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a b s t r a c t

A conventional adaptive optics (AO) system is widely used to compensate atmospheric turbulence in free
space optical (FSO) communication systems, but wavefront measurements based on phase-conjugation
principle are not desired under strong scintillation circumstances. In this study we propose a novel
swarm intelligence optimization algorithm, which is called modified shuffled frog leaping algorithm
(MSFL), to compensate the wavefront aberration. Simulation and experiments results show that MSFL
algorithm performs well in the atmospheric compensation and it can increase the coupling efficiency in
receiver terminal and significantly improve the performance of the FSO communication systems.

& 2014 Elsevier Ltd. All rights reserved.
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1. Introduction

A free space optical (FSO) communication system is widely
used among the telecommunication community for both space
and ground wireless link and last-mile applications [1] due to its
unregulated spectrum, large bandwidth potential, relative low

power requirement, low BER and ease of redeployment. However,
atmospheric turbulence will bring phase disturbances along pro-
pagation paths that are manifested as intensity fluctuation (scin-
tillation), beam wandering and beam broadening at the receiver,
leading to significant decrease of coupling efficiency at the
receiving terminal [2], which influences the stability and reliability
of the FSO communication systems [3]. An adaptive optical (AO)
system is an effective method to improve laser beam quality by
correcting the wavefront aberration; it has already made great
achievements [4–9]. In the conventional AO system, a deformable
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mirror (DM) is used to compensate the phase distortion. Generally,
the Shack Hartmann wavefront sensor (S–H sensor) [10] measures
the optical phase deviations of the incoming wavefront. DM
generates a wavefront phase to compensate the phase aberration
based on the phase conjugation theory [11,12].

Strong scintillation results in very difficult measurement for the
wavefront aberration, and the conventional AO system based on
wavefront measurement cannot work normally [13]; thus control
of the wavefront correctors in the AO system can be conducted by
using recently developed control algorithm based on optimization
of a system performance metric, such as stochastic parallel
gradient descent (SPGD) algorithm. Although the concept of
wavefront control without wavefront measurement has been
considered in the early stages of AO technology development
[14–16], it has been largely disregarded because of the rather low
control bandwidth that could be achieved even with a multi-
dithering control technique [17,18]. But this situation has been
largely different today because of the development of several
novel technologies, for example, some efficient control algorithms
whose implementation with parallel processing hard-ware, and
the emergence of high-bandwidth wavefront correctors are based
on microelectromechanical systems (MEMSs) [19].

Different from the traditional intelligent optimization algorithms,
e.g. SPGD algorithm [13], swarm intelligence algorithms are novel
optimized algorithms which imitate the natural biological group
behaviors. Swarms are the systems that consist of many individuals
which are organized and coordinated by principles of decentralized
control, indirect communication, and self-organization. An interest-
ing phenomenon of swarms is that collective swarm behavior can
lead to a change on a global scale even one individual has only a
restricted view. Examples for such collective behaviors are the nest
building of ants or the coordinated movement of fish swarm [20].
The basic idea of swarm intelligence algorithms is using the solutions
in the searching space as the individuals in nature. Take the
“evolution and foraging process” as an analogy of the process of
random search, the objective functions are equal to adaptive cap-
ability to natural environment. Consequently, based on the selection
mechanism, replace a bad individual by a better one, make the

individuals closer to the optimized solution, it can be considered as
the iteration process of the random searching. It has been used in
many fields such as artificial intelligence, robots and data analysis.

In this paper, we analyze the performance of the modified
shuffled frog leaping (MSFL) algorithm in the FSO system. Particle
swarm optimization (PSO) algorithm and SPGD algorithm are also
simply introduced as comparisons. Related theoretical analysis
and simulations indicate that MSFL algorithm increases the
coupling efficiency at the receiving terminal, improve the perfor-
mance of the FSO communication system, and some detailed
differences between these algorithms due to their search strate-
gies are worth researching. Because of the characters of MSFL
algorithm, the effect of different individual-numbers and different
group-numbers in MSFL is also important to the FSO system.

This paper is organized as follows: Section 2 provides the
models of the FSO communication system, the sensorless AO
system and DM. Section 3 analyses of MSFL algorithm related to
the other two algorithms (PSO and SPGD) and their work princi-
ples in the FSO communication system is given. In Section 4, some
simulations and experiments are carried out to show the compar-
isons of the improved performance of MSFL with other algorithms
in the FSO communication system. In addition, the effect of
different individual-numbers and group-numbers on the FSO
system is analyzed. Finally, conclusions for this paper are given
in Section 5.

2. System model

2.1. The FSO communication system model

The functional block diagram of the FSO communication system
is shown in Fig. 1 [2].

The laser point source emits a Gaussian laser beam. The atmo-
spheric disturbances reduce the fiber coupling efficiency at the
receiver; the communication quality is seriously affected. The sensor-
less AO system is used here to compensate the wavefront aberrations.
After compensation for the wavefront aberration, the laser beam is

Transmitting
terminal

Laser
point

source

Laser
carrier
signal

Atmospheric
turbulence

Sensorless
AO system

Single mode
fiber

Receiving
terminal

Receiver

Fig. 1. Functional block diagram of the FSO system.

Fig. 2. Block diagram of simulation.
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coupled into a single mode fiber. The coupling efficiency is the main
metric, higher coupling efficiency means better performance in the
system. Based on the theoretical analysis and the simulations, the
coupling efficiency can be significantly improved.

2.2. The sensorless AO system model

The theoretical block diagram of wavefront aberration com-
pensation by DM is shown in Fig. 2. φðrÞ is the incident wavefront
aberration, uðrÞ is the compensation phase, ϕðrÞ ¼φðrÞ�uðrÞ is the
residual phase, and J is the performance metric. The AO system
mainly uses DM to correct the wavefront aberration φðrÞ, while a
CCD is used to record the intensity on focal plane. Swarm
intelligence algorithm produces control signals u¼ fu1;u2;⋯;u32g
for the DM according to the performance metric J.

2.3. The DM model

The normalized layout of 32-element DM actuators is shown in
Fig. 3.

We approximate the influence function of DM by the Gaussian
Model

Sjðx; yÞ ¼ exp ln ω
1
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�xjÞ2þðy�yjÞ2

q� �α� �
ð1Þ

where ω is the coupling coefficient determined by the sizes of
electrode actuators and the DM. xj; yj

� �
is the center coordinate of

the jth actuator. d is the normalized interval between the adjacent
actuators, and α is the Gaussian index. The phase compensation
uðx; yÞ generated by the deformable mirror is given by

uðx; yÞ ¼ ∑
32

j ¼ 1
vjSjðx; yÞ ð2Þ

where vj is the jth voltage of the actuators. We can see that the
numeral relationship between the phase aberration generated by
the DM and voltages applied on the actuators is linear.

3. Analysis of swarm intelligence in the FSO communication
system

3.1. The fitness

As for using swarm intelligence algorithms in the FSO commu-
nication system, the first step is to initialize N solutions. They are all
32-demension vectors, every component in the vectors means the
voltage applied on the actuator. In this paper, they are evenly
distributed in the range of the maximum possible voltage. Then we
continuously update these solutions to make them closer to an
optimum solution. The objective function in these algorithms is based
on the root-mean-square (RMS) value of the residual phase aberration

fitness¼ 1
RMS

ð3Þ

where

RMS¼∬SðφðrÞ�φðrÞÞ2rUdr¼∬S½ðφðrÞþuðrÞÞ�ðφðrÞþuðrÞÞ�2r Udr
ð4Þ

where φðrÞ is the initial wavefront aberration, uðrÞ is the compensa-
tion phase that can be obtained by Eq. (2), ϕðrÞ ¼φðrÞþuðrÞ is the
residual phase, and S is the normalized circle of DM.

In the following study, the better solution (or better location)
means its better (or higher) fitness.

Fig. 3. Layout of 32-element deformable mirrors actuators (filled circles).

Fig. 4. Sketch of PSO algorithm. Fig. 5. MSFL algorithm flowchart.
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3.2. PSO algorithm

Simply introduce PSO [21,22] because it makes sense in our
subject. The particle swarm searches in n-dimensional space consist-
ing of N particles X ¼ fX1;X2;⋯;XNg, each location is a solution
Xi ¼ fxi1; xi2;⋯; xing, the particle continually changes position Xi to get
a better solution. Each particle remembers the best position Pi it
experienced and the best solution Pg within the whole group. Each
particle has a velocity Vi ¼ fvi1; vi2;⋯; ving, the update of Xi is

Viðtþ1Þ ¼ωUViðtÞþη1 UrandðÞU ðPi�XiðtÞÞþη2 UrandðÞU ðPg�XiðtÞÞ
ð5Þ

Xiðtþ1Þ ¼ XiðtÞþViðtþ1Þ ð6Þ

where ViðtÞ is the velocity in the tth iteration, ω is the inertia weight,
η1 and η2 are the acceleration constants, randðÞ is a random number
between 0 and 1. The meaning is shown in Fig. 4. As PSO has rapid
convergence speed and is easy to implement and it has been widely
applied in many aspects. However, the precision of PSO algorithm is
low, and it is easy to produce premature convergence [23].

3.3. MSFL algorithm

SFL algorithm is a novel heuristic search method based on
swarm intelligence. It imitates the foraging of the frogs in nature,
uses the collaboration and information interaction for reference to
solve the optimization problems. It also uses the memes grouping
algorithm to imitate the bunching of the frogs, implements leaping
behavior by clustering and regrouping. By information sharing and
exchange mechanism between the individuals, the heuristic
search starts to find optimal solution. Because of the high efficient
parallel computing and excellent global searching capability, SFL
algorithm is used in many fields. However, the drawback of slow
convergence like AFS also exists. By introducing “velocity–displa-
cement” model of PSO to SFL algorithm, the corresponding three
behavior operators of the MSFL is described below.

(1) Grouping operation. In this operation, MSFL algorithm initia-
lizes a set of solutions (the initial frogs), sorts the results in
descending order by their fitness, and puts them in the
different groups. The grouping method is as follows: sort the
N frogs in descending order by their fitness and divide them
into m groups, the 1st frog in the 1st group, the 2nd frog in the
2nd group, the mth frog in the mth group; the mþ1 th frog in
the 1st group, themþ2th frog in the 2nd group,…, until all the
frogs are in the groups.
With “elite frog” update operator and local update operator,
the best frog Fg is updated.

(2) “Elite frog” update operator. The biggest change occurs in this
operator (it does not exist in traditional SFL). The best frog Fb
in each group (we call it the “elite frog”) is updated by

Vbnext ¼ωUVbþη1 UrandðÞU ðPb�XbÞþη2 UrandðÞUðFg�XbÞ ð7Þ

Xbnext ¼ XbþVbnext ð8Þ
where Fg is the global best frog, Pb is the best position the
“Elite frog” experienced. Vb is the current velocity, and Vbnext is

the updated velocity. Xb is the current location and Xbnext is the
new location.

(3) Local update operator. In each group, we use the best frog Fb to
update each position Xi

Vinext ¼ωUViþη1 UrandðÞU ðPi�XiÞþη2 UrandðÞUðFb�XiÞ ð9Þ

Xinext ¼ XiþVinext ð10Þ
where Pi is the best position the frog has experienced.

MSFL algorithm transmits information by three operators: group-
ing; local update; “elite frog” update. It combines the local information
and global information. Local searching leads to the local exchange,
and mixed strategy brings the information exchange between the

Fig. 6. Introduced wavefront aberration.

Fig. 7. Coupling efficiency with swarm intelligence algorithm.

Table 1
Zernike coefficients of introduced wavefront aberration.

Zernike order 3rd order 4th order 5th order 6th order 7th order 8th order 9th order 10th order

Zernike coefficient 1.30 0.65 �0.40 0.32 �0.45 �0.30 0.25 �0.15
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groups. Due to the influence of group best solution and the global best
solution, each frog has a mechanism of learning from other frogs. The
update of each frog position is conducive to the improvement of the
fitness of every group. After clustering, the fitness of the whole frogs is
also improved, so the frogs are closer to the global best solution. In this
way (information exchange and sharing), MSFL algorithm will not be
trapped in the local optimum and has a high speed in convergence.
The flow chart is shown in Fig. 5. AFS algorithm is a new method
based on animal behaviors and the typical application of behaviorism
artificial intelligence, each fish selects a behavior (from foraging,
bunching and rear-ending) to discover surroundings and improves
current position. It normally converges slowly when the search
process is in a high dimensional space, the “velocity–displacement”
model can be introduced to AFS algorithm, too.

3.4. Comparison of MSFL and SPGD

SPGD algorithm is implemented in application-specific analog
VLSI controller chips with a PC as the supervisory controller [13].
The VLSI chips generate a set of statistically independent control

parameter perturbation fδuðnÞ
j g in parallel for all N control voltages

(j¼ 1;2; :::;32) at each iteration n. All perturbations have the same
absolute values ε but pseudorandom signs (Bernoulli distribution,
δu¼ 7ε) with a probability of 0.5 for both positive and negative
values. After application of the control voltage perturbations to the
DM, the system measures a perturbed metric value JðnÞþ . Then the
signs of all perturbation voltages are inverted and the correspond-
ing value JðnÞ� is measured, i.e.

JðnÞ7 ¼ J½uðnÞ
1 7δuðnÞ

1 ;…;uðnÞ
j 7δuðnÞ

j ;…;uðnÞ
N 7δuðnÞ

N � ð11Þ

The control voltages are then updated according to the rule

uðnþ1Þ
j ¼ uðnÞ

j þγ½JðnÞþ � JðnÞ� �sign½δuðnÞ
j � ð12Þ

where the update coefficient γ might be fixed or variable and
controlled by a supervisory control loop. In the experiments here
we adjusted γ to be approximately reciprocal to the actual value of
the metric, γ ¼ γ0=ðJþCÞ, where the constant C40 to avoid too
large control voltage updates if J comes close to 0. SPGD has a good
convergence value but a slow convergence speed (compared with
the MSFL). If we use the parallel processing technology (the

Fig. 8. Residual wavefront aberrations with MSFL, MAFS and PSO.

Z. Li et al. / Optics & Laser Technology 66 (2015) 89–97 93



simplest way is using many computing elements that work
simultaneously) to reduce the computation pressure, MSFL will
offer a better performance on compensation of the phase aberra-
tion. The following numeral simulations will present some results.

3.5. Analysis of the performance in the FSO communication system

The goal of a conventional adaptive optics system is to mini-
mize the residual phase aberrations after the incoming wave
passes the deformable mirror. This corresponds to the maximiza-
tion of the Strehl Ratio (ST), which is defined as the ratio of the
actual maximum intensity of the zero order diffraction spot and its
theoretical upper limitation for an undistorted wave.

Generally, the received laser signals are coupled into a single
mode fiber, so the coupling efficiency of single mode fiber, defined
as the ratio of the average power coupled into the fiber to the
average power in the receiver aperture plane [24], has significant
influence on the performance of the FSO system. The coupling
efficiency can be expressed as

Jp
∬ Af ðrÞMn

0ðrÞd2r
			 			2

∬ Af ðrÞAf
nðrÞd2r � ∬M0ðrÞMn

0ðrÞd2r
ð13Þ

where Af ðrÞ is the Fourier transform of single-mode fiber optical
field, M0ðrÞ is the incident optical field in the focal plane, Af ðrÞ and
M0ðrÞ are complex quantities. Since Eq. (12) is too complex to
calculate, we apply

STp Af ðr0Þ
		 		2 ð14Þ

to simplify the average coupling efficiency [24,25], where r0 is
the desired on-axis location of the center of the fiber. Assume that
the wavefront phase aberration satisfies Gaussian distribution,
then ST can be estimated by variance as follows:

STpexp �RMS2
� �

ð15Þ

with the increase of the coupling efficiency, more energy is
coupled into the single mode fiber. When RMS2 is close to 0, we
can get a more simple formula

STp1�RMS2 ð16Þ
In practice, pixel size of CCD camera approximately equals to

the fiber diameter; hence ST is expressed as [21]

ST ¼ j max ½AðiÞ�j2
j∑N

i ¼ 1½AðiÞ�2j
ð17Þ

where AðiÞ is the gray value of the ith pixel, and N is the number of
pixel. As we know that communication distance affects the
coupling efficiency, and the analytic relationship is [26]

J ¼ 8a2
R 1
0

R 1
0 exp½�ða2þAR=AcÞðx21þx22Þ�U

I0ð2AR=Acx1x2Þx1x2dx1dx2 ð18Þ
where I0 is the modified first kind of zero-order Bessel function,
a¼ DR=2


 �
πWm=λf

 �

, AR ¼ πD2
R=4, Ac ¼ πρ2

c , ρc ¼ ð1:46C2
nk

2LÞ�ð3=5Þ,
L is the communication distance, AR is the area of the receive
aperture, Ac is space coherent area of the incident wave, ρc is the
coherent length, DR is the aperture of the receive lens, Wm is the
aperture of the mode distribution at the end of the fiber, f is the focal
length of the lens, λ is the wavelength, and k¼ 2π=λ, C2

n is the
atmospheric optical refractive index structure parameter.

4. Numeral simulations

We introduce the incident wavefront aberration with the Zernike
coefficients shown in Table 1.

The intuitive introduced wavefront aberration is shown in
Fig. 6. The corresponding coupling efficiency is 41.67%.

In the following numeral simulations we can see that the RMS
value of the wavefront will decrease to a very small ending-value
with the algorithms mentioned above.

We take the parameter η1 ¼ η2 ¼ 2 and ω¼ 1� iterU1=MaxIter,
iter is the current iteration number and MaxIter is the maximum
iteration number. The changing trends of the coupling efficiencies
with different algorithms (PSO, MSFL, SFL etc.) are shown in Fig. 7.
Note that 100 individuals are used in every algorithm.

From Fig. 10 we can get that MSFL does well in both convergence
value (about 0.9) and convergence speed (converges at the 10th
iteration). It is better than PSO (converges at the 50th iteration) in
convergence speed and better than MAFS in both speed (converges at
the 30th iteration) and convergence value (about 0.87).

Apparently, MSFL is better than SFL algorithm both in the
convergence value and speed. They show the superiorities of MSFL

Fig. 10. Coupling efficiency with MSFL algorithm.

Table 2
Comparison of coupling efficiency at FSO receiver.

Initial coupling
efficiency (%)

Coupling efficiency
with PSO (%)

Coupling efficiency
with MAFS (%)

Coupling efficiency
with MSFL (%)

41.7 90.0 87.0 90.0

Fig. 9. Relationship between coupling efficiency and RMS value.
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Table 3
Comparison of residual wavefront aberrations between different numbers of individual.
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in a higher-dimensional space. The conventional SFL will converge
to a local optimized solution. The residual wavefront aberrations
after correction with MSFL, MAFS and PSO are shown in Fig. 8.

The RMS values after correction are 0.327 (MSFL), 0.371 (MAFS)
and 0.322 (PSO), they are significantly reduced. We can easily see that
the wavefront aberrations after correction are more smooth than the
incident wavefront. That means these algorithms are very effective.

MSFL algorithm has the best overall capability of compensating the
wavefront aberration. From Eq. (15) we get that the smaller RMS value
of the wavefront aberration leads to the higher coupling efficiency.
The numerical relationship between them is shown in Fig. 9.

Detailed data of coupling efficiency of PSO, MAFS and MSFL is
shown in Table 2.

Use 20, 50, 80, 100 and 120 frogs respectively to show the effect
of MSFL algorithm on the coupling efficiency in the FSO commu-
nication system. In each experiment the frogs are separated in
5 groups by grouping operation. The coupling efficiency is shown
in Fig. 10.

It is easy to get that the theoretical limit of MSFL algorithm is
largely fixed. Therefore we can get the conclusion that the conver-
gence value is stable but the convergence rates are very different.
When 20 frogs exist, the searching process begins to converge at the
20th iteration. When 50 frogs exist, the performance is worse and
the local optimization tends to occur. With the increased number of
individuals the rate is higher, the process begins to converge at the
15th (80 frogs), 10th (100 frogs) and 5th (120 frogs) iteration. The
reason is that the more the individuals, the better searching ability
the algorithm has.

To make it more direct, the initial wavefront aberration and
residual wavefront aberrations after 1, 5, 100 iterations are shown
in Table 3. Each row respectively shows the results of 20, 50, 80,
100, and 120 frogs.

The conclusion is in line with Fig. 10.
In MSFL algorithm, the whole individuals should be assigned to

many groups. Here we give some discussions on the effects of
different group numbers on the coupling efficiency. We set 100
frogs in the solution space and assigned them to 1, 4, 10, 20, 25,100
groups respectively, and then the corroding frog-number in each
group is 100, 25, 10, 5, 4, 1. The simulation result is shown in
Fig. 11.

Different group numbers leads to different results. Neither too
many nor too few groups get a good result. In our simulations, the
best compensation occurs when the frogs are in 4 groups. This means
the MSFL algorithm largely depends on the group number, if it is too
large, the frogs in every group is not enough, thus the advantage of
the “local searching” disappears. If the group number is too small, the

searching procession will be trapped in the local extremum. In
practice, the group number should be selected by the specific
conditions and after many times tests and design modification.

Take some numeral simulations to compare the difference between
ABCA and SPGD in convergence characters. In the simulations, ε is
determined by the disturbance in iteration, C is 0.8. and γ0 is chosen
according to the test results. Some coupling efficiencies with different
γ0 are shown in Fig. 12.

It is obvious that SPGD can converge better in a slow convergence
speed. With the prerequisites described in this study (parallel off line
computing elements), MSFL needs only 7–10 iterations to get a
relatively good value (90.0%, 100 frogs), but SPGD needs hundreds of
iterations. In the comparison of the proposed algorithms, we setup
an experimental FSO communication system and use SPGD, PSO and
MSFL algorithm for close-loop compensating atmospheric turbu-
lence. In this system, the chosen parameters are presented in Table 4.

We evaluate these algorithms in experiments of simulation analy-
sis in which the result tendencies are generally same. The intensity
distributions are shown in Table 5 (each row in the table represents
MSFL, PSO and SPGD algorithm respectively). The initial coupling
efficiency is about 5–6% which seriously affects the performance of the
system. Compared with SPGD, MSFL first offers better coupling
efficiency value (about 50 iterations, coupling efficiency 66.2%), and
PSO reaches its convergence value. But SPGD does not get good value
even after 80 iterations (only about 48%). Getting the appealing effects
like the results in simulation is almost impossible. In general, the final
value in real experiment can only achieve more than 60%. There are
several reasons for this, for example, the noise within the system,
limitation in processer speed, the poor stability of DM etc. The noise in
the system should be restrained by using better electronic compo-
nents to reduce the thermal noise. Faster processer could be used to
control DM so that the instantaneity of the system will be better. And
the most important reason is the DM stability, which means that DM
should generate the identical corrected phase by the same voltage
applied on the actuators in theory. But in practice it is limited by the
processing craftsmanship, so how to get DM with high stability is a
significant engineering problem. But the improvement in images is
significant and the light scintillation is eased (shown at the top right

Fig. 11. Coupling efficiency with different group number.

Fig. 12. Coupling efficiencies based on SPGD with different γ0.

Table 4
Parameters in the FSO system.

Parameter Value

Diameter of transmitter (mm) 20
Diameter of receiver (mm) 20
Laser wavelength (nm) 532
Deformable mirrors unit number 32
Pixel size of CCD camera (μm) 5
Resolution of CCD camera 1024�1024
Frames per second of CCD camera 1076
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Table 5
Result in the experiment system.

corner of each image). It makes sense in some important circum-
stances such as Military Satellite Communications etc.

5. Conclusion

In this paper, in order to make the FSO communication system
work steadily under the bad atmospheric environment, a sensor-less
FSO AO system with MSFL is proposed to compensate the wavefront
aberration. Since MSFL algorithm has better convergence property,
the AO–FSO system can get better performance. Some groups of
comparisons simulations and experiments between MSFL and PSO,
SPGD have shown that MSFL algorithm performs well in the
wavefront aberration compensation. With parallel process technol-
ogy, MSFL converges faster, which is especially important to the real-
time of the FSO system. The performance analysis of the FSO
communication system shows that the average coupling efficiency
increases (from 41.67% to about 90%, in the experiments it achieves
about 65%), and the dissipation of energy is reduced.
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