OZP terms arranged according to their symmetry 
properties are shown in Fig. 2, where the color and the short line represent the positive 
eigenvalue and the corresponding direction of the eigen polarization state, respectively. 

Fig. 2. OZP arranged according to symmetry properties. 

PAs of different fields have different OZP coefficients, thus Cj is a function of field 
coordinates, Cj = Cj(h,α), which can be expanded by Fringe Zernike polynomials (FZP): 

1
( , ) ( , ),j i i

i
C h a F ha a

∞

=

= ⋅∑  (7) 
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where ai is the coefficient, and Fi is the FZP term, as shown in Table 4 in Appendix B, that 
can be written as '

', '
m

nF ε  to clearly show the angular parameter m' and radial parameter n': 

' ' ' '
',0 ' ',1 '( , ) ( ) cos ' , ( , ) ( )sin ' .m m m m

n n n nF h R h m F h R h mαααα   = =  (8) 
Thus, Cj·OZj can be expanded as 

1 1
'

' ' ' ', ' ,
' 0 ' 0 ' 0 0 0

( ) ( ).
m

n n
m

j j m n n n
n m n m n

C OZ a F OZε ε ε
ε ε

∞ ∞

= = = = =− =

⋅ = ⋅ ⋅∑ ∑ ∑ ∑ ∑ ∑  (9) 

In the polynomials in Eq. (9), four basic formulas are present, namely, '
',0 ,0

mm
n nF OZ⋅ , 

'
',1 ,0

mm
n nF OZ⋅ , '

',0 ,1

mm
n nF OZ⋅ , and '

',1 ,1

mm
n nF OZ⋅ . They can be equivalently transformed into another 

four basic formulas f0+, f0−, f1+, and f1−: 
' ' ' '

0 ',0 ,0 ',1 ,1 0 ',0 ,0 ',1 ,1

' ' ' '
1 ',1 ,0 ',0 ,1 1 ',1 ,0 ',0 ,1

, ,

+ , + .

m m m m m m m m
n n n n n n n n

m m m m m m m m
n n n n n n n n

f F OZ F OZ f F OZ F OZ

f F OZ F OZ f F OZ F OZ
+ −

+ −

= + = −

= = −
(10) 

For rotationally symmetric systems, the PA distribution on the pupil and the field is 
rotationally symmetric along the optical axis. Therefore, the polynomials used to describe PA 
should also be rotationally symmetric. Formula (10) is rotationally symmetric, indicating that 
the distributions of both its eigenvalues and eigenvector directions are rotationally symmetric. 
The eigenvalue and eigenvector of the diattenuation (retardance) represent the diattenuation 
(retardance) value and the direction of the bright (fast) axis, respectively. 

The eigenvalue of f0+ is Rn'
m'(h)Rn

m(ρ), which is a function of the radial coordinates h and 
ρ, and independent of the angular coordinates θ and α. When the angular coordinates changes, 
the eigenvalue stays unchanged. Thus, the eigenvalue is rotationally symmetric. The 
corresponding eigenvector is 

0

'cos
2 .

'sin
2

m m

m m

θ α

θ α+

− 
 

Ε =  
−  

 

 (11) 

We rotate E0+ by an arbitrary angle β and require it to be the same with the original one 
obtained at the shifted angular coordinate position (θ + β, α + β), i.e., 

' '+ = ( + ) ( + ).
2 2 2

m m m mθ α β θ β α β−
−  (12) 

Then, we obtain m − m' = 2. Under this condition, f0+ is rotationally symmetric. Similarly, 
we obtain m + m' = 2, m + m' = 2, and m − m' = 2 for f0−, f1+, and f1−, respectively. Note that m 
is an integer and m' is a non-negative integer. 

Then, a set of rotationally symmetric polynomials is obtained. Each term of the 
polynomials is a 2 × 2 matrix, and is a function of the pupil and field coordinates. The 
polynomials can be used to describe the PA distribution on the pupil and the field 
simultaneously. We name the polynomials “Field-orientation Zernike polynomials (FOZP)”. 
The first 26 terms of FOZP are shown in Table 1, where different terms of FOZP are labeled 
as FOZj. The product of FOZj and FOZi follows Eq. (13): 

'0

1
2 1 2 112

0 0 0 0

when ;
4 ( )

others.
m

i j j i

I i j
FOZ FOZ FOZ FOZ d d h dh d

π πdπ rr  θ α
−
+− =

⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ = 


∫ ∫ ∫ ∫ 0
(13) 

where 0 denotes the 2 × 2 zero matrix, δm'0 is the Kronecker delta function. Equation (19) is 
defined as the orthogonality property of FOZP. Different terms of FOZP are orthogonal. 
Figure 3 shows the field maps of FOZP. 
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Table 1. First 26 terms of Field-orientation Zernike polynomials 

j m n m’ n’ f FOZj j m n m’ n’ f FOZj 
1 0 0 2 2 0− F5·OZ1 + F6·OZ-1 14 1 3 1 1 1 + F3·OZ7 + F2·OZ8 
2 0 0 2 2 1 + F6·OZ1-F5·OZ-1 15 1 3 1 3 0− F7·OZ7-F8·OZ8 
3 1 1 1 1 0− F2·OZ2-F3·OZ3 16 1 3 1 3 1 + F8·OZ7 + F7·OZ8 
4 1 1 1 1 1 + F3·OZ2 + F2·OZ3 17 0 4 2 2 0− F5·OZ9 + F6·OZ-9 
5 0 2 2 2 0− F5·OZ4 + F6·OZ-4 18 0 4 2 2 1 + F6·OZ9-F5·OZ-9 
6 0 2 2 2 1 + F6·OZ4-F5·OZ-4 19 0 0 2 4 0− F12·OZ1 + F13·OZ-1 
7 2 2 0 0 0− OZ5 20 0 0 2 4 1 + F13·OZ1-F12·OZ-1 
8 2 2 0 0 1 + OZ6 21 3 3 1 1 0 + F2·OZ10 + F3·OZ11 
9 2 2 0 2 0− F4·OZ5 22 3 3 1 1 1− -F3·OZ10 + F2·OZ11 

10 2 2 0 2 1 + F4·OZ6 23 −1 1 3 3 0− F10·OZ-2 + F11·OZ-3 
11 1 1 1 3 0− F7·OZ2-F8·OZ3 24 −1 1 3 3 1 + F11·OZ-2-F10·OZ-3 
12 1 1 1 3 1 + F8·OZ2 + F7·OZ3 25 3 3 1 3 0 + F7·OZ10 + F8·OZ11 
13 1 3 1 1 0− F2·OZ7-F3·OZ8 26 3 3 1 3 1− -F8·OZ10 + F7·OZ11 

Fig. 3. Samples of field maps of FOZP. 

The names of FOZP terms are listed in Table 2. The nomenclature for PA used in this 
paper was first proposed by Chipman [3] and then improved by McGuire [4]. According to 
this nomenclature, PAs are viewed as vector terms and named after the wavefront aberrations 
with the same field height and pupil radius dependencies. To some extent, the nomenclature 
provides physical insights into what the FOZP terms represent. 
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Table 2. Names of FOZP terms 

FOZP Name 
F5·OZ1 + F6·OZ-1; F6·OZ1−F5·OZ-1 Vector Piston (2nd order) 
F2·OZ2−F3·OZ3; F3·OZ2 + F2·OZ3 Vector Tilt 
F5·OZ4 + F6·OZ-4; F6·OZ4−F5·OZ-4 Vector Astigmatism (4th order) 

OZ5; OZ6 Vector Defocus 
F4·OZ5; F4·OZ6 Vector Field Curvature 

F7·OZ2−F8·OZ3; F8·OZ2 + F7·OZ3 Vector Distortion 
F2·OZ7−F3·OZ8; F3·OZ7 + F2·OZ8 Vector Coma (4th order) 
F7·OZ7−F8·OZ8; F8·OZ7 + F7·OZ8 Vector Coma (6th order) 
F5·OZ9 + F6·OZ-9; F6·OZ9−F5·OZ-9 Vector Astigmatism (6th order) 

F12·OZ1 + F13·OZ-1; F13·OZ1-F12·OZ-1 Vector Piston (4th order) 
F2·OZ10 + F3·OZ11; −F3·OZ10 + F2·OZ11 Vector Coma (4th order) 
F10·OZ-2 + F11·OZ-3; F11·OZ-2−F10·OZ-3 Vector 3 foil (4th order) 
F7·OZ10 + F8·OZ11; −F8·OZ10 + F7·OZ11 Vector Coma (6th order) 

3. Simulation 

In this section, two lenses are used for simulation to verify FOZP. The purpose of simulation 
is to assess what the distribution rule of PA on the field really is. Figure 4 shows the 
simulation flowchart. First, the polarization ray tracing function in the software Code V is 
used to obtain the Jones pupils for all the field points. Second, the Jones pupil is decomposed 
by SVD, and the diattenuation and retardance are obtained. Third, the diattenuation and 
retardance are fitted by OZP. Finally, the coefficient of each OZP term, i.e., Cj(h,α), is further 
fitted by FZP. 

 
Fig. 4. Simulation flowchart. 

3.1 High-NA lithographic lens 

A water-immersion ArF lithographic lens of NA 1.35 [15] with anti-reflective (AR) and high-
reflective (HR) coatings is used for simulation. The lens material is SiO2, and the lens is 
rotationally symmetric. Figure 5 shows the lens drawing and the optical properties of the AR 
and the HR coatings. Figure 6 shows the simulation results. 

Results show that different OZP terms and their coefficients can always be combined as 
rotationally symmetric FOZP terms. For example, the F5 coefficient of C1 is equal to the F6 
coefficient of C-1. Thus, they can be combined as F5·OZ1 + F6·OZ-1 and share the same 
coefficient. Other combinations produce F2·OZ2−F3·OZ3, F5·OZ1 + F6·OZ-1, F5·OZ4 + F6·OZ-4, 
F1·OZ5, etc. The FOZP terms are marked in the red rectangles on Fig. 6, which are in 
accordance with Table 1. The simulation results agree with FOZP theory. 

It should be noted that the field area used for simulation is a circle of radius 64 mm on the 
object plane, whereas the work field area of the lithographic lens is a rectangle with an area of 
104 mm × 22 mm. The work field can be viewed as a rectangular part of the circle. Thus, the 
distribution rule of PA on the circle field applies to that on the work field area. 

When the material CaF2 is used in the lithographic lens, the retardance is no longer 
rotationally symmetric because of the intrinsic birefringence of CaF2. Another set of 
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orthogonal polynomials is established for this circumstance, as presented in a subsequent 
paper [16]. 

Fig. 5. (a) A NA 1.3 lithographic lens; (b) Transmittance and phase difference of s and p light 
of AR coating; (d) Reflectivity and phase difference of s and p light of HR coating. 

Fig. 6. Simulation results of lithographic lens. (a) Diattenuation; (b) Retardance. 
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3.2 High-NA microscope objective 

Except for lithographic lens, FOZP can be used for other rotationally symmetric optical 
systems. In this part, an oil-immersion microscope objective of NA 1.28 [17] with AR 
coatings is used for simulation. The objective drawing and the optical property of the AR 
coating are shown in Fig. 7. The simulation results are shown in Fig. 8. 

 
Fig. 7. (a) A NA 1.28 microscope objective; (b) Transmittance and phase difference of s and p 
light of AR coating. 

 
Fig. 8. Simulation results of microscope objective. (a) Diattenuation; (b) Retardance. 

Results show that different OZP terms and their coefficients can also be combined as 
rotationally symmetric FOZP terms. While, the FOZP order of microscope objective is 
smaller than lithographic lens, because the field area of microscope objective is a circle of 
radius 8 mm on the object plane, which is smaller than that of lithographic lens. 

5. Conclusion 

We propose a new set of polynomials, FOZP, to describe the PA of rotationally symmetric 
optical systems. The polynomials are orthonormal to each other, and can simultaneously 
reveal the distribution rules of PA on the pupil and the field. FOZP have many potential 
applications in the measurement and compensation of PA. A NA 1.35 lithographic lens and a 
NA 1.28 microscope objective are used to verify FOZP. The simulation results show what the 
distribution rule of polarization aberration actually is on the field, which coincide with the 
distribution rule provided by FOZP. Further research will extend FOZP from rotationally 
symmetric to n-fold to describe the retardance of lithographic lens with CaF2 material. 
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Appendix A 

Table 3. The first 20 terms of orientation Zernike polynomials 

j OZj j OZj 

1 
1 0
0 1
 
 − 

 6 2 sin 2 cos 2
6

cos 2 sin 2
θ θ

ρ
θ θ

− 
 − − 

 

−1 
0 1
1 0
 
 
 

 −6 2 sin 2 cos 2
6

cos 2 sin 2
θ θ

ρ
θ θ

 
 − 

 

2 
cos sin

2
sin cos

θ θ
ρ

θ θ
 
 − 

 7 3 cos sin
8(3 2 )

sin cos
θ θ

ρ ρ
θ θ

 
−  − 

 

−2 
cos sin

2
sin cos
θ θ

ρ
θ θ

− 
 − − 

 −7 3 cos sin
8(3 2 )

sin cos
θ θ

ρ ρ
θ θ

− 
−  − − 

 

3 
sin cos

2
cos sin
θ θ

ρ
θ θ

− 
 − − 

 8 3 sin cos
8(3 2 )

cos sin
θ θ

ρ ρ
θ θ

− 
−  − − 

 

−3 
sin cos

2
cos sin

θ θ
ρ

θ θ
 
 − 

 −8 3 sin cos
8(3 2 )

cos sin
θ θ

ρ ρ
θ θ

 
−  − 

 

4 2 1 0
3(2 1)

0 1
ρ

 
−  − 

 9 4 2 1 0
5(6 6 1)

0 1
ρ ρ

 
− +  − 

 

−4 2 0 1
3(2 1)

1 0
ρ

 
−  

 
 −9 4 2 0 1

5(6 6 1)
1 0

ρ ρ
 

− +  
 

 

5 2 cos 2 sin 2
6

sin 2 cos 2
θ θ

ρ
θ θ

 
 − 

 10 3 cos3 sin 3
8

sin 3 cos3
θ θ

ρ
θ θ

 
 − 

 

−5 2 cos 2 sin 2
6

sin 2 cos 2
θ θ

ρ
θ θ

− 
 − − 

 −10 3 cos3 sin 3
8

sin 3 cos3
θ θ

ρ
θ θ

− 
 − − 

 

Appendix B 

Table 4. Fringe Zernike polynomials of field coordinates 

j Fj j Fj 
1 1 17 410 cos 4h α  
2 2 cosh α  18 410 sin 4h α  
3 2 sinh α  19 5 312(5 4 )cos3h h α−  

4 23(2 1)h −  20 5 312(5 4 )sin 3h h α−  

5 26 cos 2h α  21 6 4 214(15 20 6 )cos 2h h h α− +  

6 26 sin 2h α  22 6 4 214(15 20 6 )sin 2h h h α− +  

7 38(3 2 )cosh h α−  23 7 5 316(35 60 30 4 )cosh h h h α− + −  

8 38(3 2 )sinh h α−  24 7 5 316(35 60 30 4 )sinh h h h α− + −  

9 4 25(6 6 1)h h− +  25 8 6 4 29(70 140 90 20 1)h h h h− + − +  

10 38 cos3h α  26 510 cos5h α  
11 38 sin 3h α  27 510 sin 5h α  
12 4 210(4 3 )cosh h α−  28 6 414(6 5 )cos 4h h α−  

13 4 210(4 3 )sinh h α−  29 6 414(6 5 )sin 4h h α−  

14 5 312(10 12 3 )cosh h h α− +  30 7 5 316(21 30 10 )cos3h h h α− +  

15 5 312(10 12 3 )sinh h h α− +  31 7 5 316(21 30 10 )sin 3h h h α− +  

16 6 4 27(20 30 12 1)h h h− + −  

#248659 Received 27 Aug 2015; revised 25 Sep 2015; accepted 30 Sep 2015; published 14 Oct 2015 
© 2015 OSA 19 Oct 2015 | Vol. 23, No. 21 | DOI:10.1364/OE.23.027911 | OPTICS EXPRESS 27919 


	References and links
	1. Introduction
	2. Establishment of Field-orientation Zernike polynomials
	Fig. 1. Coordinate system.
	Fig. 2. OZP arranged according to symmetry properties.
	Table 1. First 26 terms of Field-orientation Zernike polynomials
	Fig. 3. Samples of field maps of FOZP.
	Table 2. Names of FOZP terms
	3. Simulation
	Fig. 4. Simulation flowchart.
	3.1 High-NA lithographic lens

	Fig. 5. (a) A NA 1.3 lithographic lens; (b) Transmittance and phase difference of s and p light of AR coating; (d) Reflectivity and phase difference of s and p light of HR coating.
	Fig. 6. Simulation results of lithographic lens. (a) Diattenuation; (b) Retardance.
	3.2 High-NA microscope objective

	Fig. 7. (a) A NA 1.28 microscope objective; (b) Transmittance and phase difference of s and p light of AR coating.
	Fig. 8. Simulation results of microscope objective. (a) Diattenuation; (b) Retardance.
	5. Conclusion
	Appendix A
	Table 1. The first 20 terms of orientation Zernike polynomials
	Appendix B
	Table 2. Fringe Zernike polynomials of field coordinates



