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The performance of heterodyne system is discussed for partially coherent beams in turbulent atmo-
sphere by introducing turbulence spectrum of refractive-index fluctuations. Several analytic formulae for
the heterodyne detection system using the partially coherent Gaussian Schell-model beam are presented.
Based on Tatarskii spectrum model, some numerical results are given for the variation in the heterodyne
efficiency with the misalignment angle, detector diameter, turbulence conditions, and parameters of the
overlapping beams. According to the numerical results, we find that the turbulent atmosphere degrades
the heterodyne efficiency significantly, and the variation in heterodyne efficiency is even slower against
the misalignment angle in turbulence. For the deterministic received signal and the detector, the per-
formance of the heterodyne detection can be adjusted by controlling the local oscillator signal para-
meters.

& 2015 Published by Elsevier B.V.
1. Introduction

Heterodyne detection is a widely used technique in the mi-
crowave region. Heterodyne technique has been extended to the
optical regions owing to its noise-reduction capabilities and high
spectral resolution in comparison with incoherent (direct) detec-
tion [1]. Heterodyne (coherent) detection is a more powerful de-
tection technique for long-range and weak signal detections [2]. At
the same time, heterodyne detection system needs more stringent
technical requirements than incoherent detection does. In order to
ensure the performance of optical heterodyne detection system,
the wavefront, amplitude and polarization of the local oscillator
(LO) and signal beams should be matched strictly [3–5]. The wa-
vefront alignment between signal and local oscillator beams re-
quired for effective optical heterodyne is treated by Siegman,
which is summarized in the “antenna theorem” for optical het-
erodyne [6]. In order to obtain the high performance, it is neces-
sary to match the locally generated beam parameters with the
received signal beam parameters on the detector [7]. Heterodyne
aser Interaction with Matter,
Physics, Chinese Academy of

iang).
efficiency of the optical coherent detection system reflects the
matching degree of phase and amplitude between the local os-
cillator and received signal beams [8]. The heterodyne efficiency is
considered as a measurement to evaluate the performance of the
heterodyne technique. It may also be used to quantify the poten-
tial mismatch between the locally generated signal and the re-
ceived one [9]. The mismatch directly reduces the signal-to-noise
ratio (SNR) of the detection system.

The performance of the heterodyne system for spatially fully
coherent signals has been investigated in previous works. The ef-
fect of atmospheric turbulence on the heterodyne performance
has been studied for coherent laser radar systems [10,11]. General
expressions are derived for the SNR of a coherent detection system
in terms of the deterministic received signal and local oscillator
fields including the parameters of detector [12]. Tanaka and Saga
considered the maximum heterodyne efficiency for an optical
heterodyne detection system in the presence of background ra-
diation [13]. The performance of an optical heterodyne detection
system with aberrations is studied theoretically and experimen-
tally [14,15].

However, most of the physically realizable optical sources
radiate randomly due to the inhomogeneity in resonant cavity and
the characteristics of spontaneous emission of the atoms [16,17].
On the other hand, the phase front will become chaotic after
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coherent radiation propagating through turbulent media. These
reasons result in partially coherent radiation [18]. Hence, the
performance of an optical heterodyne system for partially co-
herent beams should be treated thoroughly. Optical heterodyne
detection of partially coherent cross-spectrally pure radiation is
considered by Chiou [1]. Tanaka et al. studied the heterodyne ef-
ficiency for partially coherent optical signals [19]. The performance
of a misaligned heterodyne detection system for partially coherent
beams is treated by Salem and Rolland [20]. However, Salem and
Rolland did not address the effects of atmospheric turbulence. The
effects of turbulent atmosphere on the performance of heterodyne
system cannot be ignored in practical applications. Based on the
atmospheric coherence length or Fried parameter, Ren et al. dis-
cussed the performance of coherent free-space optical commu-
nication system [21]. It is feasible to employ various models of the
power spectrum for atmospheric turbulence as an effective way to
discuss the effects of atmosphere on the heterodyne system.
However, the similar works have not been described in the pre-
vious treatments.

In this paper, the effects of turbulent atmosphere on the per-
formance of heterodyne system are studied for partially coherent
beams based on the turbulence spectrum of the refractive-index
fluctuations [22]. General expressions that include turbulence
spectrum for the heterodyne performance for mixing two partially
coherent and quasi-monochromatic beams on a detector surface
are obtained. The Tatarskii spectrum model is employed to in-
vestigate the effects of turbulent atmosphere on the performance
of optical heterodyne detection system in this study. The Tatarskii
spectrum improves the agreement between theory and experi-
mental measurements by truncating the spectrum at high wave
numbers in the presence of atmospheric turbulence [22]. For dif-
ferent cases, some numerical results are presented to show the
performance of heterodyne system with different beam para-
meters under the influence of atmospheric turbulence. The effect
of the misalignment angle on the heterodyne efficiency in turbu-
lence is also investigated. Additionally, the joint effects of different
conditions will be discussed in detail in the following.
2. Heterodyne performance of partially coherent beam

Although the local oscillator is typically coherent, we consider
the local oscillator being partially coherent to obtain an expression
that is applicable to the most general cases for the heterodyne
efficiency including the coherence properties of the light source.
Let us consider two quasi-monochromatic and partially coherent
beams propagating to a detector located at z¼0 plane in a Carte-
sian coordinate system. We further assume that the propagation
direction of the local oscillator beam is perpendicular to the de-
tector surface but with a misalignment angle θ between its di-
rection and the propagation direction of received signal as shown
in Fig. 1.

The instantaneous field of both signals at the detector surface
x

y

ko

ks

θ

Detector

Fig. 1. The model of mixing two beams on a detector located at z¼0 plane.
can be expressed as
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where ωo and ωs are the central angular frequencies of the signals
and k is the wave vector of the received signal. The subscripts o, s
denote the locally generated signal and received signal respec-
tively. Based on the model of heterodyne detection [23], the de-
tected intermediate frequency (IF) power can be given by the ex-
pression [20]
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where ℜ(ρ)¼eη(ρ)∕hν is the detector responsivity at point ρ, η
(ρ) is the quantum efficiency, e is the electronic charge, hν is the
photo energy, and Γo(ρ1, ρ2) and Γs(ρ1, ρ2) are the mutual co-
herence functions of the received and LO beams on the detector
surface respectively [24]. The IF power is the useful part of the
output of detector, and the other part of the output is random
noise. The noise sources are of two types: those which depend on
the power of local oscillator beam and those which are in-
dependent of the locally generated beam. Commonly, the standard
shot-noise power of local oscillator field exceeds the other noises
in the detection system and eventually becomes the dominant
noise source. Assuming that the detector is operating at the shot-
noise limit, the noise equivalent power could be defined as the
shot-noise power of the local oscillator beam. The shot-noise
power of the local oscillator beam is given by [23]
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where B is the receiver bandwidth of the detector. Using the re-
sults of the IF power and shot-noise power, it is easy to derive the
expression of SNR as [20,25]
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Assuming that the detector responsivity ℜ is uniform across
the detector surface and considering that those parameters do not
affect the SNR variation, Eq. (5) can be further simplified as
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It is easy to see that the SNRþ is a normalized SNR,
SNRþ¼SNReB∕ℜ. The SNRþ variation depends on the beam
parameters and detector diameter. Another useful measurement of
heterodyne performance is the dimensionless heterodyne effi-
ciency ηh, which measures the loss in coherent power when the
received and LO field are not perfectly matched. The heterodyne
efficiency for random fields is defined in an analogous manner to
the case of deterministic fields, i.e. [20]
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Under the assumption that the detector responsivity ℜ is uni-
form across the detector surface, the heterodyne efficiency in this
case can be expressed as
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Using Eqs. (6) and (8), one can express the SNRþ of the
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detection system in terms of the heterodyne efficiency as

SNR d, 9h s
2∬ ρ ρ ρη Γ= ( ) ( )

+

It is evident from Eq. (16) that the SNRþ is in direct proportion
to the heterodyne efficiency for the deterministic received signal.

Eqs. (6) and (8) are the basic expressions for partially coherent
detection in this paper. In the following we are concerned with the
performance of heterodyne detection for partially coherent beams
in presence of atmospheric turbulence. Considering two partially
coherent beams radiating from Gaussian Schell-model (GSM)
source propagating to the detector, the mutual coherence function
of GSM source is expressed as [24]
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where wα is the intensity width of the source, δα is the coherence
width, or transverse coherence length, of the source, and Iα is the
intensity of the source. As mentioned before, the subscripts o, s
denote the locally generated and received signal respectively. As-
suming that the fields radiating from the source propagation along
the positive z-axis, it is easy to obtain the mutual coherence
function of the fields according to the extended Huygens–Fresnel
principle [22]. Considering the effects of turbulent atmosphere,
the expression for mutual coherence function can be given as
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where k¼2π/λ, λ is the wavelength, zα is the propagation distance
of the beams, ψ is the random part of complex phase of a spherical
wave propagating in the turbulent medium from the point (ρ,0) to
the point (r,zα), and o⋯4m denotes averaging over the ensemble
of statistical realizations of the turbulent medium. The angular
bracket that reflects the effect of turbulence can be approximated
as [26]
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HereΦn(κ) is the spectrum of the refractive-index fluctuations.
There are different spectrum models for the refractive-index
fluctuations, in view of the characteristics of spectrum models and
mathematical complexity, the Tatarskii model is chosen [22]
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where Cn
2 is known as the refractive-index structure parameter, κ

is spatial frequency, l0 is the inner scale of turbulence and L0 the
outer scale of turbulence. The inner scale l0 can be few millimeters
near the ground to a few centimeters high above the ground. Near
the ground, L0 is on the order of the height above ground, while
high above the ground, it can be just tens to hundreds meters.
Substituting Eqs. (10) and (12) into Eq. (11) and performing the
inside integration yield
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It is evident that when zα¼0, Eq. (15) reduces to the form given
by Eq. (10). Now the analysis of the heterodyne performance for
partially coherent beams can be performed by using the results in
Eq. (15). It is easy to obtain from Fig. 1 that kρ¼ kρ sin θ cos φ.
Under the assumption that both the LO beam and the received
beam on the detector surface can be expressed by the analytic
forms given in Eq.(15), substituting Eq. (15) into Eq. (3) and con-
verting to polar coordinates ρ and θ, the expression for the IF
power can be expressed as
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where the symbol D is the hard aperture diameter of the detector.
In order to simplify the integration, it is reasonable to use a
Gaussian limiting aperture, or soft aperture, to replace the hard
aperture. The soft aperture radius W relates to a hard aperture
diameter D according to D2¼ 8W2 [22,27]. By using the soft
aperture approximation, the Eq. (17) becomes
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The above integration is performed analytically as shown in
detail in Appendix A. According to the results obtained in Ap-
pendix A, it is easy to write the expression of SNRþ as
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Similarly, the heterodyne efficiency ηh is given as
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Eqs. (19) and (20) are the main formulae in this paper. In
comparison to the previous reports, the correctness of the deri-
vations can be proven by setting the turbulence intensity Cn

2 ¼0.
From Eqs. (19) and (20), it is easy to see that the performance of
heterodyne system not only depends on the parameters of the
received and locally generated beams, but also is governed by the
effect of atmospheric turbulence and misalignment angle θ of two
overlapped signals on the detector surface.
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3. Numerical results

In this section, the performance of heterodyne detection sys-
tem is studied by numerical simulation, and the results are illu-
strated graphically. According to Eqs. (19) and (20) given in fore-
going section, the heterodyne efficiency is determined by detector
diameter, turbulence conditions, misalignment angle θ, and the
parameters of locally generated signal and received signal. Firstly,
we set some parameters globally. In the listing, the inner scale is l0
¼5 mm, and the wavelength of light source is λ¼532 nm.

Let us begin with studying the variation of the heterodyne effi-
ciency with the detector diameter for several cases. Assuming the
same parameters for the received signal and varying the parameters
of locally generated signal, the effects of local oscillator beam
parameters and detector diameter on the heterodyne efficiency ηh
is shown in Fig. 2. Fig. 2(a) illustrates the effect of the beamwidth of
local oscillator signal on the heterodyne efficiency versus the de-
tector diameter. It is easy to see that the matching beam widths of
the two overlapped signals leads to higher heterodyne efficiency,
and increasing the detector diameter degrades the heterodyne ef-
ficiency. Hence, in order to improve the heterodyne efficiency, the
beam width of the two overlapped signals should keep matching.
Meanwhile, choosing the appropriate detector size is helpful to
obtain higher heterodyne efficiency. In Fig. 2(b), we show the var-
iation of the heterodyne efficiency against detector diameter with
the misalignment angle θ¼0.1 mrad. One can find that the angular
shift between the two signals generally degrades the heterodyne
efficiency. By comparison, one can find that the heterodyne effi-
ciency ηh keeps higher as the beam width wo¼3 mm in Fig. 2
(a) while ηh is higher in Fig. 2(b) as wo¼2 mm. The difference is
caused by the misalignment angle θ, and the physical interpretation
of this phenomenon is that the diffraction of beam is different
under the misalignment angle θ.

Fig. 3(a) shows the variation of the heterodyne efficiency with
the intensity width wo of the local oscillator signal for several
values of the intensity width ws of the received signal. In this case,
by increasing the intensity width ws and reaching the matching
status with respect to the intensity width of local oscillator signal,
one can potentially obtain the maximum heterodyne efficiency.
For the deterministic detector diameter, it is necessary to keep the
received signal matching with the LO signal strictly for high het-
erodyne efficiency. But if the intensity width of the both beams is
greater or equal to the detector diameter, with a slight mismatch
between the LO beam and the received beam, the efficiency ηh can
still remain at a high level. Actually, the received beam may exist
jitters on the detector surface caused by turbulent atmosphere.
Generally, in order to keep higher heterodyne efficiency, the beam
0 2 4 6 8
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Fig. 2. Heterodyne efficiency versus the detector diameter for the different intensity
ws¼3 mm, δs¼1, δo¼1, zo¼0 m, zs¼0 m, θ¼0 mrad, (b) ws¼3 mm, δs¼1, δo¼1, zo¼
width of the local oscillator signal should be appreciably larger
than the received signal's to ensure the overlap of the two beams.
Fig. 3(b) shows the effect of the coherence widths of the both
signals on the heterodyne efficiency. For the fixed detector dia-
meter, increasing the coherence width δs of the received signal has
minimal effect on the heterodyne efficiency for the small co-
herence width δo of local oscillator signal. But the variation of the
heterodyne efficiency with δs is evident as δo is big enough. With
the limitations of detector diameter and intensity widths of the
signals, the heterodyne efficiency changes little with the increase
of δs when δs is up to a certain level. The matching status of the
both signals leads to the high mixing efficiency under certain
detector diameter.

Fig. 4 illustrates the effects of turbulence on the heterodyne
efficiency versus the detector diameter with or without the mis-
alignment angle. In Fig. 4(a), we show the variation of heterodyne
efficiency with the different turbulence conditions for the mis-
alignment angle θ¼0. It is evident that the heterodyne efficiency
is monotonically decreasing with the turbulence intensity re-
flected by Cn

2. The results in Fig. 4(a) suggest that the effect of
turbulence on the heterodyne efficiency is strong. Fig. 4(b) shows
the effect of turbulence on the heterodyne efficiency with the
misalignment angle θ¼0.2 mrad. The heterodyne efficiency ηh
decreases rapidly versus the detector diameter as the turbulence
intensity enhances. For the stronger turbulence, one can find that
the ηh drops steeply, and the change in heterodyne efficiency is
more even slow against the detector diameter as the heterodyne
efficiency ηh is at a low level. Fig. 4(c) shows the variation in ηh
versus the turbulence intensity that characterized by Cn

2. As there
is a mismatch between the LO signal and the received signal, the
heterodyne efficiency ηh is decreased further.

Fig. 5 demonstrates the effects of misalignment angle on het-
erodyne efficiency for different cases. In Fig. 5(a), we plot the
variation in heterodyne efficiency against the misalignment angle
for the different intensity width ws of the received signal. One can
find that the peak of the efficiency curve varies with the change in
the intensity width ws. Increasing the intensity width can obtain a
higher peak value. Meanwhile, the large beam width means a
small scale of misalignment angle. The effect of detector diameter
on heterodyne efficiency versus the misalignment angle without
turbulence is shown in Fig. 5(b). The change in detector diameter
has slight effect on the peak value of the heterodyne efficiency
curve. But the width of peak is negatively related to the detector
diameter. This phenomenon can be elucidated clearly by using the
diffraction limit theory. The angle semibreadth of airy disk is ne-
gatively related to the detector diameter and proportional to the
wavelength. Fig. 5(c) shows the effect of atmospheric turbulence
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on the heterodyne efficiency. The curves reveal the negative cor-
relation between turbulence intensity and the peak value. In-
creasing the turbulence intensity can obtain a wider peak, but the
peak value decreases with turbulence intensity. Under the turbu-
lence condition, the variation of the heterodyne efficiency with
detector diameter is illustrated in Fig. 5(d). The entire curves be-
come lower with the increase of detector diameter. It is observed
from Fig. 5(d) that choosing an appropriate detector diameter is
helpful to obtain a higher heterodyne efficiency.
4. Conclusion

Based on the turbulence spectrum of the refractive-index
fluctuations, several analytic formulae have been derived to eval-
uate the performance of optical heterodyne detection system for
partially coherent GSM beams with the misalignment angle be-
tween the local oscillator signal and received signal. According to
the obtained expressions in Section 2, the Tatarskii spectrum
model is chosen to perform numerical analysis. Based on the nu-
merical results, the performance of heterodyne detection system
for partially coherent beams in atmospheric turbulence is studied
in detail. Under turbulence conditions, we demonstrate that the
heterodyne efficiency can be adjusted by controlling the detector
diameter, the misalignment angle and local oscillator beam para-
meters. For the deterministic received signal and the detector, the
optimal values of the local oscillator signal parameters can be
obtained easily. We show that the heterodyne efficiency for the
partially coherent beams in turbulence is more stable with respect
to the misalignment of the detection system.
Appendix A. Analytical forms for signal power

In this appendix, the analytic form of IF power is derived first.
Using the relationship ρ1ρ2¼ρ1ρ2 cos(φ1�φ2) and rearranging
the integration, Eq. (18) can be written as
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In order to perform the integration over φ1, Eq. (21) is simply
rearranged as
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Using the identities written as formulas 3.937 in [28], it is easy
to establish the identity given as
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Here Iν(⋯) is the modified Bessel function of order ν. By using
the identity [29]
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Rearranging the terms in Eq. (28) leads to
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Using the identities written as formulae 3.715 in [28], it is not
difficult to form the new identity given as
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where Jl(⋯) is Bessel function of the first kind of order l. Per-
forming the integration over φ2 by using the identity in Eq. (30)
and rearranging yield
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Using Eq. (32) and the identity [28]
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Employing the identity given in Eq. (36) again, performing the
integration over ρ2 and rearranging the results by using Eq. (33)
lead to
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In the following, the key work is to perform the integration for
the power of the local oscillator beam given as
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Under the soft aperture approximation, substituting Eq. (15)
into Eq. (43), converting to polar coordinates ρ and θ and using the
identity [28]
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Similarly, the effective power of received signal is given as
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