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In this paper, a new formula is proposed to improve the accuracy of spot position measurements on an InGaAs
quadrant detector (QD). It is obtained by analyzing the relationship between the light spot position and the
output signals of the QD and combining the infinite integral method with the Boltzmann method due to their
opposite error characteristics. Based on the proposed formula, the measurement accuracy can be improved
greatly, which is confirmed by the simulation and experimental results. In addition, it requires fewer parameters
compared with the polynomial method when reaching the same accuracy. Thus, the new formula can be practical
in applications of spot position measurements. © 2015 Optical Society of America
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1. INTRODUCTION

The 1550 nm wavelength laser is widely used in laser
communication systems and laser radar systems because it is
less affected by atmospheric turbulence than lasers of other
wavelengths [1–4]. The position feedback elements in these
systems are usually charge-coupled devices (CCDs), lateral
effect position sensitive detectors (LEPSDs), and quadrant
detectors (QDs). However, for the 1550 nm wavelength, the
CCD is known to exhibit low quantum efficiency and
the LEPSD has high dark current noise level, both of which
are limited by the fabrication methods of these devices
[5,6]. The InGaAs QD is a solution to these problems and
is also advantageous in terms of its higher resolution and faster
response speed, which enable high-precision position measure-
ments and tracking [7]. Recently, QDs are also deployed in
atomic force microscopy [8], high-precision photoelectric
instruments, and photoelectric autocollimators [9,10].

However, according to the conventional definition of output
signal offset (OSO) [11], the relationship between the spot
position and the OSO is nonlinear, which means that the
QD measurement has high accuracy only when the spot is near
the detector center and the accuracy decreases when the spot is
far from the center [12,13]. Cui et al. succeed in achieving
higher measurement accuracy by means of modifying the def-
inition of OSO to improve the linearity index [14], but the
higher accuracy increases the complexity of the algorithm.
In addition, in [8] and [15], a method by fitting the measure-
ment data to a polynomial model has been reported to reduce

the nonlinearity. Although the method can improve the
measurement accuracy, a large amount of model parameters
are created and it is time consuming.

This paper analyzes the relationship between the spot
position and the output signals of the QD illuminated by a
Gaussian profile laser beam. A new formula is proposed to
estimate the spot position with reduced nonlinearity. It com-
bines the infinite integral method with the Boltzmann method
due to their opposite error characteristics of the spot position
measurements. The new formula effectively enhances the accu-
racy of position measurements in a wide measurement range,
which is confirmed by the simulation and experimental results.
More importantly, it introduces less parameters compared with
the polynomial method.

In this paper, the principle of the QD is described in
Section 2. In Section 3, both the infinite integral and
Boltzmann methods are briefly discussed, and the error char-
acteristics of spot position measurements are analyzed. A new
formula is proposed by combining the preceding two methods.
In Section 4, a spot position measurement system and a series
of experiments are described, and the verification of the new
formula is given as well.

2. PRINCIPLE OF THE QD

Figure 1(a) shows the QD with an incident Gaussian beam.
The QD can be regarded as being composed of four identical
p–n junction photodiodes separated by small gaps. According
to the photocurrent generated on each quadrant, the position of
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the spot center with respect to the QD center can be estimated.
Arithmetically, the conventional formulas to estimate the spot
position are given by

σx �
�IA � ID� − �IB � IC �
IA � IB � IC � ID

� 2�IA � ID�
IA � IB � IC � ID

− 1;

(1)

σy �
�IA � IB� − �IC � ID�
IA � IB � IC � ID

� 2�IA � IB�
IA � IB � IC � ID

− 1;

(2)

where σx and σy are defined as the OSOs in the x-direction and
y-direction [11,16], respectively. IA, IB , IC , and ID are the
photocurrents measured in each quadrant, respectively.
The light spot center is located at �X ; Y �. For a single wave-
length laser beam, the photocurrent on each quadrant is
calculated by

I i � η

Z Z
Σi

p�x; y�dxdy; (3)

where η is the photoelectric response ratio, Σi is the area of each
quadrant, and p�x; y� is the power intensity distribution for the
Gaussian beam given by

p�x; y� � 2P0

πω2 exp

�
−
2��x − X �2 � �y − Y �2�

ω2

�
; (4)

where P0 is the total energy of the Gaussian beam and ω is the
beam waist radius, at which point the intensity is 1∕e2 of the
maximum [17,18].

Since the response properties of the QD in the x-direction
and y-direction are symmetrical, for simplification, all the fol-
lowing discussions focus on the x-direction, and the y-direction
is similar.

The relationship between OSO σx in the x-direction and
the spot position X can be expressed as Eq. (5) by substituting
Eqs. (3) and (4) into Eq. (1), where R is the radius of QD and d
is the gap between quadrants. As shown in Fig. 1(b), the OSO
varies linearly with light spot position only when the spot is
near the detector center and the nonlinearity increases when
the spot is far from the center. In addition, the spot position
X is expected to be obtained from Eq. (5), but it is difficult
because it is a transcendental equation which cannot be deter-
mined analytically [19]. This is a troublesome issue to improve
the measurement accuracy.

σx�
2

�R ffiffiffiffiffiffiffiffiffi
R2−x2

p

−
ffiffiffiffiffiffiffiffiffi
R2−x2

p
R ffiffiffiffiffiffiffiffiffiffiffiffiffi

R2−d 2∕4
p
d∕2 p�x;y�dxdy−R d∕2

−d∕2
R ffiffiffiffiffiffiffiffiffiffiffiffiffi

R2−d 2∕4
p
d∕2 p�x;y�dxdy

�
�R ffiffiffiffiffiffiffiffiffi

R2−x2
p

−
ffiffiffiffiffiffiffiffiffi
R2−x2

p
R −d∕2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
R2−d 2∕4

p p�x;y�dxdy�R ffiffiffiffiffiffiffiffiffi
R2−x2

p

−
ffiffiffiffiffiffiffiffiffi
R2−x2

p
R ffiffiffiffiffiffiffiffiffiffiffiffiffi

R2−d 2∕4
p
d∕2 p�x;y�dxdy−R d∕2

−d∕2
R −d∕2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
R2−d 2∕4

p p�x;y�dxdy−R d∕2
−d∕2

R ffiffiffiffiffiffiffiffiffiffiffiffiffi
R2−d 2∕4

p
d∕2 p�x;y�dxdy

�−1;

(5)

3. THEORETICAL METHOD OF SPOT POSITION
MEASUREMENT

A. Infinite Integral Method and Boltzmann Method
To acquire a simplified expression to calculate the real spot
position value, an infinite integral method is considered. We
neglect the influence of detector radius and the gap between
quadrants, and then set the integral limit to infinity [20].
Thus, Eq. (5) can be simplified as

σx ≈
2η

R
∞
−∞

R
∞
0 p�x; y�dxdy

η
R
∞
−∞

R
∞
−∞ p�x; y�dxdy − 1 � erf

� ffiffiffi
2

p
X

ω

�
; (6)

and then the approximate spot position x0 can be written as

x0 �
erf −1�σx�ffiffiffi

2
p � ωe ; (7)

where erf −1�•� is the opposite error function. It is important to
note that ωe is defined as the effective spot radius, different
from ω. ωe can be calculated by fitting the measurement data.
A further interpretation is given in Appendix A. The measure-
ment error of the spot position δx is written as

Fig. 1. (a) The QD illuminated by a Gaussian beam. (b) The
relationship between σx and the theoretical value of spot
position X .
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δx � x0 − X : (8)

The radius of a typical InGaAs QD is 1.5 mm, and the gap
is around 0.045 mm. From Fig. 2(a), we can observe that x0
obtained with the infinite integral method is always larger than
X , i.e., δx > 0 always holds in the positive direction of the
x axis. Therefore, another expression with δx < 0 is anticipated
to compensate the error.

In addition, the response of the QD can also be fitted by the
normalized Boltzmann sigmoidal function [21,22]. This func-
tion is denoted by

y � A1 − A2

1� e�x−xα∕k�
� A2; (9)

where A1, A2, xα, and k are dimensionless parameters. As plot-
ted in Fig. 3, the normalized Boltzmann sigmoidal function
curve is symmetrical, where (xα, �A1 � A2�∕2) are the coordi-
nates of the curve’s center of symmetry. The parameter k
determines the slope of the sigmoidal curve, and A1 (A2) is
lower (upper) function limit. By comparing with Fig. 1(b),
we are able to assign a new physical meaning to these curve
parameters. As x → −∞, σx → −1 and x → ∞, σx → 1, we
can assign A1 � −1, A2 � 1. The symmetrical properties of
the curve results in xα � 0. A new expression is obtained as

σx ≈ 1 −
2

1� eX∕k
; (10)

and then the approximate spot position can be derived as

x0 � k � ln

�
1� σx
1 − σx

�
; (11)

where the parameter k is related to the incident spot’s radius,
the radius of QD itself, and the gap. Eq. (11) is defined as the
Boltzmann method in this paper. k can also be calculated by
fitting measurement data and its further interpretation is given
in Appendix A.

Fig. 2(b) shows that, in the Boltzmann method, δx < 0
always holds in the positive direction of the x axis, i.e., the
Boltzmann method has the opposite error trend with the
infinite integral method. Therefore, this characteristic indicates
that a linear combination of these two methods can effectively
reduce the errors.

B. New Method
From Fig. 2, it can be seen that δx of the Boltzmann method
has the opposite trend with that of the infinite integral method,
as previously stated. Therefore, we establish a new formula by
combining these two methods as

x0�σx� � m � x1�σx� � �1 − m� � x2�σx�; (12)

where x1�σx� denotes the approximate spot position of the
infinite integral method, and x2�σx� denotes that of the
Boltzmann method. m is an adjustment parameter such that
0 < m < 1, which can be determined using the least squares
method. Therefore, N sets of data points are measured
along the x-direction, and a function of the residual errors is
defined as

ψ�m; σx� � ‖δx‖2 �
XN
i�1

�x0�m; σxi� − X i �2; (13)

where X i (i � 1; 2…N ) is the theoretical value of the spot
position, and then we let

∂ψ
∂m

� m �
XN
i�1

�x1�σxi� − x2�σxi��2

�
XN
i�1

�x2�σxi� − X i��x1�σxi� − x2�σxi�� � 0: (14)

By solving this equation, the parameter m can be obtained as

m �
PN

i�1�X i − x2�σxi���x1�σxi� − x2�σxi��PN
i�1 �x1�σxi� − x2�σxi��2

: (15)

Fig. 2. Simulation results of the spot position measurement errors
in (a) the infinite integral method and (b) the Boltzmann method. The
measurement range of the QD is from −0.5 to 0.5 mm, and the spot
radii are 0.35, 0.55, 0.75, 0.95, and 1.15 mm, respectively.

Fig. 3. Plot of the normalized Boltzmann sigmoidal function.
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From this, we obtain the new formula in Eq. (12). Figure 4
presents the spot position measurement errors given by the
three different methods when the spot radius is 0.75 mm. It
can be seen that the maximum error of the new method is
0.00027 mm, which is just about one-seventieth of the
Boltzmann, 0.02 mm, and about one-tenth of that of the
infinite integral, 0.003 mm.

4. EXPERIMENTS AND RESULTS

A. Experiment Setup
The measurement system of the spot position using the QD is
designed as Fig. 5. A laser beam (1550 nm wavelength, con-
tinuous irradiance mode semiconductor) propagates through
a collimator and convex lens, and then is focused on the
QD (FCI-InGaAs-Q3000, 1.5 mm detector radius and
0.045 mm gap). The beam center is located at the center of
the QD by adjusting the nanopositioning stage with a position
resolution of 3 nm. The total power of the laser beam is about
50 μW, which is high enough to maintain a high signal-to-
noise ratio (SNR). The motion stage is controlled to move
in steps of 1 μm, along the x-axis. The output voltages of each
quadrant are collected by an analog–digital converter. The size
of the spot radius is tuned by changing the distance between the
convex lens and the QD.

B. Results and Analysis
Initially, the radius of the spot is adjusted to be 0.75 mm. The
spot center is shifted from −0.5 to 0.5 mm on the QD by tun-
ing the nanopositioning stage. σx is calculated by Eq. (1) using
the output voltage of each quadrant collected, and the theoreti-
cal spot position X is obtained by recording the values from the
nanopositioning stage. Thus, from Eqs. (A7), (A8), and (15),
the parameters of ωe, k, and m are obtained as 0.733, 0.200,
and 0.851, respectively.

The approximate position of the spot x0 and the corre-
sponding errors δx are then obtained using the infinite integral,
Boltzmann, and new methods, respectively. Figure 6 presents
the errors of the three different methods, where the experimen-
tal results agree well with the simulation. The maximum error
of the new method in experiment is 0.0007 mm—as small as
one-tenth of that obtained by the infinite integral method
(0.007 mm) and one-thirtieth of that obtained by the
Boltzmann method (0.023 mm). Furthermore, the deviation
between the experimental errors and the simulation are attrib-
uted to the slight vibrations of the stage, the uneven energy
distribution of the laser, and electrical noise.

In addition, to further verify the performance of the
proposed new method, the errors of different spot radii are ob-
tained with the new method. The maximum errors and the root
mean square error (RMSE) of the spot position are presented in

Fig. 4. Simulation results of the spot position measurement errors
obtained with the infinite integral, Boltzmann, and new methods, re-
spectively. The insert shows the close-up plot of the new method. The
spot radius is 0.75 mm. The parameters of ωe, k, and m, 0.7279,
0.2043, and 0.8545, respectively, are obtained by fitting the simula-
tion data in the measurement range from −0.5 to 0.5 mm.

Fig. 5. Measurement system of spot position using the QD.

Fig. 6. (a) The simulation and experimental results of spot position
measurement errors with the infinite integral, Boltzmann, and new
methods, respectively. (b) Close-up plots of the new method. The
measurement range is from 0 to 0.5 mm for the symmetrical character-
istic of spot position errors. The black solid lines in (a) and (b) denote
simulation results.
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Figs. 7(a) and 7(b), respectively. In the whole measurement
area, the errors of spot position can reach as low as several
micrometers. As the spot radius increases, both the maximum
error and the root mean square error gradually decrease. When
the spot radius is larger than 0.55 mm, the maximum error is
less than 0.001 mm (relative error is less than 0.2%), and
the root mean square error is less than 0.00075 mm in the
measurement area.

Finally, as seen in Table 1, the number of parameters is com-
pared between the new method and the polynomial method
with nearly the same RMSE. An approximate spot position
fitted by a polynomial model can be obtained as

x0 � A0 �
Xn
i�1

Aiσ
i
x ; (16)

where n is the number of the polynomial [8,15]. For the poly-
nomial method, the number of parameters increases when try-
ing to achieve higher spot position precision. However, for the
new method, only three parameters ωe , k, and m are intro-
duced. When the RMSE is the same, the new method has less
parameters than the polynomial method for different spot radii.

5. CONCLUSIONS

In conclusion, a new formula has been established to determine
the spot position on the QD. The simulation results show that
this new formula can greatly improve the accuracy of the QD
measurement with respect to different spot radii. It is also
shown that our new method is robust and is well confirmed
by experiment. In addition, the number of parameters is less
compared with the polynomial method with the same measure-
ment RMSE. For these advantages, the proposed method can
be applied to laser communications and laser radars. Finally,
this method can be also suitable for the QD with different radii
and gaps.

APPENDIX A

In this section, we detail the process to achieve the effective spot
radius ωe of the infinite integral method and k of the
Boltzmann method using the least squares method.

In the infinite integral method, from Eq. (6) we can obtain

x0 �
erf −1�σx�ffiffiffi

2
p � ω: (A1)

When taking into account the influence of the detector radius
and the gap between quadrants, Eq. (A1) is improved by intro-
ducing a compensation factor η �ω; R; d �:

x0 � g�σx� � ω � η�ω; R; d�; (A2)

where

g�σx� �
erf −1�σx�ffiffiffi

2
p ; (A3)

The effective spot radius ωe is defined by combining ω with η
�ω; R; d �, and then the approximate spot position can be
described as

x0 � g�σx� � ωe : (A4)

It is the same expression as Eq. (7). To determine ωe , N sets of
data points are measured along the x-direction; the theoretical
value of the spot position is X i, where i � 1; 2…N . The quad-
rant photocurrents are IAi, IBi, ICi, and IDi, and then σxi is
calculated using Eq. (1). Thus, a function describing the
residual errors is set as

ψ�ωe� � ‖δx‖2 �
XN
i�1

�x0�ωe� − X i �2; (A5)

and then based on the least squares method, we have

∂ψ
∂ωe

� 2
XN
i�1

g2�σxi� � ωe − 2
XN
i�1

g�σxi� � X i � 0: (A6)

Fig. 7. (a) Maximum error and (b) the root mean square error for
different spot sizes. Error bars are standard deviations for the new
method from three measurements. The effective measurement range
is from 0 to 0.5 mm and the spot radius varies from 0.45 to 0.95 mm.

Table 1. Number of Parameters for the New and
Polynomial Methods under the Same RMSE

Polynomial Method Our New Method

ω∕mm
Number of
Parameters

RMSE∕
10−4 mm

Number of
Parameters

RMSE∕
10−4 mm

0.55 29 8.1 3 6.8
0.75 16 1.7 3 1.7
0.95 13 0.67 3 0.67
1.15 10 0.30 3 0.33
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Finally, by solving this equation, ωe is obtained as

ωe �
PN

i�1 g�σxi� � X iPN
i�1 g

2�σxi�
: (A7)

By a similar derivation, the parameter k in the Boltzmann
method is also obtained as

k �
PN

i�1 h�σxi� � X iPN
i�1 h

2�σxi�
: (A8)
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