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1.  Introduction

The exploitation of wide-bandgap transparent oxide semicon-
ductors has drawn much attention for quite some time due 
to their excellent optical and electrical properties [1–5]. Tin 
dioxide (SnO2), as one of these wide-bandgap materials, is 
widely used in applications such as transparent conducting thin 
films, gas sensors, solar cells, light-emitting diodes (LEDs) 
and so on [6–12]. SnO2 is an n-type semiconductor with a 
wide direct bandgap of ~3.6 eV and a large exciton-binding 
energy of ~130 meV. However, many reports showed a supe-
rior broad photoluminescence (PL) band in the visible range; 

no ultraviolet (UV) PL peak was observed as a result of the 
dipole-forbidden nature of band-edge quantum states for bulk 
SnO2 [13], which has imposed restrictions on the application 
of SnO2 in the UV optoelectronic field, especially in relation 
to UV LEDs and photodiodes. The properties of bulk SnO2 are 
obviously different from other oxides, such as zinc oxide (ZnO) 
which has strong near-band-edge emissions and can be applied 
to the field of UV light emission [14–23]. Nevertheless, with 
the arrival of nanotechnology, a lot of researchers began to 
study the nanostructures of SnO2, such as nanowires, nanorods 
and quantum dots [9, 24–30]. Eventually, UV emission in the 
nanostructure of SnO2 was observed as a result of breaking 
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Abstract
We reported a facile route to fabricate a tin dioxide (SnO2)-based light-emitting diode (LED) 
and obtain an electrically pumped band-edge ultraviolet (UV) emission. We first investigated 
the photoluminescence (PL) properties of the SnO2 thin films deposited on quartz substrates 
annealed at various temperatures. It was found that SnO2 nanocrystals were embedded in the 
SnO2 amorphous matrix after annealing at 400 °C to form a SnO2 nanoparticle/amorphous 
hybrid film; the band-edge UV emission was observed from the hybrid film due to the hybrid 
structure breaking the dipole-forbidden rule of bulk SnO2. This hybrid SnO2 film was then 
deposited on a p-type GaN substrate to form a SnO2 hybrid film-based LED and a band-edge 
UV electroluminescence (EL) was observed. Our results suggest that this easy and effective 
approach may find extensive application in the field of optoelectronics, displays and solid-state 
lighting.
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the dipole-forbidden rule. In our previous work, to break the 
dipole-forbidden rule and realize near-band-edge UV emission 
from SnO2, the tailored low-temperature annealing process 
was used to obtain SnO2 nanocrystals in an amorphous matrix 
structure and indium was doped into the SnO2 to modify the 
band-edge symmetry. Using these methods, UV LEDs were 
fabricated and UV electroluminescence (EL) was observed [6, 
9]. However, there exists disadvantage with these methods. For 
example, the magnesium oxide (MgO) dielectric layer has to 
be inserted between the SnO2 and gallium nitride (GaN) layer 
as an electron-blocking layer to obtain dominant UV emission, 
which makes the fabrication process complicated. Therefore, 
it is necessary to develop an easier effective method of real-
izing dominant UV emission, such as via a SnO2-based LED 
without a MgO layer.

In this paper, an UV emission was observed from a SnO2 
nanocrystal/amorphous hybrid thin film. Such a hybrid thin 
film was deposited on a p-GaN substrate to form a SnO2-based 
LED, in which an electrically pumped UV dominant emission 
was also observed. The fabrication process of a LED is very 
easy, which makes SnO2 nanomaterial more easily applied to 
the UV optoelectronic field.

2.  Experimental process

SnO2 thin films with a thickness of 1600 nm were deposited 
on quartz substrates at room temperature using pure argon 
(Ar) as the working gas by using the radio frequency (rf ) 
magnetron sputtering method. A commercially available high-
purity SnO2 target (purity  >  99.99%) with stoichiometric pro-
portion was used in our experiments. The vacuum chamber 
was evacuated to a base pressure of 10−4 Pa before deposi-
tion and the sputtering pressure for SnO2 was controlled to 
0.1 Pa. The sputtering power was 100 W. The Ar flow rate was 
kept at 30 SCCM. In order to wipe off impurities on the sur-
face of the SnO2 target, the target was pre-sputtered by Ar 
gas for 10 min before the SnO2 layer was deposited on the 
substrate. The growth time of the SnO2 was one hour. The 
SnO2/quartz samples were annealed at 400, 600 and 800 °C in 
air for 30 min in a horizontal quartz tube furnace, respectively. 
When the temperature of the tube furnace reached annealing 
temperature, the SnO2/quartz samples were put into it. After 
annealing for 30 min, the samples were taken out and cooled 
to room temperature. For the preparation of the SnO2-based 
heterojunction LED, the SnO2 layer was deposited on a p-type 
GaN substrate, to obtain a SnO2/p-GaN heterojunction, which 
was annealed at 400 °C in air. The nickel/gold (Ni/Au) elec-
trodes were deposited through a shadow mask on the p-type 
GaN layer by using a vacuum evaporation method and served 
as the p-type electrode. Indium metal was used as the n-type 
contact to the SnO2 layer. It was pasted on the surface of the 
SnO2 film, and then heated on a hot plate; the temperature was 
fixed at 280 °C and lasted for 3 min, and all this operated in a 
glove box in order to avoid the oxidation of the sample.

The crystal structure characterization was performed 
by using x-ray diffraction (XRD) with Cu Kα radiation of 
0.154 06 nm. The composition of the thin films was determined 

using an energy dispersive spectrum (EDS) analyzer. The 
optical absorption measurements were performed using an 
UV-vis-near-IR spectrophotometer. The PL measurement was 
performed using a He-Cd laser with a 325 nm line as the exci-
tation source. A high-resolution transmission electron micro-
scope (TEM) and field emission scanning electron microscopy 
(FESEM) were used to examine the crystalline structure. The 
electrical transport parameters of the films were obtained from 
measuring the resistivity and the Hall coefficient, carried out 
at room temperature using the van der Pauw method. The 
current–voltage curves were measured at room temperature to 
further verify the formation of the p-n heterojunction. The EL 
measurements were performed using a spectrometer and the 
current power source as an excite source.

3.  Results and discussion

Figure 1 shows the typical XRD patterns of the as-deposited 
400, 600 and 800 °C annealed SnO2 films deposited on the 
quartz substrates. The matching of the observed 2θ values in 
all films with those of standard SnO2 peaks (PDF#721147) 
confirms that these thin films are of single-phase with a tetrag-
onal rutile structure. For the as-deposited SnO2 film, the inten-
sity of all the crystallographic planes’ diffraction peaks is very 

Figure 1.  X-ray diffraction patterns of the as-deposited, 400, 600 
and 800 °C annealed SnO2 thin films grown on quartz substrates. 
All diffraction peaks in these samples are attributed to the SnO2 
films and no other phases are observed.
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strong, which illustrates that the crystallinity is very good. 
However, the intensity of the diffraction peaks weakens after 
being annealed at 400 °C, suggesting that the crystallinity 
of those films declines after they have been annealed. With 
an increase in the annealing temperature, the intensity of all 
the crystallographic planes' diffraction peaks enhances, indi-
cating that the crystallinity of the films becomes better once 
again. Crystalline grain sizes are estimated from XRD data 
using Scherrer’s theorem: D  =  kλ/βcosθ, where k is the shape 
factor (k  =  0.9), λ is the x-ray wavelength (λ  =  0.15406 nm) 
and β is the line broadening in radians at half the maximum 
intensity. The estimations indicate that the grain sizes are 
11.53, 9.07, 10.33 and 10.65 nm for the as-deposited film 
and the annealed films, respectively. However, it should be 
noted that it may be incorrect to estimate the grain size using 
Scherrer’s theorem as the film is fully crystallized; many fac-
tors (not only grain size) lead to the broadening of the diffrac-
tion peak, such as residual stress. Furthermore, the interplanar 
spacing d of the (hkl) planes in a tetragonal unit cell is given in 
terms of the lattice constants a and c, by the relation: 1/d2   =   
((h2  +  k2)/a2)  +  l2/c2, where h, k and l are the Miller indices of 
the diffracting planes. The lattice constants a and c calculated 
from the d-spacing corresponding to the (1 0 1) and (2 1 1) 
sets of planes are 5.24 and 3.56, 5.20 and 3.55, 5.21 and 3.55, 
5.21 and 3.52 Å for the as-deposited film and annealed films, 
respectively. It is noted that the calculated values of the lattice 
parameters for the as-deposited SnO2 film are larger than the 
annealed SnO2 films.

Figure 2 shows the FESEM images of the as-deposited, 
400, 600 and 800 °C annealed SnO2 films grown on quartz 
substrates. The as-deposited film shows an agglomerated 
structure. After being annealed, the particles are formed and 
then disperse. To further investigate the crystalline structure 

and the evolution of the grain size, TEM and Raman spectros-
copy measurements were performed. Figure 3 shows the high-
resolution TEM images of the as-deposited and the 400 °C  
annealed SnO2 films. It is clearly observed that the as-depos-
ited SnO2 film is polycrystalline in structure, and that the crys-
talline grains combine with each other very closely. For the 
400 °C annealed SnO2 film, the nanocrystals are surrounded by 
the amorphous matrix, forming a nanocrystalline/amorphous 
hybrid structure. Raman spectra of all samples are shown in 
figure 4. The mode A1g peaks are found at 633.6, 622.9, 626.3 
and 631.9 cm−1 for the as-deposited and the 400, 600 and 800 
°C annealed SnO2 films, respectively. The A1g mode is sensi-
tive to the grain size and shifts to lower wave numbers with the 
decreasing grain sizes [31–33]. Their intensities are reduced 
then enhanced with the increasing annealing temperature, 
indicating the process of the crystal-to-amorphous-to-crystal 
transition. Another kind of peak located at about 500 cm−1 is 
observed, which is attributed to the impurity in the quartz sub-
strate [34]. This result is in good agreement with the changes 
in the XRD patterns and the TEM images, so the crystallinity 
of the SnO2 film after being annealed at 400 °C goes down, 
forming a nanocrystalline/amorphous hybrid structure. This is 
the first time a crystal-to-amorphous transition for a SnO2 film 
has been seen, but this phenomenon has been studied for other 
compounds [35, 36]. In contrast to findings from our previous 
work, the SnO2 films deposited at room temperature by pulsed 
laser deposition and sol-gel methods are amorphous, and the 
crystallinity of those films becomes better after being annealed. 
In the present work, the SnO2 film made by rf magnetron sput-
tering is crystallographic, and the SnO2 grains contact to each 
other closely. Although we did not carry out detailed studies 
on the causes of the crystal-to-amorphous transition and it 
undoubtedly merits further investigation, we speculated that the 

Figure 2.  FESEM images of the (a) as-deposited, (b) 400 °C, (c) 600 °C and (d) 800 °C annealed SnO2 films. The as-deposited film shows 
an agglomerated structure. After being annealed, particles are formed and then disperse.

J. Phys. D: Appl. Phys. 48 (2015) 465103



Y Huang et al

4

Figure 3.  High resolution TEM images of the (a) as-deposited and (b) 400 °C annealed SnO2 films. The as-deposited SnO2 film 
is polycrystalline in structure and the crystalline grains combine with each other very closely. For the 400 °C annealed SnO2 film, 
nanocrystals are surrounded by the amorphous matrix, forming a nanocrystalline/amorphous hybrid structure.

Figure 4.  Raman spectra of the as-deposited, 400 °C, 600 °C and 
800 °C annealed SnO2 films.

Table 1.  The stoichiometric ratio of Sn and O elements in all the 
films.

As-deposited
Annealed 
at 400 °C

Annealed 
at 600 °C

Annealed 
at 800 °C

Sn 34.76% 34.47% 34.82% 34.49%
O 65.24% 65.53% 65.18% 65.51%

Figure 5.  Optical absorption spectra of the as-deposited and 
annealed SnO2 thin films. The inset shows the optical bandgap as a 
function of the annealing temperature.

Figure 6.  Room temperature PL spectra of (a) the as-deposited, 
400, 600 and 800 °C annealed SnO2 thin films and (b) the p-type 
GaN substrate.

J. Phys. D: Appl. Phys. 48 (2015) 465103
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evaporation of the elements in the SnO2 film annealed at 400 
°C leads to a decrease in grain size and hence the formation of 
lattice disordering or an amorphous area at grain boundaries. 
Thus, for the 400 °C annealed SnO2 film, the nanocrystals are 
surrounded by the amorphous matrix, forming a nanocrystal/
amorphous hybrid structure. As the annealing temperature 
increases, recrystallization plays a more important role com-
pared to the evaporation of the elements, so the crystallinity of 
the films becomes better and the crystalline grain size becomes 
larger again. Furthermore, to determine whether the composi-
tion changes with the annealing temperature, we also exam-
ined the proportion of Sn and O elements using EDS analysis, 
as listed in table 1. It was found that the stoichiometric propor-
tion of the Sn and O elements of all films is slightly bigger than 
1:2, suggesting that the composition is not associated with the 
annealed temperature.

The optical bandgap Eg can be deduced from optical absorp-
tion spectra measurements made with the Tauc plot method: 
(αhν)  =  A(hν  −  Eg)n, where hν is the photon energy, A is a 
constant which does not depend on the hν and n is the power 
coefficient taken as 1/2. The Eg is estimated by extrapolating 
the linear portion of (αhν)2 versus hν plots to the hν-axis. The 
curve diagrams in regard to the (αhν)2 versus the hν of all the 
films are shown in figure 5. The Eg values of the SnO2 films 
are 3.66, 3.42, 3.49 and 3.76 eV. The inset in figure  5 shows 
the bandgap as a function of the annealing temperature. For the 
fully crystallized SnO2 films, the optical bandgaps are in agree-
ment with the reported values of the bulk SnO2 (3.6–3.8 eV). 
For the nanocrystal/amorphous SnO2 film, the optical bandgap 
is 3.42 eV, smaller than the optical bandgap of the bulk SnO2 
and closer to the fundamental bandgap (the energy difference 
between the conduction-band minimum and the valence-band 
maximum), indicating that the dipole-forbidden rule is broken.

The room temperature PL emission spectra of the as-
deposited and annealed SnO2 films are shown in figure 6(a). 
For the as-deposited SnO2 film, no emission peak is observed 
between 330 nm and 650 nm, which is caused by the dipole-
forbidden rule of bulk SnO2. After being annealed at 400 °C, 
the SnO2 film could emit UV light. The two emission peaks 
are located at 392 and 514 nm, respectively. The UV emis-
sion peak is stronger than the visible emission one. The vis-
ible emission band is ascribed to the radiative recombination 
relevant to the deep level defects, such as the oxygen vacancy 
(Vo) [10, 37]. The SnO2 film becomes a nanocrystalline/amor-
phous hybrid structure after being annealed at 400 °C, during 
which numerous dangling bonds existing at the surface of the 
nanoparticles with a high surface-to-volume ratio are buried 
in the surrounding amorphous matrix. The dangling bonds 
give rise to shallow states for ionic oxides [38], and the asso-
ciated bound excitons are responsible for the UV emission. 

The observed UV emission indicates that the dipole-forbidden 
rule is broken by making the SnO2 film become a nanocrys-
talline/amorphous hybrid structure. With the increase in the 
annealing temperature, the grains become larger and the crys-
tallinity becomes better. The buried dangling bond defect 
states become fewer, and because the band structure of the 
nanostructured ionic semiconductors is sensitive to how the 
surfaces are passivated, the emission light intensity weakens 
and even disappears, for the 600 and 800 °C annealed films.

The observed variation in the electrical parameters of SnO2 
films annealed at different temperatures is given in table 2. All 
the SnO2 films are n-type semiconductors. It is noted that the 
charge carrier density and mobility decrease with the increases 
in the annealing temperature. Carrier density is found to 
decrease with an increase in the annealing temperature due 
to the compensation of the oxygen vacancy. The mobility 
is affected by several scattering mechanisms involving neu-
tral impurities, ionized impurities, grain boundaries and lat-
tice vibration scattering. The decrease in carrier mobility is 
impacted by the increase in the grain boundary scattering due 

Table 2.  Electrical properties of the as-deposited and annealed SnO2 films.

Electrical parameters As-deposited Annealed at 400 °C Annealed at 600 °C Annealed at 800 °C

Carrier density (cm−3) 1.2  ×  1019 8.6  ×  1018 4.7  ×  1018 1.0  ×  1018

Hall mobility (cm2 V−1s−1) 13.1 10.5 4.3 3.6
Resistivity (Ω cm) 4.5  ×  10−2 6.8  ×  10−2 3.0  ×  10−1 2.4
Carrier type n n n n

Figure 7.  (a) Schematic diagram of the SnO2/p-GaN heterojunction 
LED. (b) Room temperature I–V curves of the SnO2/p-GaN 
heterojunction and n–n ohmic contact in the SnO2/p-GaN LED.
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to the decreased grain size with the annealing temperature; 
therefore the electrical resistivity increases.

In order to apply SnO2 nanomaterial to UV LEDs, the 
SnO2 film was deposited on a p-GaN substrate and then 
annealed at 400 °C to form a SnO2/p-GaN heterojunction 
with a SnO2 nanocrystal/amorphous hybrid structure. The 
schematic diagram of the SnO2/p-GaN LED prototype is 
shown in figure 7(a). Figure 7(b) shows the current–voltage 
characteristics of the SnO2/p-GaN heterojunction, and good 
rectification is obtained in the heterojunction. The turn-on 
voltage is about 3.5 V for the SnO2/p-GaN heterojunction. 
To confirm that the rectification is inherent, we measured the 
contact type between the In and SnO2 by injecting a current 
through the In–SnO2–In (two In electrodes were pasted on 
the SnO2 layer), and obtained the I–V curve as represented 
by the green line in figure 7(b). The relation between the cur-
rent and voltage is linear, confirming that the In contacts to 
the n-SnO2 layer are ohmic contacts. The ideality factor n is 
one of the very important parameters, which impacts on the 
electrical characteristics of the diodes. The value can be cal-
culated using the equation: [dV/d(lnI )]  ∝  (nkT/q). According 
to the I–V data, the obtained value of the ideality factor is 2.3.

Figure 8 shows the room temperature EL spectra of the 
SnO2/p-GaN heterojunction LED under various forward exci-
tation currents. The EL intensity heightens with the increasing 
excitation current. As the small injection current is applied, a 
dominant visible emission band is observed. When the injec-
tion current increases, the UV peak starts to enhance and vis-
ible emission is suppressed. As the injection current reaches 
50 mA, there is a strong UV emission peak located at 382 nm 
with full width at half maximum of 80 nm, which is con-
sistent with the result in the PL spectra. It should be noted 
that the PL peak of the p-GaN is centered at 440 nm, as shown 
in figure 6(b), indicating the 382 nm emission is not derived 
from the GaN layer. It is worth noting that the UV EL peak at 
the large injection current of 50 mA exhibits a slight blueshift 
with respect to the PL peak but a redshift at the small injection 

current of 35 mA. This is attributed to the higher efficient radi-
ative recombination at the band-edge induced by the larger 
excited current [39]. In our previous reports, the UV emis-
sion peaks at 398 and 449 nm were observed from the SnO2/
MgO/p-GaN heterojunction and SnO2:In/p-GaN heterojunc-
tion LEDs, respectively. This is the first time an emission 
peak centered at 382 nm in the SnO2/p-GaN heterojunction 
has been observed. Therefore, our present fabrication method 
has the advantage of being MgO layer-free and doping-free 
with respect to the previous method.

4.  Conclusion

In summary, SnO2 films with a nanocrystal/amorphous hybrid 
structure were deposited on quartz substrates, in which the 
dipole-forbidden rule is broken and UV band-edge emission is 
observed in the PL spectra. Using a similar method, an emis-
sion peak located at 382 nm is observed in the EL spectra of 
a SnO2/p-GaN heterojunction LED. The emergence of an UV 
emission in the SnO2 hybrid films is the result of structural 
modification. The surface states play an important role in 
breaking the dipole-forbidden rule for the nanostructure-engi-
neered SnO2. Our results suggest that the fabrication method 
may make SnO2 have a wider application range in the future.
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