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Computer-generated holograms (CGHs) provide an approach to high-precision metrology of aspherics. A CGH is
designed under the trade-off among size, mapping distortion, and line spacing. This paper describes an optimal
design method based on the parametric model for tilt carrier frequency CGHs placed outside the interferometer
focus points. Under the condition of retaining an admissible size and a tolerable mapping distortion, the optimal
design method has two advantages: (1) separating the parasitic diffraction orders to improve the contrast of
the interferograms and (2) achieving the largest line spacing to minimize sensitivity to fabrication errors.
This optimal design method is applicable to common concave aspherical surfaces and illustrated with CGH design
examples. © 2015 Optical Society of America

OCIS codes: (090.1760) Computer holography; (050.1970) Diffractive optics; (120.4630) Optical inspection; (220.1250) Aspherics.
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1. INTRODUCTION

Optical testing using computer-generated holograms (CGHs)
has become a standard practice in high-precision measurements
of aspherical surfaces [1–3]. Separating the parasitic diffraction
orders [4], enlarging the line spacing [5], reducing the size, and
controlling the mapping distortion [6] are the key problems for
CGHs design, where the size and the mapping distortion are
usually weighed and fixed at the beginning of the design.

The parasitic diffraction orders of a CGH along with the
desired measurement order reduce the overall quality of the in-
terferograms, unless all the disturbing orders are filtered out.
Tilt or power carrier frequency is applied to a CGH to separate
the diffraction orders [7,8]. However, for the CGH placed out-
side the interferometer focus point, because of the multiple dif-
fraction order combinations, it is complex to find the solution
for the needed amount of carrier frequency, which is usually
attained with the inefficient method of trial and error [9].

CGH patterns are made with a common range of the line
spacing from 5 to 30 μm, owing to the widespread usage of the
semiconductor technologies [10]. A CGH with small line spac-
ing risks inaccuracy caused by manufacturing errors and even
the limitation of scalar diffraction theory if the local line spacing
is less than 2.85 μm [5]. The line spacing of a CGH will be
shortened when carrier frequency is adopted. Therefore, the
least carrier frequency is pursued to maximize the line spacing.

For CGHs placed outside the interferometer focuses,
some work has been done to probe the disturbing effects of the
multiple diffraction orders and the needed amount of carrier

frequency to spatially isolate the desired order. Lindlein [11]
derived an approximate expression for the spatial frequencies of
the undesired diffraction orders when the CGH is close to the
test mirror. Garbusi and Osten [12] analyzed the influence of
the unwanted orders that impinge defocused on the interferom-
eter’s inner filtering aperture. Zhou et al. [9] obtained a paraxial
solution for the amount of carrier frequency needed for the
CGHs with power carriers. In our previous work [13], we con-
structed a paraxial parametric model and achieved a recipe for
determining the amount of tilt carrier frequency, which is appli-
cable to concave weak aspheric surfaces with large f-numbers.

As an extension of our previous work on the tilt carrier fre-
quency CGHs placed outside the interferometer focus points,
the purpose of this paper is (1) to expand the application range
of the parametric model and (2) to approach the largest line
spacing when the upper limits of the size and the mapping dis-
tortion are specified. In this paper, concave aspherical surfaces
with the conic constant K of −4 ≤ K < 0 and the f -numbers
of F∕# ≥ 1.5 are considered. No paraxial approximation is
applied, and all the expressions are represented with respect
to the mirror coordinate and approximated up to seventh order
to upgrade the precision and hence the application range of the
parametric model. Merit functions are proposed to search for
the most appropriate design to achieve the largest line spacing.
In Section 2, the representative diffraction orders (2, 0) and
(1, 0) are concentrated on to derive the condition for separating
the parasitic orders. In Section 3, the influence of the conic
constant K , the F∕#, the relative position between the CGH
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and the pinhole, and the CGH glass plate on the separated dis-
tances of the orders (2, 0) and (1, 0) is discussed. In Section 4,
the optimal design method of eliminating the parasitic orders
and achieving the largest line spacing is displayed in detail. In
Section 5, CGH design examples are exhibited.

2. PARAMETRIC MODEL

A. CGH Size and Mapping Distortion
The parametric model constructed in our previous work is ap-
plied to analyze the parasitic diffraction orders of tilt carrier
frequency CGHs [13]. A thin CGH placed outside the inter-
ferometer focus converts a standard spherical wavefront into an
aspheric wavefront that matches the test mirror (Fig. 1). The
phase function of the CGH is fully determined by the test mir-
ror, the distance h between the CGH and the paraxial focus C,
and the axial distance p and the transverse distance t between
the CGH and the pinhole.

If the aperture of the interferometer is parallel to the CGH,
and the distortion caused by the interferometer and the CGH
glass plate is insignificant, the CGH mapping distortion can be
described by the relation between the CGH coordinate (x, y)
and the mirror coordinate (ξ, η). It can be approximated up to
seventh order as

r ≈
h
R
rm�

�K � 1�h −K R
2R3 r3m�

3�K � 1���K � 1�h −K R�
8R5

r5m

� 5�K � 1�2��K � 1�h −K R�
16R7 r7m; (1)

where R is the radius of curvature, K is the conic constant, and
r � �x2 � y2�1∕2 and rm � �ξ2 � η2�1∕2 are the radial position
on the CGH and the conic surface, respectively.

The nonlinearity of Eq. (1) determines the mapping distor-
tion, and the greatest value of Eq. (1) determines the size of the
CGH (main CGH section). It demonstrates that the size and
the mapping distortion are fully determined by the distance h
between the CGH and the paraxial focus.

B. Separated Distances of Undesired Diffraction
Orders
In order to expand its application range, the precision of the
parametric model must be improved. Therefore, no paraxial
approximation is allowed. Simultaneously, we describe all

the expressions with respect to the mirror coordinate (ξ, η) to
avert the error caused by the transformation from the CGH
coordinate (x, y) to mirror coordinate (ξ, η), since the high-
precision rational expression of �ξ; η� � f �x; y�, i.e., the in-
verse function of Eq. (1), is hard to obtain for the high
nonlinearity of Eq. (1), while the iterative method cannot
attain the analytical expression.

The spherical wave from the interferometer passes through
the CGH twice and is divided into different diffraction orders.
Among the multiple diffraction order combinations (m, n),
where m is the order during the first passage of the CGH and
n is the order during the second, we focus on the orders (2, 0)
and (1, 0) to analyze the disturbing field on the filter plane
based on the following reasons:

(1) The entire unwanted diffraction orders (m, n) can
be classified into the orders (m, n), with m� n − 2 � 0 and
�m − 1��n − 1� � 0, and �m� n − 2��m − 1��n − 1� ≠ 0, ac-
cording to the paraxial expression for the detached distance
Δl �m;n��y� of the order (m, n) (on the meridional plane) [13],

Δl �m;n��y� � �m� n − 2�p ∂Φ
∂y

�2�m − 1��n − 1�ph R − h
R

∂Φ
∂y

∂2Φ
∂y2

; (2)

where Φ is the phase function of the CGH. Herein, for sim-
plicity, not the optical path difference (OPD) multiplied by the
wave vector but the OPD itself is used to describe the phase
function.

(2) The orders (2, 0) and (0, 2) can be chosen as the
representative of the orders (m, n) with m� n − 2 � 0, as
the latter are approximately j�m − 1��n − 1�j times the sepa-
rated distances of the former two. This has been shown by
Eq. (2) and verified in our previous work.

(3) The orders (1, 0) and (0, 1) are considered and treated
as the representative of the diffraction orders (m, n) with
�m − 1��n − 1� � 0.

(4) Lindlein and our previous work have shown the quasi-
symmetry between the orders (m, n) and (n, m) [11,13].

(5) The orders (2, 0) and (1, 0), instead of the orders (0, 2)
and (0, 1), are concentrated on to avoid the transformation
from the CGH coordinate (x, y) to the mirror coordinate
(ξ, η).

(6) Although the orders (m, n) with �m� n − 2��m − 1�
�n − 1� ≠ 0 are not represented, the orders (2, 0) and (1, 0)
are enough to analyze most of them. This will be explained
in detail in Section 3.

The propagation of the diffraction order �m; 0�, where m �
1 or 2, is shown in Fig. 2. Rays on the meridional plane are
analyzed. The separated distance Δl �m;0��η� of the order �m; 0�,
indicated as the distance EE 0, is calculated as follows:

(a) The ray PA is perpendicular to the test mirror. The point P
�0; y� is fully determined by the point A �0; η� as Eq. (1).
(b) The local surface normal vectorN is written as �0; N y; N z�,
where Nz � �1 − N 2

y �1∕2 and

Ny�η� ≈ −
η

R
−
K η3

2R3 −
3K 2η5

8R5 −
5K 3η7

16R7 : (3)

(c) According to the vector diffraction equation of CGHs [14],
the angles ψ , θ1 and θm have the relationship

Fig. 1. Schematic of the parametric geometric model for the optical
testing of a conic surface with a curvature radius R. Point C is the
paraxial focus of the test mirror. Point E is the focus point of the inter-
ferometer. The parameters h, p, and t are defined as shown.
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∂Φ
∂y

� sin θ1 − sin ψ ; m
∂Φ
∂y

� sin θm − sin ψ ; (4)

where

sin θ1 � −N y�η�; sin ψ � y − tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � �y − t�2

p : (5)

(d) The coordinate of point B is approximated as
�0; ηB; η2B∕2R�. Thus, we obtain

ηB − y �
�
d −

η2B
2R

�
tan θm;

ηB ≈ �d tan θm � y� − tan θm
2R

�d tan θm � y�2

� tan2 θm
2R2 �d tan θm � y�3: (6)

(e) In accordance with the vector equation of reflection law,
the direction vector e 0m � �0; − sin θ 0

m; cos θ 0
m� is obtained as

e 0m � em − 2�em · NB�NB ≈ em � 2NB;

− sin θ 0
m ≈ sin θm � 2NBy � sin θm � 2Ny�ηB�; (7)

where NB � N�ξB; ηB�, shown in Fig. 2, and the approxima-
tion em · NB ≈ −1 is adopted, based on the fact that the in-
cluded angle between em and NB is nearly 180°.
(f ) The separated distance EE 0 is calculated as

Δl �m;0��η� � ηB �
�
d � p −

η2B
2R

�
�− tan θ 0

m� − t: (8)

(g) With Eq. (1) and Eqs. (3)–(8) and the relation tan θ �
sin θ∕�1 − sin2 θ�1∕2, the expression of Δl �m;0��η� is fully
obtained.

However, the whole expression of Δl �m;0��η� is too compli-
cated to show here unless m � 1, in which case Δl �m;0��η� is
simplified to

Δl �1;0��η��−t�h−p
R

η���K �1��h−p�−K R�

×
�

1

2R3η
3�3�K �1�

8R5
η5�5�K �1�2

16R5
η7
�
: (9)

C. Condition for Separating the Parasitic Diffraction
Orders
A pinhole is applied to block off the stray rays away from
the interferometer focus E (Fig. 1). Owing to the practical

precision of fabrication and alignment of the pinhole, a neces-
sary separated distance L0 is adopted as a criterion. Thus, the
condition for separating the parasitic diffraction orders is

jΔl �m;0��η�j ≥ L0: (10)

Note that there is a relationship in accordance with the
dimensional analysis

Δl �m;0��αη; αR; αh; αp; αt; K ; F∕#�
� α · Δl �m;0��η; R; h; p; t; K ; F∕#�; (11)

where α is a scaling factor.

D. Extended to Concave Surfaces with Aspheric
Coefficients
When a conic surface with fourth-, sixth-, and eighth-order co-
efficients describing the asphericity is under test, the derivation
of the separated distance Δl �m;0��η� is similar except that

r ≈
h
R
rm ��K � a� 1�h − �K � a�R

2R3 r3m �f3��1�K �2 � b�h

−3�K �K � 1� − a� b�Rg r5m
8R5 �f5��K � 1�3 � c�h

− �5�K �K � 1�2 � c� − 2�K � 1�a − a2 − 4b�Rg r7m
16R7 ;

N y�η� � −
η

R
−
�K � a�η3

2R3 −
3�K 2 − 2a� b�η5

8R5

−
�5K 3 − 12K a − 6a2 � 3a − 9b� 5c�η7

16R7 ; (12)

with

a � 8AR3; b � 16BR5; c � 128CR7∕5; (13)

where A, B, and C are the fourth-, sixth-, and eighth-order
coefficients, respectively. Note that in this case, the separated
distance Δl �1;0��η� is no longer described as Eq. (9).

3. DISCUSSION

A. Influence of F∕#, Conic Constant K , and
Parameters p and t
Previous work [13] proposed a paraxial analytical solution
which possesses high precision when −0.5 ≤ K < 0 and F∕# ≥
2 (F∕# is defined as R∕2D, where D is the aperture of the test
mirror). In order to expand the application range of the para-
metric model, the influence of the F∕# and the conic constant
K is discussed at first. The separated distance Δl �m;0��η� versus
the F∕# and the conic constant K is shown in Fig. 3. The cal-
culated Δl �m;0��η� matches the Zemax-based ray trace well,
which verifies the rationality of the approximation made in
Section 2. Results show that the function Δl �m;0��η� is highly
nonlinear when the absolute value of K is large and F∕# is
small, implying that in this case an approximate expression
of Δl �m;0��η� up to low order (e.g., fourth order in our previous
work) is inaccurate. That is one of the reasons why our previous
work is only applicable when −0.5 ≤ K < 0 and F∕# ≥ 2.

The plots from Figs. 4 and 5 give the separated distance
Δl �m;0��η� of the order �m; 0�, where m � 1 or 2, versus the
variations of the axial distance p and the transverse distance
t between the CGH and the pinhole. Figure 4 shows that

Fig. 2. Propagation of the disturbing order �m; 0� and the desired
one (1, 1). d � R − h. N (NA and NB) is the local surface normal vec-
tor. em and e 0m are the direction vectors. The vectors N, em, and e 0m are
normalized. ψ , θ1, θm, and θ 0

m are the incidence/emergence angles as
shown. EE 0 is the separated distance of the order �m; 0�.
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the shape of the curve Δl �m;0��η� changes with a wavelike
appearance as the axial distance p varies. Figure 5 indicates that
the value of Δl �2;0��η��η > 0� is sensitive to the transverse dis-
tance t [Fig. 5(a)], which is beneficial to separate the diffraction
order (2, 0). Also shown is that the transverse distance t does
not affect the shape of the disturbing field of order (1, 0) but
changes the relative position between the disturbing field and
the pinhole [Fig. 5(b)], which is consistent with Eq. (9).

According to Figs. 3–5, it is easy to find that the condition
for separating the order (2, 0) is minfΔl �2;0��η�g ≥ L0 and that
for the order (1, 0) is minf−Δl �1;0��η�g ≥ L0, where minfg de-
notes the global minimum. Note that the global minimum of
the separated distance of the order (2, 0) is changed from the
value of Δl �2;0��η� at the boundary of�η axis to the local mini-
mum on the −η axis when the axial distance p or the transverse
distance t is large enough (e.g., p > 500 mm or t ≥ 25 mm).

B. Slight Influence of the CGH Glass Plate
In the parametric model, the CGH glass plate is ignored to
derive the expression of the separated distance of the parasitic
diffraction orders. However, in practice, the spherical aberra-
tion introduced by the CGH glass plate shifts the paraxial focus
of the conic mirror.

Supposing the CGH pattern is fabricated on the glass sur-
face toward and distance (R − h) away from the test mirror, the
paraxial focus is shifted by a distance Δ, and the filter is placed
(p� Δ) away from the CGH pattern, the error caused by
ignoring the CGH glass plate is quantified and illustrated in
Fig. 6. Results show that the difference of Δl �m;0��η� between

Fig. 3. Influence of the K and F∕# on the separated distances of the
orders (2, 0) and (1, 0). The approximate Δl �m;0��η� matches the ac-
tual one gained by ray trace in Zemax. The nonlinearity of Δl �m;0��η�
increases as the F∕# decreases or the absolute value of K increases.

Fig. 4. Separated distance Δl �m;0��η��m � 1; 2� versus the axial dis-
tance p between the CGH and the pinhole. The shape of the curve
Δl �m;0��η� changes like a wave as p varies.

Fig. 5. Separated distance Δl �m;0��η��m � 1; 2� versus the trans-
verse distance t between the CGH and the pinhole. The value of
the Δl �m;0��η� increases or decreases simultaneously on the �η axis
as t varies.
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the CGH with and without the glass plate is less than 0.13 mm
for the order (2, 0) and 0.02 mm for the order (1, 0), even when
the glass plate is thick up to 30 mm. For the order (1, 0), a
difference of 0.02 mm is insignificant. For the order (2, 0), only
the area where minfΔl �2;0��η�g is achieved is worth consider-
ing, i.e., the boundary of�η axis and the local minimum point
on the −η axis [Figs. 4(a) and 5(a)]. The difference can be
treated as less than 0.08 mm, which is small enough that we
can neglect it in optical testing. Therefore, it is reasonable to
ignore the influence of the CGH glass plate to construct the
parametric model.

C. Diffraction Orders that are Uncertain to be
Separated
Only the parasitic diffraction orders (m, n) with jmj ≤ 5 and
jnj ≤ 5 are discussed, since the orders higher than 5 have such
low diffraction efficiency that they can be ignored. Equation (2)
is adopted to analyze whether a given undesired order (m, n) is
separable when the orders (2, 0) and (1, 0) are both separated.

Figures 3–5 have showed that Δl �2;0��η� ≥ L0 and
Δl �1;0��η� ≤ −L0 are the condition to separate the orders (2, 0)
and (1, 0). Combined with Eq. (2), we obtain

p
∂Φ
∂y

≥ L0; 2ph
R − h
R

∂Φ
∂y

∂2Φ
∂y2

≤ −L0: (14)

According to Eq. (2), when Eq. (14) is held, the undesired
orders (m, n) with �m� n − 2��m − 1��n − 1� ≤ 0 will be
separated, since in this case the two items in Eq. (2) will have
the same sign or one of the items is equal to zero. However,
the orders (m, n) with �m� n − 2��m − 1��n − 1� > 0 are

uncertain to be separated because of the neutralization of the
two items.

All the diffraction orders (m, n) are listed in Fig. 7. The
parasitic orders (m, n) with �m� n − 2��m − 1��n − 1� � 0
are marked in light green, and those with �m� n − 2��m − 1�
�n − 1� < 0 are marked in blue. Both of them are separated.
The orders with �m� n − 2��m − 1��n − 1� > 0 are marked
in yellow and white, where those marked in yellow are usually
separated because parts or most of their stray rays are beyond
the apertures of the test mirror and the CGH. Therefore, only
the orders marked in white are uncertain to be separated.

The ratio of the total diffraction efficiency of the uncertain
orders (marked in white) to that of the desired order (1, 1) is
concentrated on. Since CGHs are usually made with a duty
cycle of 0.5 and a fringe position error of 0.1 μm is achievable
currently [15,16], it is reasonable to assume that the practical
duty cycle is between 0.475 and 0.525 for a CGH with a line
spacing of 5–30 μm. For ideal chrome-on-glass CGHs or
phase-type CGHs with different duty cycles and etching depths
[15], the ratio is listed in Table 1. Results show that when the
duty cycle is between 0.475 and 0.525, the ratio is less than
5.09%, which is small enough to be ignored in practical optical
testing. Besides, in most cases, not all of the uncertain orders
are unseparated. Therefore, a slight influence of the uncertain
orders is guaranteed and can be neglected.

4. OPTIMAL DESIGN

Reducing the carrier frequency to increase the line spacing to
alleviate the manufacturing constraints, and maintaining an
acceptable size and a tolerable mapping distortion are the goals
of CGH design. For a practical test mirror, the curvature R, the
f-number, and the conic constant K are specified. The size and
the mapping distortion of the CGH, which are fully deter-
mined by the distance h between the CGH and the paraxial
focus shown in Section 2.A, are usually traded off and fixed

Fig. 6. Influence of the CGH glass plate on Δl �m;0��η�. The differ-
ence is defined as the Δl �m;0��η� of the CGH with a glass plate T mm
thick minus that of the CGHwith a glass plate 0 mm thick. The differ-
ence is less than 0.08 mm in the area worthy of consideration, which is
small enough to be ignored.

Fig. 7. Entire diffraction orders (m, n) with jmj ≤ 5 and jnj ≤ 5 of
a CGH when the orders (2, 0) and (1, 0) are both separated. The order
marked in dark green is the desired one. The orders marked in white
are uncertain to be separated. Orders marked in the other colors are
separable.
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at the beginning of design. Thus, searching for the most appo-
site axial distance p and transverse distance t between the CGH
and the pinhole, i.e., the parameters (p, t), is the goal if a suit-
able parameter h has been adopted to meet the requirements of
the size and the mapping distortion.

Given a 2 m diameter hyperboloid with K � −2 and F∕# �
2 is under test and the parameter h is chosen as 500 mm, the
parameters (p, t) are attained by the following steps:

(1) Permitted range of p and t determined by the order
(2, 0)

For the diffraction order (2, 0), the inequality
minfΔl �2;0��η�g ≥ L0 determines the allowed range of the
parameters (p, t), i.e., the axial distance p and the transverse dis-
tance t between the CGH and the pinhole. TheminfΔl �2;0��η�g
versus p and t is illustrated in Fig. 8. The noticeable broken lines
in the contour lines are caused by the fact that the value of the
minfΔl �2;0��η�g shifts from the point at the periphery of the test
mirror to the local minimum point around the center, explained
in Section 3.A. The permitted range, i.e., the upper left region
delimited by the contour lines, decreases along the direction of
the �t axis and the −p axis as L0 increases. The area with the
contour lines lower than L0�L0 > 0� is forbidden for the param-
eters (p, t), where parts of the stray rays are irremovable.

(2) Permitted range of p and t determined by the order
(1, 0)

For the diffraction order (1, 0), the contour lines of the
minf−Δl �1;0��η�g are plotted in Fig. 9 with an increment of
1.0 mm. Unlike Fig. 8, there are no broken lines in Fig. 9,
since the value of the minf−Δl �1;0��η�g is always achieved at
the periphery of the test mirror as long as the filter plane is
settled inside the point with the least blur circle[7].

(3) Merit function versus the parameter p and t
Qualitative analysis: The CGH with tilt carriers still has a

certain power. The amount of tilt carrier frequency is deter-
mined by t∕p, while the amount of power carrier frequency
is determined by j1∕h − 1∕pj [13]. Therefore, the optimal de-
sign is achieved when the lowes values of t∕p and j1∕h − 1∕pj
are attained in the permitted range of p and t.

Quantitative analysis: The line spacing of CGH limits the
accuracy of fabrication. For the sake of insuring the low risk
of fabrication errors, we choose the valley value of the local
line spacing on the meridional plane as a merit function. The
combination (p, t) within the final permitted range, i.e., the
intersection of the permitted ranges obtained in steps (1)
and (2), which achieves the greatest value of the merit function
is defined as the optimal design.

The local line spacing s on the meridional plane is calculated
as [7]

s � λ∕
���� ∂Φ∂y

����; (15)

where λ � 0.6328 μm is the working wavelength of the inter-
ferometer, and ∂Φ∕∂y is gained in Eq. (4).

The merit function in the p − t plane is plotted in Fig. 10 as
the background, where (p, t) are the axial distance and trans-
verse distance between the CGH and the pinhole, respectively.
The value of the merit function increases along the direction
from upper left to lower right. The final permitted range is the
upper left area demarcated by the broken contour lines denoted
with the different criterion L0. Given an L0, the optimal design,
i.e., the most apposite (p, t) that achieves the greatest value
of the merit function, is located at the corner of the boundary
of the corresponding final permitted range and marked with a
red circle. For example, if L0 � 0.5 mm, the optimal design
is �p; t� � �493.8 mm; 16.75 mm�.

It must be emphasized that the merit function can be chosen
arbitrarily as long as it denotes the level of the line spacing of a
CGH, e.g., the mean value of the local line spacing. Besides,
the optimal design might shift slightly along the contour line
versus different merit functions when the corner of the boun-
dary of the final permitted range is blunt like a circle.

Table 1. Total Diffraction Efficiency of the Uncertain
Orders Compared to that of the Desired Order

CGH Type Duty Cycle Etching Depth Ratio (%)

Chrome-
on-glass

0.5 – 3.68

Chrome-
on-glass

0.475, 0.525 – 5.09

phase 0.5 0.5, 0.475, 0.525 3.68
phase 0.475, 0.525 0.5, 0.475, 0.525 5.09

Fig. 8. Contour lines of Δl �2;0��η� with an increment of 0.5 mm
in the p − t plane. The upper left region with contour lines larger than
L0 (e.g., L0 � 0.5 mm) is the permitted range for (p, t). (K � −2,
F∕# � 2, R � 8000 mm, and h � 500 mm.)

Fig. 9. Contour lines of Δl �1;0��η� with an increment of 1.0 mm in
the p − t plane. The upper right region with contour lines larger than
L0 (e.g., L0 � 0.5 mm) is the permitted range for (p, t). (K � −2,
F∕# � 2, R � 8000 mm, and h � 500 mm.)
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The optimal design is affected by the conic constant K .
Assuming a series of 2 m diameter F∕2 conic surfaces with
different K under test, the distance h between the CGH and
the paraxial focus is settled as 500 mm, and the criterion
L0 � 0.5 mm, the final permitted range of the axial distance
p and transverse distance t between the CGH and the pinhole
and the optimal design versus the K are illustrated in Fig. 11.
Analogously, for a given conic constant K , the permitted range
is the upper left area delimited by the corresponding broken
lines. All the optimal designs are located at the corners of the
contour lines. Note that the optimal design shifts along the�p
axis and �t axis as the absolute value of K increases.

Admittedly, the f -number of the test mirror also affects
the optimal design. If a series of paraboloids with different
f-numbers are under test, R � 8000 mm, h � 500 mm, and
L0 � 0.5 mm, the final permitted ranges and optimal designs
are exhibited and marked with red circles in Fig. 12. Results
show that for different f-numbers, the Dexter boundaries of
the final permitted ranges coincide. So all the optimal designs
lie on the same curve. The reason is that the curve denotes the
contour line of the value of the local minimum point on the −η
axis versus p and t , which is not affected by f -number.

5. CGH DESIGN EXAMPLES

In the parametric model, we only concentrate on the diffraction
orders (2, 0) and (1, 0) as the representative parasitic orders
to deduce the optimal design. The following examples are
designed with the optimal design method to confirm its
application.

A. Examples of Conic Surfaces
The Hubble Space Telescope primary mirror is an F∕2.3 quasi-
paraboloid with K � −1.0022985 [17]. If the primary mirror
is tested as a mirror with no central hole, the criterion L0 is
0.5 mm, and the distance h between the CGH and the paraxial
focus is settled as 620 mm to achieve a CGH with a size
of about 149 mm (main CGH section) and an acceptable
mapping distortion, the optimal design is attained by the steps
presented in Section 4 as �p; t� � �603.8 mm; 9.65 mm�.
The corresponding CGH is designed with Zemax, as shown
in Fig. 13(a). The valley value of the local line spacing is
21.21 μm, consistent with 21.12 μm calculated with the para-
metric model. The minute difference is resulted in by the
spherical aberration introduced by the CGH glass plate.

Typical orders are shown in Fig. 13(b). All the parasitic or-
ders are separated except the seventeen orders (−5, 4), (4, −5),
(−5, 3), (3, −5), (−4, 4), (4, −4), (−4, 3), (3, −4), (−3, 4), (−3,
3), (3, −3), (−2, 3), (3, −2), (−2, 2), (2, −2), (−1, 2), and (2, −1).
When the duty cycle is between 0.475 and 0.525, the ratio of
the total diffraction efficiency of the unseparated orders to that

Fig. 10. Merit function in the p − t plane and the optimal designs
of (p, t). The optimal designs of (p, t) for the different criterion L0 are
marked with red circles and located at the corners of contour lines.
(K � −2, F∕# � 2, R � 8000 mm, and h � 500 mm.)

Fig. 11. Final permitted ranges and optimal designs for conic
surfaces with diverse K and identical F∕#. For a given K , the permit-
ted range is the upper left area demarcated by the corresponding
broken lines, and the optimal design is located in the corner and
marked with a red circle. (F∕# � 2, R � 8000 mm, h � 500 mm
and L0 � 0.5 mm.)

Fig. 12. Final permitted ranges and optimal designs for conic
surfaces with diverse F∕# and identical K . The Dexter boundaries
of the final permitted ranges coincide, and all the optimal designs
lie on the same curve. (K � −1, R � 8000 mm, h � 500 mm,
and L0 � 0.5 mm.)

Fig. 13. (a) CGH null test design for the Hubble primary mirror.
The CGH pattern is fabricated on the right plane of the 20.0 mm
thick BK7 glass substrate. (b) Typical disturbing orders are separated:
0.50 mm for the order (0, 2) (red), 0.50 mm for the order (2, 0)
(green), 0.78 mm for the order (0, 1) (purple), and 0.78 mm for
the order (1, 0) (brown).
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of the desired order (1, 1) is less than 4.57%, which is small
enough that we can ignore it in practical optical testing.

Consider that a 1 m diameter F∕2 hyperboloid with K �
−2 is under test, and L0 � 0.5 mm. If the distance h between
the CGH and the paraxial focus is chosen as 250 mm, accord-
ing to Eq. (11) and Fig. 10, the optimal design for (p, t) is
�487.6∕2 mm; 18.0∕2 mm� � �243.8 mm; 9.0 mm�. The
corresponding CGH is designed with a size of about 77.5 mm
and a valley value of the local line spacing of 9.20 μm, approxi-
mate to 9.17 μm obtained in Eq. (15). The BK7 glass plate
is 10.0 mm thick. The separated distances of the typical
disturbing diffraction orders are 0.47 mm for the order (0, 2),
0.50 mm for the order (2, 0), 0.51 mm for the order (0, 1), and
0.51 mm for the order (1, 0). The least separated distance is
0.47 mm, which is close to L0 and hence acceptable. Similarly,
parts of the parasitic orders are not separated. They are the or-
ders (−5, 3), (3, −5), (−5, 2), (2, −5), (−4, 3), (3, −4), (−4, 2), (2,
−4), (−3, 3), (3, −3), (−3, 2), (2, −3), (−2, 3), (−2, 2), (2, −2),
(−1, 2), and (2, −1). The ratio of the total diffraction efficiency
of the unseparated orders to that of the desired order (1, 1) is
also less than 4.57%, which is small enough to be neglected,
when the duty cycle is between 0.475 and 0.525.

The optimal designs of CGHs for the conic mirrors with
−4 ≤ K < 0 and 1.5 ≤ F∕# ≤ 2.5 are discussed in Section 4.
In order to define the application range of the parametric model
or the optimal design method, the extreme case, K � −4 and
F∕# � 1.5, is considered. Assuming that a 1 m diameter
F∕1.5 hyperboloid with K � −4 is under test, with L0 �
0.5 mm and h � 400 mm, the optimal design is gained as
�p; t� � �399.2 mm; 26.8 mm�. The CGH is designed with
a size of about 180 mm (main CGH section), and typical stray
diffraction orders are separated, as shown in Fig. 14. The valley
value of the local line spacing is 5.15 μm, which is close to
5.14 μm obtained with the parametric model. The fourteen
orders (−5, 3), (3, −5), (−5, 2), (2, −5), (−4, 3), (3, −4),
(−4, 2), (2, −4), (−3, 2), (2, −3), (−2, 2), (2, −2), (−1, 2),
and (2, −1) are not separated. The ratio is less than 2.27% when
the duty cycle is between 0.475 and 0.525, which is small enough
to be ignored. Results indicate that the optimal design method
shows good applicability when K � −4 and F∕# � 1.5.

B. Examples of Surfaces with Aspheric Coefficients
Assuming a 2 m diameter F∕1.7 ellipsoid with K � −0.97,
R � 6800 mm, the fourth-order to eighth-order coefficients
A � 0 mm−3, B � 9.81 × 10−24 mm−5, and C � −5.92×
10−30 mm−7 under test, the criterion L0 � 0.5 mm, and the

distance h between the CGH and the paraxial focus chosen
as 250 mm to gain a CGH with a main section of less than
95.0 mm, the optimal design is gained as �p; t� � �245.8 mm;
11.65 mm�. The valley value of the local line spacing is
7.25 μm, in accordance with 7.23 μm obtained with the para-
metric model. The BK7 glass plate is 12.0 mm thick. Typical
parasitic diffraction orders are separated: 0.48 mm for the order
(0, 2), 0.51 mm for the order (2, 0), 0.54 mm for the order
(0, 1), and 0.53 mm for the order (1, 0). The least separated
distance is 0.48 mm, which is close to the criterion
L0 � 0.5 mm. Parts of the parasitic orders are not separated.
They are the orders (−5, 3), (3, −5), (−5, 2), (2, −5), (−4, 3), (3,
−4), (−4, 2), (2, −4), (−3, 3), (3, −3), (−3, 2), (2, −3), (−2, 2),
(2, −2), (−1, 2), and (2, −1). When the duty cycle is between
0.475 and 0.525, the ratio of the total diffraction efficiency of
the unseparated orders to that of the desired order (1, 1) is less
than 4.51%, which is small enough to be ignored.

5. CONCLUSION

CGHs with tilt carrier frequencies placed outside the interfer-
ometer focus used for testing the concave aspherics are inves-
tigated in this paper. As further research of our previous work,
we have expanded the application range of the parametric
model from −0.5 ≤ K < 0 and F∕# ≥ 2 to −4 ≤ K < 0
and F∕# ≥ 1.5 by concentrating on the representative orders
(2, 0) and (1, 0) and deriving all the expressions up to seventh
order based on the mirror coordinate without paraxial
approximation.

An optimal design method has been proposed in this paper by
using the parametric model. It has two advantages: (1) separating
the parasitic diffraction orders [unseparated orders have such a
low diffraction efficiency compared to that of the desired order
(1, 1) that they can be ignored] and (2) achieving the largest line
spacing to reduce the risk of fabrication. This approach solves the
problem of laborsome manual operation of the trial and error
method to design an appropriate and practicable CGH.

The procedure of the optimal design method can be de-
scribed as below.

• Choose a suitable distance from the CGH to the paraxial
focus of the test mirror to satisfy the requirement of the size and
the mapping distortion.

• Estimate the necessary separated distance based on the
practical precision of fabrication and alignment of the pinhole.

• Calculate the permitted range of the axial and transverse
distances between the CGH and the pinhole determined by the
representative orders (2, 0) and (1, 0).

• Plot the merit function that denotes the level of the line
spacing, combined with the permitted range, to find the opti-
mal solution for the axial and transverse distances between the
CGH and the pinhole.
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