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A new size-dependent model for functionally graded microplates is developed by using the modified cou-
ple stress theory. In the model, a four variable refined plate theory rather than the first order or any
higher order shear deformation theory is adopted to characterize the transverse shear deformation.
Firstly, the equations of motion for functionally graded microplates are derived from Hamilton’s princi-
ple. Then based on these equations, closed-form solutions for bending, buckling and free vibration
responses are obtained for simply supported rectangular functionally graded microplates. Furthermore,
numerical results based on the analytical solutions are also presented and compared with those predicted
by size-dependent first order and third order shear deformation plate models. The results demonstrate
that the new size-dependent model has comparable accuracy with the size-dependent third order shear
deformation plate model. Thus this new size-dependent model can be easily applied to analyze mechan-
ical responses of functionally graded microplates for its simplicity and high accuracy.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The concept of functionally graded materials (FGMs) was first
introduced in 1984 in Japan as a new kind of composite materials
with its properties varying from one surface to another to provide a
certain functionality, such as thermal protection from ablation and
elimination of stress concentration. Recently, the applications of
FGMs have been extended to the micro/nano engineering fields
so that functionally graded (FG) micro/nano beams and plates are
extensively utilized in atomic force microscopy and micro- and
nano-electro-mechanical systems (MEMS and NEMS) [1–4].

In such applications, size effects have been experimentally
observed [5–8] and should also play vital roles in potential applica-
tions of FG micro/nano beams and plates. Thus, size effects should
be taken into account in predicting the static and dynamic
responses of FG micro/nano beams and plates. Conventional plate
models based on continuum mechanics fail to predict such size
effects due to the lack of an intrinsic length scale. In recent years,
several size-dependent plate models based on size-dependent con-
tinuum theories have been developed, such as nonlocal elasticity
theory [9], strain gradient theory [8], couple stress theory [10,11]
and its modified version [12]. Among all these theories, the modi-
fied couple stress theory has the advantage of involving only one
material length scale parameter, thus can be easily used to con-
struct various size-dependent beam and plate models.

Based on the modified couple stress theory, several size-depen-
dent beam models, such as size-dependent Euler–Bernoulli beam
model [13,14], Timoshenko beam model [15,16], Reddy–Levinson
beam model [17] and other higher order beam models [18,19]
have been developed respectively for microbeams. Based on these
models, the bending, buckling and free vibration behavior of
microbeams were studied by lots of researchers [13–22]. Several
size-dependent plate models have also been developed to study
the static and dynamic behavior of homogeneous microplates
and FG microplates [23–26]. Tsiatas first developed a size-depen-
dent plate model to analyze the bending behavior of microplates
by using the classical plate theory (CPT) [23]. This model was then
utilized by Yin et al. [27] and Jomehzadeh [28] to study the vibra-
tion of microplates. Asghari extended this model to geometrically
nonlinear microplates [29] and FG microplates [30]. The CPT
accurately predicts results for thin homogeneous microplates,
while for moderately thick FG microplates it underestimates the
transverse deflection and overestimates the natural frequencies
due to neglecting the transverse shear deformation of the plate
that is relatively important in this case. To consider the transverse
shear deformation, Ma et al. [24] and Ke et al. [31] developed a
size-dependent first order model by adopting the first order shear
deformation theory (FSDT) rather than the CPT. Recently, Thai and
Choi [32] extended the size-dependent first order model to FG
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plates. Although the FSDT predicts sufficiently accurate results for
moderately thick FG plates, the necessity of accurately choosing a
shear correction factor makes the theory inconvenient to use.
Reddy’s third-order shear deformation theory (TSDT) takes into
account the parabolic variation of the transverse shear strains
through the thickness of the plate, thus the transverse shear stres-
ses vanish on the top and bottom surfaces of the plate and a shear
correction factor is not required. By employing the TSDT, Thai and
Kim [25] developed a size-dependent third-order plate model to
study the bending, buckling and free vibration of FG plates.
Taking both the transverse shear and normal deformation into
account, Reddy and Kim [33] developed a generalized third order
plate model, in which more generalized displacements are
utilized.

Although the size-dependent third-order plate model provides
more accurate results for a moderately thick FG plate without
requiring a correction factor, five generalized displacements are
needed in the theory to completely characterize the behavior of
the plate. Thus when this theory is used to predict the size-depen-
dent behavior of the plate, complex algebraic equations and much
computational effort are unavoidable. Recently, Thai and Choi [34]
extended a four variable refined plate theory (RPT) that was origi-
nally developed for isotropic plates [35] to FG plates to simplify the
equations of motion for the shear deformable FG plates. The RPT is
variationally consistent, has strong similarity with classical plate
theory in many aspects such as equations of motion and boundary
conditions, and also assumes parabolic variation of transverse
shear stresses through the thickness of the plate without using a
shear correction factor. Moreover, the accuracy of the theory has
been demonstrated to be comparable to that of the TSDT [34].
Therefore, it is meaningful to extend the RPT to FG microplates
by taking the size effects into account.

The purpose of the present paper is to develop a size-dependent
refined plate model for FG microplates by using the modified cou-
ple stress theory. The equations of motion and boundary condi-
tions for the plates are derived from Hamilton’s principle.
Analytical solutions for linear bending, buckling and free vibration
responses of the plates with simply supported boundary condi-
tions are obtained. Numerical results based on the proposed model
are also presented and compared with those predicted by the size-
dependent third-order plate model to validate the accuracy of the
present model.

2. Theoretical formulation

2.1. Modified couple stress theory

The modified couple stress theory was proposed by Yang et al.
[12]. According to this theory, the variation of strain energy can
be written as:

dU ¼
Z

V
rijdeijdV þ

Z
V

mijdvijdV ð1Þ

where the Einstein summation convention is adopted; rij are the
components of the stress tensor; eij are the components of the strain
tensor; mij are the components of the deviatoric part of the sym-
metric couple stress tensor; and vij are the components of the sym-
metric curvature tensor. The components of the strain and
curvature tensors are defined by
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where ui are the components of the displacement vector and hi are
the components of the rotation vector:
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2.2. Kinetics

The four variable refined plate theory satisfies the zero traction
boundary conditions on the top and bottom surfaces of the plate
[34]. Thus, a shear correction factor is not required. The displace-
ment field of this theory is as follows:

u1 x; y; z; tð Þ ¼ u x; y; tð Þ � z
@wb

@x
� f zð Þ @ws

@x

u2 x; y; z; tð Þ ¼ v x; y; tð Þ � z
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� f zð Þ @ws

@y
u3 x; y; z; tð Þ ¼ w x; y; tð Þ ¼ wb x; y; tð Þ þws x; y; tð Þ

ð5Þ

where u and v are respectively the in-plane displacements of a point
on the neutral surface of the plate along the x and y coordinates; wb

and ws are the bending and shear components of transverse dis-
placement u3 respectively; f zð Þ is the shape function of shear defor-
mation; and t is the time. It should be noted that f zð Þ is not unique
for many choices are available. In Shimpi’s original paper, f zð Þ was

chosen to be �z=4þ 5z3= 3h2
� �

in order to satisfy the assumption

that the shear component ws does not contribute to the bending
moment for a plate without gradient properties through its thick-
ness direction [36]. However, the refined plate theory has been
extended to the case of FG plates and composite laminated plates
where there is no need to make such an assumption. Therefore,
f zð Þ can generally be chosen to other forms of functions as long as
zero traction boundary conditions on the top and bottom surfaces
are satisfied. Mechab et al. [37] also found such a freedom and
pointed out that according to the shape function w zð Þ of any higher
order shear deformation plate theory, a refined plate theory can be
derived with f zð Þ ¼ �w zð Þ þ z. In the present paper, Shimpi’s choice
is followed.

The strains can be obtained as:
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where

e0
x

e0
y

c0
xy

8><>:
9>=>; ¼

@u
@x þ 1

2
@w
@x

� 	2

@v
@y þ 1

2
@w
@y

� �2

@u
@y þ @v

@x þ @w
@x

@w
@y

8>>><>>>:
9>>>=>>>;;

jb
x

jb
y

jb
xy

8><>:
9>=>; ¼

� @2wb
@x2

� @2wb
@y2

�2 @2wb
@x@y

8>>><>>>:
9>>>=>>>;;

js
x

js
y

js
xy

8><>:
9>=>; ¼

� @2ws
@x2

� @2ws
@y2

�2 @2ws
@x@y

8>>><>>>:
9>>>=>>>;;

cs
yz

cs
xz

� �
¼

@ws
@y

@ws
@x

( )
; and g ¼ 1� df

dz
¼ 5

4
� 5

z
h

� �2
:

Substituting the displacement field from Eq. (5) into Eq. (4), the
rotation vector is obtained as:
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Substituting Eq. (7) into Eq. (3), the components of the curvature
tensor take the following form:
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2.3. Constitutive equations

Consider a FG microplate made of two constituent functionally
graded materials as shown in Fig. 1. The material properties of the
plate, such as Young’s modulus E, mass density q and the Poisson’s
ratio m, are assumed to vary continuously through the thickness by
a power law as:
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where the subscripts 1 and 2 represent the two materials used, h is
the thickness of the plate and p is the pow law index. The linear
elastic constitutive relations can be written as:
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Fig. 1. The geometry of a
where
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E zð Þ

1� m zð Þ2
; Q 12 ¼
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1� m zð Þ2

; Q 44 ¼ Q 55 ¼ Q 66

¼ E zð Þ
2 1þ m zð Þ½ � ¼

1
2

Q 11 � Q 12ð Þ;

in which l is the material length scale parameter used as a material
property to measure the effect of couple stress.

2.4. Equations of motion

Hamilton’s principle is utilized to derive the equations of
motion. The principle can be stated as:

0 ¼
Z T
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where dU is the variation of strain energy; dV is the variation of
potential energy; and dK is the variation of kinetic energy.

The variation of strain energy can be written as:
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where N;Mb;Ms;Q ; P;R and S are the stress resultants defined by
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Substituting the constitutive equations (10) and Eq. (16) into
the above stress resultants, the stress resultants can be expressed
in terms of generalized displacements as:
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The variation of the potential energy can be expressed as [33]:
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i (i ¼ x; y; zÞ are the body forces, the body cou-
ples, the surface forces on the side surfaces of the microplate, the
distributed forces on the top surface and the distributed forces on
the bottom surface respectively, ut
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The variation of the kinetic energy is expressed as:
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Substituting Eqs. (12), (14) and (15) into Eq. (11), integrating by
parts, and collecting the coefficients of du; dv; dwb and dws respec-
tively, the following equations of motion are derived:
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v or Nv � Nxynx þ Nyny �
1
2

Pxz;x þ Pyz;y þ c0
z

� 	
nx ð21Þ

u;y or Pxznx þ Pyzny ð22Þ

v ;x or Pxznx þ Pyzny ð23Þ

wb or Vb� Mb
x;xþMb

xy;yþPxy;xþPy;yþ I1 €u� I2 €wb;x� I4 €ws;xþc0
y þ f 1

x þq1
x

� �
nx

þ Mb
xy;xþMb

y;y�Px;x�Pxy;yþ I1 €v� I2 €wb;y� I4 €ws;y�c0
x þ f 1

y þq1
y

� �
ny

þ eNþMb
ns;s ð24Þ

wb;n or Mb
nn ð25Þ

ws or Vs� Ms
x;xþMs

xy;yþ
1
2

Rxy;xþ
1
2

Ry;yþ I3€u� I4 €wb;x� I5 €ws;x

�
þ1

2
c1

y þ f 2
x þq2

x þQ xz�
1
2

Syz

�
nx

þ Ms
xy;xþMs

y;y�
1
2

Rx;x�
1
2

Rxy;yþ I3 €v� I4 €wb;y

�
�I5 €ws;y�

1
2

c1
x þ f 2

y þq2
y þQ yzþ

1
2

Sxz

�
nyþ eNþMs

ns;s ð26Þ
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ws;n or Ms
nn ð27Þ

where

eN ¼ Nxw;xþNxyw;y
� 	

nxþ Nxyw;xþNyw;y
� 	

ny

Mb
nn¼ Mb

xþPxy

� �
n2

x þ Mb
y�Pxy

� �
n2

y þ 2Mb
xy�PxþPy

� �
nxny

Mb
ns¼ Mb

y�Mb
x �2Pxy

� �
nxnyþ Mb

xy�Px

� �
n2

x � Mb
xyþPy

� �
n2

y

Ms
nn¼ Ms

xþ
1
2

Rxy

� �
n2

x þ Ms
y�

1
2

Rxy

� �
n2

y þ 2Ms
xy�

1
2

Rxþ
1
2

Ry

� �
nxny

Ms
ns¼ Ms

y�Ms
x�Rxy

� �
nxnyþ Ms

xy�
1
2

Rx

� �
n2

x � Ms
xyþ

1
2

Ry

� �
n2

y

For FG plate without body force, body couple and tangent tractions
qx and qy on the bottom and top surfaces of the plate, the corre-
sponding terms in the equations of motion can be discarded.
Omitting these terms, differentiating Eqs. (16) and (17) with respect
to x and y respectively and adding the two obtained equations, the
following three equations are obtained:

Nx;xx þ 2Nxy;xy þ Ny;yy ¼ I0 €u;x þ €v ;y
� 	

� I1r2 €wb � I3r2 €ws ð28Þ

Mb
x;xx þ 2Mb

xy;xy þMb
y;yy � Px;xy þ Py;xy � Pxy;yy þ Pxy;xx þ N wð Þ þ qz

¼ I0 €wb þ €wsð Þ þ I1 €u;x þ €v ;y
� 	

� I2r2 €wb � I4r2 €ws ð29Þ

Ms
x;xxþ2Ms

xy;xyþMs
y;yyþQ xz;xþQ yz;yþ

1
2
�Rx;xyþRy;xy�Rxy;yyþRxy;xx
� 	

þ1
2

Sxz;y�
1
2

Syz;xþN wð Þþqz¼ I0 €wbþ €wsð Þþ I3 €u;xþ €v ;y
� 	

� I4r2 €wb� I5r2 €ws ð30Þ
2.5. Equations of motion in terms of displacements

Substituting the expressions of the stress resultants (13) into
Eqs. (28)–(30) yields:

A11r2uþ A11wN1 þ A12wN2 � B11r4wb � C11r4ws

¼ I0 €u� I1r2 €wb � I3r2 €ws ð31Þ

B11r2uþ B11wN1 þ B12wN2 � D11 þ Anð Þr4wb � E11 þ Bn=2ð Þr4ws

þ N wð Þ þ qz ¼ I1 €uþ I0 €wb þ €wsð Þ � I2r2 €wb � I4r2 €ws ð32Þ

C11r2uþC11wN1þC12wN2� E11þBn=2ð Þr4wb� F11þDn=4ð Þr4ws

þ A44þFn=4ð Þr2wsþN wð Þþqz¼ I3 €uþ I0 €wbþ €wsð Þ
� I4r2 €wb� I5r2 €ws ð33Þ

where u ¼ u;x þ v ;y;wN1 ¼ w2
;x

� �
;xx
þ w2

;y

� �
;yy
þ 2 w;xw;y

� 	
;xy


 �
=2;

wN2 ¼ w2
;xy �w;xxw;yy.

It is evident that accounting for small scale effects by using the
modified couple stress theory only leads to an increase of the bend-
ing stiffness of the FG plate. When the intrinsic scale is set to zero
(l ¼ 0Þ;An ¼ Bn ¼ Dn ¼ Fn ¼ 0 and the equations of motion will be
degenerated to those derived from the four variable shear defor-
mation plate theory.

For linear plate, wN1 and wN2 are negligible. The in-plane stress
resultants Nx;Ny and Nxy are also assumed to be constant and equal
to externally prescribed stress resultants. In this case the equations
of motion are simplified as:

A11r2u� B11r4wb � C11r4ws ¼ I0 €u� I1r2 €wb � I3r2 €ws ð34Þ
B11r2u� D11 þ Anð Þr4wb � E11 þ Bn=2ð Þr4ws þ N þ qz

¼ I1 €uþ I0 €wb þ €wsð Þ � I2r2 €wb � I4r2 €ws ð35Þ

C11r2u� E11þBn=2ð Þr4wb� F11þDn=4ð Þr4wsþ A44þFn=4ð Þr2ws

þNþqz ¼ I3 €uþ I0 €wbþ €wsð Þ� I4r2 €wb� I5r2 €ws ð36Þ

where N ¼ Nx wb þwsð Þ;xx þ 2Nxy wb þwsð Þ;xy þ Ny wb þwsð Þ;yy.
It can seen that the equations of motion are simplified to three

equations with three unknown functions, i:e:u;wb and ws. This
group of equations can be used to derive analytical solutions for
linear bending, buckling and free vibration of FG microplate.

Subtracting Eq. (34) multiplied by B11=A11 from Eq. (35) yields:

D11r4wb þ E11r4ws ¼ N þ qz � I1 €u� I0 €wb þ €wsð Þ þ I2r2 €wb

þ I41r2 €ws ð37Þ

Subtracting Eq. (34) multiplied by C11=A11 from Eq. (36) yields:

E11r4wb þ F11r4ws � A44r2ws

¼ N þ qz � I3 €u� I0 €wb þ €wsð Þ þ I42r2 €wb þ I5r2 €ws ð38Þ

where

D11 ¼ D11 �
B2

11

A11
þ An; E11 ¼ E11 �

B11C11

A11
þ Bn

2
;

F11 ¼ F11 �
C2

11

A11
þ Dn

4
; A44 ¼ A44 þ

Fn

4

I1 ¼ I1 �
B11

A11
I0; I2 ¼ I2 �

B11

A11
I1; I41 ¼ I4 �

B11

A11
I3

I3 ¼ I3 �
C11

A11
I0; I42 ¼ I4 �

C11

A11
I1; I5 ¼ I5 �

C11

A11
I3

It can be seen from Eqs. (37) and (38) that wb and ws are only
inertially coupled with the in-plane motion variables u and v. For
static bending and buckling problems, the transverse motion is
statically decoupled from the in plane motion. When the influence
of inertial coupling is relatively small, the inertial coupling term can
be directly neglected to derive approximate natural frequencies of
the FG microplate.

3. Closed-form solutions for rectangular plates

In the following analysis, bending, buckling and free vibration
problems of rectangular plates are considered. Equations (37)
and (38) will be used to obtain analytical solutions for the bending
deflection and critical buckling load and an approximate formula
for natural frequencies of bending vibration with inertial coupling
terms in Eqs (37) and (38) being directly neglected. Equations (34),
(37) and (38) will also be used to derive an accurate solution for
the natural frequencies. Consider a simply supported rectangular
plate with length a and width b under transverse load q and in-
plane loads in two directions (Nx ¼ c1N;Ny ¼ c2NÞ.

Following Navier’s method, the following series is chosen to
represent the displacements which automatically satisfy the sim-
ply supported boundary conditions of the plate:

wb ¼
X1

m;n¼1

Wbmneixt sin axð Þ sin byð Þ;

ws ¼
X1

m;n¼1

Wsmneixt sin axð Þ sin byð Þ ð39Þ

where i ¼
ffiffiffiffiffiffiffi
�1
p

;x is the natural frequency, a ¼ mp=a; b ¼ np=b;
Wbmn and Wsmn are the coefficients. The transverse loads can also
be expressed in the following series form:



Table 1
Dimensionless first order natural frequency of a simply supported plate.

a/
h

l/h p = 0 p = 1 p = 10

MPT [32] Present MPT [32] Present MPT [32] Present

5 0 5.3871 5.3885 4.8744 4.8755 5.5818 5.3793
0.2 5.7797 5.8439 5.3239 5.3749 5.9551 5.9200
0.4 6.7996 7.0322 6.4600 6.6512 6.9333 7.2275
0.6 8.1595 8.6525 7.9298 8.3550 8.2517 8.9116
0.8 9.6451 10.5052 9.4998 10.2755 9.7045 10.7941
1 11.1311 12.4874 11.0451 12.3118 11.1666 12.7942

10 0 5.9301 5.9302 5.2697 5.2698 6.1903 6.1157
0.2 6.3559 6.3770 5.7518 5.7676 6.5967 6.5814
0.4 7.4807 7.5590 6.9920 7.0532 7.6797 7.7786
0.6 9.0261 9.1954 8.6477 8.787 9.1829 9.4095
0.8 10.7848 11.0863 10.4942 10.7543 10.9066 11.2882
1 12.6360 13.1220 12.4128 12.8483 12.7303 13.3131

20 0 6.0997 6.0997 5.3880 5.3880 6.3837 6.3627
0.2 6.5376 6.5434 5.8812 5.8854 6.8026 6.7981
0.4 7.7009 7.7224 7.1571 7.1736 7.9251 7.9523
0.6 9.3158 9.3625 8.8781 8.9159 9.4993 9.5619
0.8 11.1801 11.2640 10.8255 10.8968 11.3303 11.4366
1 13.1786 13.3153 12.8871 13.0076 13.3030 13.4670
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q x; yð Þ ¼
X1

m;n¼1

Q mn sin axð Þ sin byð Þ ð40Þ

where Qmn ¼ 4
ab

R a
0

R b
0 q x; yð Þ sin axð Þ sin byð Þdxdy. For uniformly dis-

tributed transverse load, Qmn ¼
4 1�ð�1Þmð Þ 1�ð�1Þnð Þq0

mnp2 , and for sinu-
soidally distributed transverse load, the coefficient Q11 ¼ q0 and
all other coefficients equal to zero.

Substituting the expansions of wb;ws and q into Eqs. (37) and
(38), the closed-form solutions can be obtained from the following
equations:

s11 þ k s12 þ k

s12 þ k s22 þ k


 �
�x2 m11 m12

m21 m22


 �� �
Wbmn

Wsmn

� �
¼

Qmn

Qmn

� �
ð41Þ

where

s11 ¼ D11 a2 þ b2� 	2
; s12 ¼ E11 a2 þ b2� 	2

;

s22 ¼ F11 a2 þ b2� 	2 þ A44 a2 þ b2� 	
k ¼ N c1a

2 þ c2b
2� 	
;

m11 ¼ I0 þ I2 a2 þ b2� 	
; m12 ¼ I0 þ I41 a2 þ b2� 	

m21 ¼ I0 þ I42 a2 þ b2� 	
; m22 ¼ I0 þ I5 a2 þ b2� 	
Table 2
Dimensionless deflection of a simply supported plate.

l/h a/h = 5 a/h = 20

TSDT [33] Present TSDT [33]

0 0.6688 0.6688 0.5689
0.2 0.5468 0.5468 0.4737
0.4 0.3535 0.3535 0.3153
0.6 0.2224 0.2224 0.2025
0.8 0.1464 0.1464 0.1349
1 0.1017 0.1017 0.0944

Table 3
Dimensionless fundamental natural frequency of a simply supported plate.

l/h a/h = 5 a/h =20

TSDT [33] Pre_ac⁄ Pre_ap⁄ TSDT [33]

0 4.0781 4.0781 4.0895 4.5228
0.2 4.5094 4.5094 4.5222 4.9568
0.4 5.6071 5.6071 5.6236 6.0756
0.6 7.0662 7.0662 7.0880 7.5817
0.8 8.7058 8.7058 8.7347 9.2887
1 10.4397 10.4397 10.4780 11.1042

⁄ Pre_ac denotes accurate results obtained from solving the generalized eigenvalue prob
For bending analysis, the closed-form solution is obtained by set-
ting the natural frequency and in-plane loads in Eq. (41) equal to
zero. The analytical formula for transverse deflection is:

w ¼ wb þws ¼
X1

m;n¼1

Q mn s11 þ s22 � 2s12ð Þ
s11s22 � s2

12

sin axð Þ sin byð Þ ð42Þ

For buckling analysis, the closed-form solution is obtained by
setting the natural frequency and the transverse load in Eq.
(41) equal to zero. The analytical formula for the critical buckling
load is:

Ncr ¼
�1

c1a2 þ c2b
2

s11s22 � s2
12

s11 þ s22 � 2s12
ð43Þ

For free vibration analysis, the closed-form solution is obtained by
setting the in-plane loads and the transverse load in Eq. (41) equal
to zero. The analytical formula for the natural frequency is:

x2 ¼ 1
2 m11m22�m12m21ð Þ s11m22þ s22m11� s12 m12þm21ð Þ½

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s11m22þ s22m11 � s12 m12þm21ð Þ½ �2�4 m11m22 �m12m21ð Þ s11s22 � s2

12

� 	q �
ð44Þ

In order to obtain the accurate solution for the natural frequency, all
the three Eqs. (34), (37) and (38) should be solved simultaneously.
Assuming that u ¼

P1
m;n¼1umneixt sinax sin by and substituting it

and Eq. (39) into Eqs. (34), (37) and (38), the following equations
for free vibration can be obtained:

s11 s12 0

s12 s22 0

s31 s32 s33

26664
37775�x2

m11 m12 m13

m21 m22 m23

m31 m32 m33

26664
37775

0BBB@
1CCCA

Wbmn

Wsmn

umn

8>>><>>>:
9>>>=>>>; ¼

0

0

0

8>>><>>>:
9>>>=>>>;
ð45Þ

where s31 ¼ B11 a2 þ b2� 	2
; s32 ¼ C11 a2 þ b2� 	2

; s33 ¼ A11 a2 þ b2� 	
;

m13 ¼ I1; m23 ¼ I3; m31 ¼ I1 a2 þ b2� 	
, and m33 ¼ I3 a2 þ b2� 	

.
Closed-form solution for the above generalized eigenvalue

problem can be also derived which is not presented here.
Numerical solution is easily obtained by using algorithms for the
generalized eigenvalue problem.
a/h = 100

Present TSDT [33] Present

0.5689 0.5625 0.5625
0.4737 0.4689 0.4689
0.3153 0.3128 0.3128
0.2025 0.2011 0.2011
0.1349 0.1341 0.1341
0.0944 0.0939 0.0939

a/h =100

Pre_ac⁄ Pre_ap⁄ TSDT [33] Pre_ac⁄ Pre_ap⁄

4.5228 4.5239 4.5579 4.5579 4.5580
4.9568 4.9580 4.9922 4.9922 4.9922
6.0756 6.0770 6.1126 6.1126 6.1127
7.5817 7.5836 7.6224 7.6224 7.6224
9.2887 9.2910 9.3344 9.3344 9.3345
11.1042 11.1070 11.1560 11.1560 11.1561

lem (Eq. (45)), while Pre_ap represents approximate results obtained from Eq. (44).



Fig. 3. Effects of the power law index and materials length scale parameter to thickness ratio on the critical buckling load of FG plate.

Fig. 2. Effects of the power law index and materials length scale parameter to thickness ratio on the static deflection of FG plate.
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4. Numerical results and discussion

4.1. Verification studies

In order to verify the correctness and accuracy of the developed
theory, results of FG microplates predicted by the model are com-
pared with those reported in the literatures. Firstly consider a sim-
ply supported FG microplate with the following material
properties [32]:

E1 ¼ 14:4 GPa; q1 ¼ 12:2� 103 kg=m3; E2 ¼ 1:44 GPa;

q2 ¼ 1:22� 103 kg=m3; m ¼ 0:38; h ¼ 17:6� 10�6 m;

q0 ¼ 1:0 N=m

The natural frequency is transformed to dimensionless form by

using �x ¼ x a2

h

ffiffiffiffi
q1
E1

q
. Table 1 lists the dimensionless fundamental

natural frequencies for plates with various values of length-to-
thickness ratio a=h, materials length scale parameter to thickness
ratio l=h and power law index p. The calculated frequencies based
on the developed theory are compared with those reported by
Thai and Choi [32] based on Mindlin plate theory (MPT). It can be
seen that for plates with relatively large a=hða=h P 20Þ, relatively
small pðp 6 1Þ and no scale effects, the two theories predict almost
the same results. The difference between the frequencies predicted
by the two theories respectively increases with the decrease of a=h,
because the developed theory captures the shear deformation more
accurately than the MPT without using a shear correction factor.
Due to the same reason, the difference also increases with the
increase of l=h and p.

The developed theory is also compared with the Reddy’s third
order shear deformation theory (TSDT) with size effects taken into
account. Consider a simply supported FG microplate made of alu-
minum (as material 2) and alumina (as material 1) with the follow-
ing material properties [33]:

E1 ¼ 380 GPa; q1 ¼ 3800 kg=m3; E2 ¼ 70 GPa;

q2 ¼ 2702 kg=m3; m ¼ 0:3; h ¼ 17:6� 10�6 m; q0 ¼ 1:0 N=m



Fig. 4. Effects of the power law index and materials length scale parameter to thickness ratio on the fundamental natural frequency of FG plate.

Table 4
Dimensionless deflection of a simply supported plate.

l/h a/h =5 a/h =10 a/h =20

p = 0 p = 1 p = 10 p = 0 p = 1 p = 10 p = 0 p = 1 p = 10

0 0.3304 0.7384 1.8308 0.2803 0.6472 1.4487 0.2677 0.6243 1.3527
0.2 0.2808 0.6074 1.5069 0.2424 0.5403 1.2505 0.2326 0.5233 1.1850
0.4 0.1937 0.3965 1.0050 0.1725 0.3613 0.8946 0.1670 0.3522 0.8659
0.6 0.1278 0.2512 0.6579 0.1165 0.2328 0.6111 0.1136 0.2280 0.5989
0.8 0.0866 0.1660 0.4470 0.0802 0.1554 0.4245 0.0785 0.1526 0.4186
1 0.0613 0.1156 0.3176 0.0572 0.1089 0.3051 0.0562 0.1071 0.3019

Table 5
Dimensionless critical buckling load of a simply supported plate.

l/h a/h =5 a/h =10 a/h =20

p = 0 p = 1 p = 10 p = 0 p = 1 p = 10 p = 0 p = 1 p = 10

0 15.3322 6.8611 2.7672 18.0754 7.8276 3.4969 18.9243 8.1142 3.7450
0.2 18.0422 8.3399 3.3619 20.9025 9.3767 4.0513 21.7771 9.6815 4.2752
0.4 26.1539 12.7754 5.0407 29.3735 14.0232 5.6631 30.3324 14.3832 5.8505
0.6 39.6393 20.1658 7.7001 43.4732 21.7657 8.2906 44.5855 22.2188 8.4589
0.8 58.4862 30.5105 11.3322 63.1958 32.6036 11.9349 64.5348 33.1882 12.1011
1 82.6938 43.8094 15.9522 88.5416 46.5372 16.6033 90.1804 47.2914 16.7793
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For convenience, the following dimensionless forms are used:

�w ¼ 10E1h3

q0a4 w
a
2
;
b
2

� �
; �x ¼ x

a2

h

ffiffiffiffiffiffi
q1

E1

r
For bending analysis, a plate subjected to a sinusoidally distributed
load is considered. The closed-form solution can be obtained from
Eq. (42). Table 2 lists the dimensionless deflection of plates with
various a=h and l=h and constant power law index (p ¼ 1Þ. It can
be seen that the developed theory predicts almost the same results
with those predicted by the TSDT. Thus the accuracy is comparable
with that of the TSDT. The same conclusion can also be arrived by
comparing fundamental natural frequencies predicted by the devel-
oped theory with those predicted by the TSDT as listed in Table 3.
The results listed in the table also show that even when a=h is rel-
atively small and l=h is relatively large, approximate values
obtained from Eq. (44) match well the accurate results.
4.2. Parameter studies

Consider again the simply supported FG microplate with the
following material properties:

E1 ¼ 14:4 GPa; q1 ¼ 12:2� 103 kg=m3; E2 ¼ 1:44 GPa;

q2 ¼ 1:22� 103 kg=m3; m ¼ 0:38; h ¼ 17:6� 10�6 m;

q0 ¼ 1:0 N=m

Parameter studies are presented to investigate the influences of the
power law index and material length scale parameter on bending,
buckling and free vibration response of the FG microplate. For con-
venience, the following dimensionless forms are also used:

�w ¼ 100E2h3

q0a4 w
a
2
;
b
2

� �
; N ¼ Na2

E2h3 ; �x ¼ x
a2

h

ffiffiffiffiffiffi
q1

E1

r
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As stated by Thai [32], the bifurcation-type of buckling of FG plate
with simply supported boundary conditions under in-plane
compressive loads will not occur due to the coupling between the
in-plane and transverse displacements of the FG plate. For mov-
able-edge plate, the bifurcation-type buckling occurs only when
the in-plane loads are applied on the neutral surface. Therefore, in
the buckling analysis, the in-plane compressive loads are assumed
to be applied on the neutral surface. In this paper, only biaxial buck-
ling problems are considered (c1 ¼ c2 ¼ 1Þ.

The effects of the power law index and the material length scale
parameter on the dimensionless deflection, buckling load, and nat-
ural frequency are presented in Figs. 2–4. It can be seen that the
deflection decreases with the increase of l/h, while the critical
buckling load and fundamental natural frequency increase. This
is because the stiffness of the plate increases with the increase of
l/h. Moreover, these figures demonstrate that the power law index
also has significant effects on the bending, buckling and free vibra-
tion behavior. It should be noted that the natural frequency of the
plate does not change monotonically with the increase of the
power law index. The calculated results for dimensionless deflec-
tion and critical buckling load of a simply supported FG plate are
also given in Tables 4 and 5.

5. Conclusion

A new size-dependent model for bending, buckling and free
vibration of functionally graded microplate is developed by using
the modified couple stress theory and Hamilton’s principle. The
model uses a four variable refined plate theory to characterize
the transverse shear deformation and a material length scale
parameter to capture the size effects. The refined plate theory
has strong similarity with classical plate theory in many aspects
and predicts parabolic variation of transverse shear stresses
through the thickness of the plate without using a shear correction
factor. Closed-form solutions for the bending, buckling and free
vibration of functionally graded microplate with simply supported
boundary conditions are obtained. Numerical results are also pre-
sented and compared with results from size-dependent first order
and third order shear deformation theories. The results demon-
strate that the new size-dependent model has comparable accu-
racy with that based on the third order shear deformation
theory. Thus the new model can be easily used to analyze mechan-
ical responses of functionally graded microplates due to its sim-
plicity and high accuracy, and it should also be extended to the
case of functionally graded microshells.
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