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ic liquid crystal (FLC) with I-N*-C* phase sequence is most attractive due to its
continuous grey level and fast response; however, the alignment problem of two-domains defect re-
stricted its application. In this work, one kind of one terminal polymerizable nematic liquid crystal
(NLC) mesogen was mixed to FLC to improve its alignment quality. Experimental results showed that
mono-domain uniform alignment of FLC can be obtained with mixing NLC polymer. With optimized
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concentration, the FLC devices could offer half-V-shaped electric-optical characteristic of driving con-
trast of 182:1 and fast response of 300 μs even after polymerization. This work can provide one simple
and effective method for fabricating stable I-N*-C* FLC devices.
Keywords — FLC, NLC polymer, mixing, alignment stability.
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1 Introduction
Nematic liquid crystal (NLC) device brings one great techni-
cal revolution in flat display industry. Nowadays, NLC is the
dominant technology, because of its advantages such as low
cost, easy manufacture, and so on.1 However, with the de-
manding requirement of high speed display,2,3 devices based
on ferroelectric liquid crystal (FLC) have drawn much more
attention because it can switch up to 100 times faster than
standard nematic LC.4,5 Surface-stabilized ferroelectric liquid
crystal display (SS-FLCD) exhibiting bistability was first
developed by Clark and Lagerwall.6 It has attracted a great
deal of researcher’s interest for its characteristics such as fast
response, wide viewing angle, and suitability for a high-
resolution display. However, it is very difficult to control
continuous gray scale because of its bistability mechanism
and zigzag alignment problem. Hence, with the rapid devel-
opment in the research of FLCDs, several new FLC materials
with continuous gray scale have been provided by different
groups.7–9 And among them FLC with I-N*-C* phase se-
quence, without smectic A phase, is well known for its half-
V shaped electro-optical (EO) performance.10One typical
FLC is commercial R2301 (Clariant, Japan), which has been
reported by many researchers. FLC with I-N*-C* phase se-
quence is most attractive mainly because of its continuous
gray levels and fast response,10–12 which are suitable for active
devices such as thin film transistors (TFTs). However, one key
obstacle for its practical application is to realize high quality
alignment.13 Some researchers utilized direct current electric
field during the phase transition process of FLC devices.14,15
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impracticable with modern manufacturer procedure. Some
others provided hybrid alignment technique to achieve
uniform alignment using photoalignment16,17 or photoaligning–
rubbing hybrid alignment18,19 or only rubbed polyimide
film.20These methods could achieve uniform alignment with-
out applied voltage during fabrication process; however, its
thermal stability or anti-shocking stability was still needed to
improve for practical application. Hence, some researchers
utilized polymer network to stabilize alignment perfor-
mance21–24; but the most fatal disadvantage is to sacrifice its
fast response, which shows no great superiority compared
with NLC devices.

In order to improve the thermal stability and the resisting
performance against shock for FLC devices, we doped one
terminal polymerizable liquid crystal mesogen into FLC ma-
terial, which existed similar structure to FLC molecule be-
fore its polymerization reaction. Then the mixture was
exposed with UV light within SmC* phase of FLC. After ex-
posure, main chains of doped liquid crystal polymer were
mainly distributed between the FLC molecular layers and
the mosogens were mostly distributed parallel to FLC mole-
cules within its layer structure. As a result, this method not
only maintained the uniform alignment but also greatly en-
hanced the ability against annealing or shock. Finally, the sta-
bility problem of FLC uniform alignment was resolved.
Comparing with common polymer network stabilized
method, FLC devices fabricated with one terminal liquid
crystal polymer shows fast response, high driving contrast,
and no light leakage. Finally, alignment performance of
FLC with I ↔ N* ↔ SmC* phase sequence was improved
with mixed liquid crystal polymer and the real effect was con-
firmed with experiments in this work.
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2 Process

In this work, FLC material R2301 (AZ Electronic Material,
Branchburg, NJ, USA) is used here. Its phase sequence is I
(Isotropic phase) (86.8–84.8 °C) N* (64.7 °C) SmC* (�4 °C)
Cr (crystal). The liquid crystal photosensitive monomer was
synthesized by our group named as LCA1. LCA1 was mixed
into FLC material R2301 with different concentrations: 0wt
%, 2.5wt%, 5wt%, and 10wt%. And then this FLC mixture
was stirred for 24h at 90 °C. RN 1199 (Nissan Chemical In-
dustries, Ltd, Japan) of 3% solution was spin-coated onto
ITO glass substrates and used as alignment film, which was
prebaked at 80 °C for 10min and then hard baked at 250 °C
for 60min. After one directional rubbing treatment, anti-
parallel aligned FLC cells were fabricated as sandwich-type
cells between two substrates coated by RN1199 rubbed films
and the thickness was about 2μm. Then, the FLC cell was
heated to 90 degree, and FLC mixture with different LCA1
concentration was filled into cell under capillary action and
cooled down to room temperature with a rate of 0.1 °C/min.
For polymerization, 365nm UV light with intensity of
0.4mW/cm2 was used as light source.
3 Measurement

Alignment performance of tested FLC cell was investigated
under polarized microscope (BX-P Olympus Corporation).
Static contrast ratio (CR) was defined as CR= Imax/Imin of
FLC cell without applied voltage, which was rotated on the
object stage under polarized microscope and its transmittance
was recorded with photoelectric detector. Large CR value is
corresponding to a good alignment performance of the
FLC. EO performance was measured on LCD parameter tes-
ter LCT-5016C. The EO property and alignment texture was
measured after attacking with 2-g steel ball falling down from
0.5-m height. So does the annealing test, which was repeated
for 3 cycles with such procedure: heating FLC sample to 90 °C
FIGURE 1 — Alignment defect of ferroelectric liquid crystal
schematic structure of LCA1 and its effect of stabilizing FLC (
for 5min and cooling down to room temperature with cooling
rate of 10 °C/min.
4 Results and discussions

The typical alignment defect for FLC with I→N*→SmC* se-
quence is the two-domain coexistence during temperature de-
creasing process as shown in Fig. 1(a). Such “double domains”
were easily generated during cooling process or phase transition
from nematic phase to chiral smectic C* phase, and both do-
mains were with same stability and appeared at the same prob-
ability. This disadvantage greatly increased difficulty for
fabrication of FLC devices; hence, it badly restricted industrial
application of FLC. To resolve this alignment defect, in this
work, we proposed to mix polymerized liquid crystal monomer
into FLC materials. Because the mesogenic group of LCA is
with similar molecular length with FLC molecules, it is easy
to dissolve in FLC and also easily align same direction with
FLC. And then UV exposure was used to polymerize the LCA
monomer into polymer. The conception of this work is to firstly
align the mesogenic groups of LCA together with FLC mole-
cules within its molecular layers. And because there is only
one terminal polymerization group in LCAmolecular structure,
hence, the most probability of distribution for polymerized side
chain is in the space between different FLC layers as shown in
Fig. 1(b). After UV exposure, the network of polymer is de-
signed to keep all FLC molecules in almost one direction and
hence to avoid the coexistence of two-domains.

In order to obtain optimal mixing concentration of LCAl,
different concentration of 0wt%, 2.5wt%, 5wt%, and 10wt
% was used as FLC mixture. After fabrication of antiparallel
FLC cells on rubbed polyimide film, these FLC mixtures
were injected into cells for a test. From the photos taken un-
der crossed polarized microscope as shown in Fig. 2, it is seen
that with increase of LCA1 mixing concentration, the defect
of two-domain was depressed gradually. Compared with 0%
doping sample, we can already see some degradation of two-
(FLC) with I→N*→ SmC* phase sequence (a) and the
b).

Yao et al. / FLC alignment improvement 171



FIGURE 2 — Photos of ferroelectric liquid crystal cells under crossed polarized microscope
with different mixing concentration without UVexposure: (a) 0 wt% (b) 2.5 wt% (c) 5wt% (d)
10wt%.
domain defect of alignment even in small mixing concentra-
tion of 2.5%. While when the mixing concentration is 5%,
the static CR of FLC cell is 280:1; and when the concentra-
tion is increased to 10%, the static CR goes up to 330:1. All
these photos confirmed that the mixing of LCA1 to FLC
FIGURE 3 — Photos of ferroelectric liquid crysta
without UVexposure: (a) 5 wt% mixing, before an
anti-shocking test; (c) 5 wt% mixing, after anti-s
anti-shocking test.
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materail indeed improved the alignment performance and
the improvement was gradually enhanced with increased
mixing concentration of LCA1.

To test its stability, then we did some anti-shocking test for
FLC samples with 5% and 10% LCA1. As shown in Fig. 3, it
l cells under crossed polarized microscope
ti-shocking test; (b) 10wt% mixing, before
hocking test; and (d) 10wt% mixing, after



FIGURE 5 — Electro-optical test curves for samples with 5% and 10%
LCA1.
seems that before test, both cells give fine alignment perfor-
mance without defect. However after anti-shocking test, there
were obvious defects in both cells. The tests show that al-
though the mixing of LCA1 could depress two-domain de-
fects of FLC alignment, the stability of anti-shock were very
weak for both samples with 5% and 10% when the mixed
LCA1 was not polymerized. In order to confirm the real effect
of polymerization process on alignment stability improve-
ment, alignment texture was investigated for contrast before
and after anti-shocking and annealing test with samples of
5% mixed LCA1. Hence, after injection of FLC mixture to
cells, UV exposure of 365nm of 0.4mW/cm2 was performed
for fabricated cells with same exposed condition as reported
in Ref. 25. And then, the samples were performed with anti-
shocking and annealing tests as shown in Fig. 4. Without po-
lymerization process, cells with 5% LCA1 gave fine alignment
effect as shown in Fig. 4(a); but after test, it exist many unre-
covered defects as shown in Fig. 4(b) and (c), which means
the alignment effect was degraded by shocking or annealing
treatment. However, compared with the samples after poly-
merization, as shown in Fig. 4(e) and (f), it kept fine align-
ment texture as good as that of before test shown in Fig. 4
(d). From the microscope photos in Fig. 4(e) and (f), we could
not see any obvious defect as seen in Fig. 4(b) and (c). The
change of static CR after test was within 5% of that before
test, which means the stability against shock and annealing
was greatly enhanced after polymerization process of LCA1.
For further investigation, the EO property was investigated
for samples with 5% and 10% LCA1 after UV polymerization
process. The EO property was checked on LCT 5016C as
shown in Fig. 5. However, the result was completely contrary
to that with LCA1 mixing concentration test: with larger con-
centration results in worse alignment. The mechanism is most
probably because without polymerization test, for larger con-
centration of 10% LCA1, static CR goes larger than that of
5% sample. This means more LCA1 monomer would cause
stronger induced effect for FLC molecules to align in one
FIGURE 4 — Photos of ferroelectric liquid crystal cel
scope without UV exposure: (a) before test ; (b) after
UV exposure; (d) before test; (e) after anti-shocking te
direction; hence, we obtained better degree of aligned order
and larger static CR. But for driving CR test, it will cause ad-
verse effect; with more LCA1 molecules, the driving voltage
become higher and the maximum transmittance went lower,
almost 50% of that with 5% concentration sample. It is mea-
sured that the driving CR of 5% sample was 180:1 and the
value of 10% sample was only 70:1. These phenomena stated
that with more mixed LCA1, the network restriction for FLC
molecules became stronger and hence FLC molecules were
not easy to rotate freely, which results in small rotation range
and lower transmittance. So, based on the results in Fig. 4 and
EO test in Fig. 5, they show that 5% mixing was the optimized
concentration both for alignment stability improvement and
fine EO retaining.

For further investigation, the EO curve of 5% LCA1 sam-
ple was tested against shocking and annealing effect. As
shown in Fig. 6, it shows that the EO curves after test was al-
most the same as that the before test. With data calculation,
the change of driven transmittance was effectively maintained
l with 5% LCA1 under crossed polarized micro-
anti-shocking test; (c) after annealing test, with
st; and (f) after annealing test.
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FIGURE 6 — Electro-optical test curves of samples with 5% before and af-
ter shocking or annealing tests.
within 5%, which is the same as static CR change after shock-
ing or annealing tests. Besides the EO curve, the response
was another important parameter for FLC devices. Hence,
the response of 5% LCA1 sample was tested; the response
on/off time under 10V voltage was 300μs and 270μs, respec-
tively, which was one time faster than the result in the work of
Tang using common polymer network method.
5 Conclusions

The alignment performance of FLC with I-N*-C* phase se-
quence was indeed improved with mixing LCA1, which
shows similar molecular structure with FLC molecules when
it is in monomer state before polymerization. When mixed,
larger concentration resulted in better alignment effect.
However, its stability against heating or shocking was still
poor no matter how much you mixed LCA1 into FLC mate-
rials. The stability of FLC was greatly enhanced only after
polymerization of LCA1; but the result was not simply de-
pendent on mixing concentration of LCA1. More LCA1
would give better alignment induction action; however, it will
also give more restriction of FLC molecules rotation,
resulting worse response performance. Finally, with opti-
mized concentration, the FLC devices could offer half-V-
shaped EO characteristic of driving contrast of 182:1 and fast
response of 300μs with fine stability against heating or shock-
ing. All the results were just based on mixing one terminal
NLC polymer with one-step UV exposure without applied
voltage or any precise alignment control. This method is sim-
ple and effective, which shows high potential for future appli-
cation of I-N*-C* FLC devices.
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