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Infrared image segmentation is a challenging topic since infrared images are characterized by high noise, low
contrast, and weak edges. Active contour models, especially gradient vector flow (GVF), have better segmentation
performance for clear images. However, the GVF model has the drawbacks of sensitivity to noise and adaptability
of the parameters, decreasing the effect of infrared image segmentation significantly. To address these problems,
this paper proposes a guide filter-based gradient vector flow module for infrared image segmentation (GFGVF).
First, a guide filter is exploited to construct a novel edge map, providing characteristics of the image edge while
excluding the effects of noise. This alleviates the possibility of edge leakage caused by using the traditional edge
map. Then, a novel weighting function is constructed to effectively handle the extended capture range and pre-
serving the edge even with noise existing. The experimental results demonstrate that the GFGVF model possesses
good properties such as large capture range, concavity convergence, noise robustness, and alleviative boundary
leakage. © 2015 Optical Society of America

OCIS codes: (100.2960) Image analysis; (100.3008) Image recognition, algorithms and filters; (100.5010) Pattern recognition.
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1. INTRODUCTION

Target segmentation is very important in infrared image analy-
sis and target detection. Therefore, the research on effective
segmentation of infrared images has attracted many scholars’
attention. Although many impressive efforts have been devoted
to infrared image segmentation, it remains a challenging prob-
lem mainly because of the intrinsic attributes of infrared
images. The existing methods [1–6] include morphological
operations [1–3], the wavelet transform [4], and the active
contour model [5,6].

The active contour model based on curve evolution theory is
widely used in image segmentation and has proved to be an
effective method. In the segmentation processing, curve evolu-
tion is driven by a combination of internal forces and external
forces, and it stops on the target boundary of the image by min-
imizing the energy function. Active contours can also be used in
target tracking [7,8] and shape recovery [9].

Typically, active contour models are divided into two
categories: parametric active contour models [5,10–12] and
geometric active contour models [13–17]. We focus on para-
metric active contours for infrared image segmentation in this
paper. By making some changes, our method can also be ex-
tended to geometric active contour models. The energy func-
tion is composed of internal forces and external forces. In image

segmentation, the role of an external force is to make the curve
move toward the target edge. A lot of work [10,18–25] has
been done in constructing the external force, such as balloons
[18], distance potential force [19], gradient vector flow (GVF)
[10] including its generalization (GGVF) [11] and improve-
ment [20–25]. Among all these external forces, GVF has
proved to be the most effective. But there exist some disadvan-
tages such as noise sensitivity and adaptability of parameters,
which will be elaborately analyzed in Section 2.B. Although
improved methods based on GVF [18–25] have reduced noise
sensitivity in some aspects, they cannot be used to handle the
featuring noisy boundary points along with noisy edges appro-
priately. Because the GVF method is based on the gradient of
the image, the edge map plays an important role in constructing
the external forces; how to obtain the ideal edge map becomes
an urgent problem. The guide filter [26], introduced by He in
2013, has good edge-preserving smoothing properties with its
behavior near edges. In this paper, the guider filter is exploited
in infrared image segmentation.

In light of the above analysis, this paper provides a novel
external force based on GVF but better than it. The main
contributions consist of the following aspects:

(1) A novel static external force is proposed. It can not only
accurately segment the infrared images but also be used for
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other types of images such as noisy medical images and visible
images.

(2) A novel edge map is constructed by incorporating the
guide filter. It can extract the detailed information of the edge
from the infrared image with high noise, low contrast, and weak
edges. This alleviates the possibility of edge leakage caused by
using the traditional edge map.

(3) Choosing appropriate weighting functions is crucial in
achieving the goal of extending the capture range while preserv-
ing object boundaries. An alternative weighting function is
constructed to achieve a precise balance between extending the
capture range and preserving the edge.

The remainder of this paper is arranged as follows. In
Section 2, we review the classical parametric active contour
and discuss the advantages and disadvantages of existing mod-
els. The proposed algorithm is introduced in Section 3. In
Section 4, some properties of the algorithm are provided.
Finally, we conclude this paper in Section 5.

2. BACKGROUND

The classic partial differential model for image segmentation
is the snake model introduced by Kass [5]. The curve of
c�q� � �x�q�; y�q��; q ∈ �0;1� evolves to the boundary of the
target when the following energy model is minimized:

E�c�q�� � 1

2

Z
1

0
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; (1)

where α, β are weighting parameters. The first item is the in-
ternal energy, and it is determined by the geometry of the curve
itself. This item is used to constrain curve smoothness and
tightness. The second item is an external energy term, and
it contains the date information of image. So it can induce
the evolution of the curve to the target boundary.

A. Gradient Vector Flow as the External Force Field
There exists an evident drawback of the snake model. The ini-
tial curve should be very close to the object border in order to
ensure that the curve locates within the capture range of the
external force field. An explanation of this phenomenon is that
an external force field based on the gradient can exist only in the
region close to the object boundary. Xu and Prince proposed

GVF [10] as the external force field, which largely improved the
deficiencies of the snake model. The gradient vector flow,
defined as V �x; y� � �u�x; y�; v�x; y��, can be obtained from
the following dynamic evolution equation:

V t�x; y; t� � μ∇2V �x; y; t� − j∇f j2�V �x; y; t� − ∇f �; (2)

where V t�x; y; t� is the partial derivative of V �x; y; t�, ∇2 is the
Laplace operator expressed as ∇2 � ∂2∕∂x2 � ∂2∕∂y2, μ is a
coefficient to control the smoothness of GVF external force
field, f is the edge map related to the input image of I�x; y�,
and ∇f is the gradient of the edge map f . The parameter μ is
used to adjust the weight of the first item, and its value is de-
termined by the smoothness of the image. Particular advantages
of the GVF snake over the traditional snake are that it expands
the capture range of the initial curve, and it possesses the ability
of capturing the regions of very high curvature.

B. Analysis of GVF Active Contour Model
Although the GVF active contour model has some desired con-
ditions, there also exist some drawbacks.

(a) Noise sensitivity: f is typically defined as the edge map of
the image. Figure 1(a) is a reconstructed image curve with dop-
ing noise. The edge map f featuring noisy boundary points
along with noisy edges is shown in Fig. 1(c). Even when the ini-
tial curve is close to the border of target, it cannot converge cor-
rectly. This example demonstrates that due to the use of the edge
map information, the GVF method is sensitive to the noise.

As mentioned above, the edge map is a crucial factor in im-
age segmentation. Cheng and Foo [20] proposed a dynamic
directional GVF (DDGVF) algorithm by using the gradient
directional information for calculating the edge map. Tang [21]
extended the DDGVF flow to a multidirection GVF by com-
puting the directional gradient for each pixel with a varying
direction. Kovacs and Sziranyi [22] proposed a Harris based
GVF (HGVF) algorithm by using a new feature map. Our ef-
fort aims to provide an ideal edge map which can characterize
the edge information and is not corrupted by noise.
(b) Lack of adaptability of μ: Another drawback of the GVF
module is that the weighted parameter μ is a constant deter-
mined by the noise in the image. Its value is proportional to
the size of the noise. However, if μ takes an inappropriate value,
such as being too large, the evolution curve will pass through
the weaker edge and cause erroneous segmentation results. In
contrast, if μ is too small, the obtained external force field will
preserve excessive noise. Xu and Prince [11] introduced the
generalized GGVF active contour model to overcome the draw-
back of the original GVF. In their method, the constant

Fig. 1. (a) Image with noise, (b) location of the initial curve, (c) edge map of (a), and (d) segment result.
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weighting coefficients are replaced by two spatially varying
weighting function related to the edge map. However, the re-
lationship between the extended capture ranges and the pre-
served edges cannot be well handled when there exists noise
in the image. The capture range of GVF or GGVF is deter-
mined by the smoothness parameter. The larger the smoothness
parameter, the greater the capture range is. To achieve accurate
segmentation in different images, different values of the
smoothness parameter have to be taken. If an improper value
is chosen, the segmentation results will be unsatisfactory. As
shown in Fig. 2(a), we construct a noisy image to validate
the GGVF active contour model in noisy image segmentation.
The weighting function related to the smoothness parameter is
determined by the edge map, which is damaged by the noise as
shown in Fig. 2(c). The initial curve is defined as shown in
Fig. 2(b), with the left of the initial curve located farther away
from the target boundary, and the right of the initial curve lo-
cated closer to the target boundary. It can be seen from Fig. 2(d)
that the curve closer to the edge of the target could almost stop
on the target boundary. However, the curve stops in the error
region when it is far away from the target edge. This illustrates
that the GGVF active contour model does not have a large cap-
ture range in the case of noisy images. Our effort is to construct
a new alternative weighting function to overcome the above
problems and to ensure the capture range of our algorithm
in dealing with the infrared image.

3. PROPOSED ALGORITHM

A. Novel Edge Map
The calculation of the external force can be divided into two
independent steps: the construction of the edge map and the
computation of the external force. As mentioned in Section 2,
the original edge map is more easily affected by noise, and this
brings some disadvantages in the infrared image segmentation.
Since the quality of the edge map is a critical factor in snake
performance, it is urgent to obtain a desirable edge map. In this
section, we propose a new edge map to guide the curve
evolution. The new edge map is defined as

e�x; y� � ∇jW xy × P�x; y�j; (3)

where∇ is the gradient operator, P�x; y� is the input image, and
W xy represents the ideal kernel weight. The common method
is to define W xy � Gσ�x; y�, and Gσ�x; y� is the Gaussian ker-
nel. From Fig. 3(b), it can be clearly seen that a blurred edge
occurs when using the Gaussian kernel to make convolution
with the input image, despite the fact that noise can be removed
to a certain extent. In the infrared image segmentation, this will
increase the negative impact brought about by the weak edge

and incurs boundary leakage, which is shown in Fig. 3(c). A
bilateral filter, proposed in [27], is effective in filtering out
noise. If W xy takes the bilateral filter kernel, the segmentation
result is listed in Fig. 3. By observing Fig. 3(d), the noise in the
image is removed after bilateral filtering. However, this also in-
troduces gradient reversal artifacts in the boundary, which are
detailed in Section 3.A.2. In the segmentation process, the
curve does not stop precisely at the edge of the target.

1. Guide Filter
An ideal image edge map should not only provide the distri-
bution of interesting feature but also weaken the impact of
the small-scale texture information and noise. However, it is
a dilemma to suppress noise and preserve weak edges simulta-
neously. To overcome the inconvenience brought by the edge
map, this paper adopts the guide filter mentioned in [26] to get
an ideal edge map.

The model is defined as

qi � akI i � bk; i ∈ wk; (4)

where ak and bk are the coefficients in the window wk centered
at the pixel k. In Eq. (4), a predetermined image I and the
input image p are used to determine the required output image
q. From Eq. (4), we can obtain ∇q � ∇I , and this guarantees
that q has an edge only if I has an edge. The output image can
also be modeled as

qi � pi � ni; (5)

where ni represents the undesired components such as noise or
intensity inhomogeneity. To minimizes the difference between
output image q and input image p, we minimize the following
function, combining Eq. (4) with Eq. (5):

Fig. 2. (a) Image with noise, (b) location of the initial curve, (c) edge map of (a), and (d) segment result.

Fig. 3. (a) Original infrared image, (b) image after Gaussian filter,
(c) segment result, (d) image after bilateral filter, and (e) segment
result.
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E�ak; bk� �
X
i∈wk

��akI i � bk − pi�2 � λa2k�; (6)

where λ is a variance adjustment parameter used to prevent the
value of ak from being too large. By solving the linear regression
equation (6), we have

ak �
1
jwj

P
i∈wk

I ipi − μkp̄k

σ2k � λ
; (7)

bk � p̄k − akμk; (8)

where μk and σ2k are the mean and variance of I in the window
wk, respectively, and jwj is the number of pixels in wk. p̄k is the
mean of all pixels in wk, expressed as p̄k � 1

jwj
P

i∈wk
pi . The

value of qi in function (4) is not identical when it is computed
in different windows; the average method can be used to strike
the value of the output image. After obtaining the coefficients
of ak and bk, the output filtering image can be computed by

qi �
1

jwj
X
kji∈wk

�akI i � bk� � āiI i � b̄i : (9)

Here, āi � 1
jwj

P
i∈wk

ai and b̄i � 1
jwj

P
i∈wk

bi are the average
coefficients of all windows overlapping pixel i. According to
the revised Eq. (9), the coefficients �āi ; b̄i� vary spatially, which
causes ∇q being no longer scale with ∇I . Since �āi ; b̄i� are the
average coefficients, their gradients can be expected to be much
smaller than that of I near strong edges. In this situation we can
have ∇q ≈ ā∇I . This means the abrupt change of the intensity
in I will be almost unchanged in the output image of q. From
functions (7) and (8), we can see that ak and bk can be written
as the weighted average of p, expressed as

ak �
X
j

Akj�I�pi; (10)

bk �
X
j

Bkj�I�pi: (11)

qk �
P

jW kj�I�pi can be obtained from formula (11), and the
filtering kernel weight is explicitly expressed as

W ij�I� �
1

jwj2
X

k:�i;j�∈wk

1� �I i − μk��I j − μk�
σ2 � λ

: (12)

2. Guide Filter-based Edge Map
In this section, we introduce the novel edge map to overcome
the above-mentioned drawback of GVF and GGVF. Let the
novel edge map be expressed as

e�x; y� � ∇jW xy�I�x; y�� × P�x; y�j: (13)

P�x; y� represents the input image, and I�x; y� is the guided
image. In order to obtain satisfactory filtering results, the guid-
ance I�x; y� is identical to the input P�x; y� in our method by
referring to [26]. Figure 4 shows the comparison of edge maps
obtained from different approaches. In Fig. 4(c), the gradient
edge map of the original image is affected by noise and cannot
provide effective image data for guiding curve evolution. We
can see from Fig. 4(d) that the brightness unevenness in the
local region and the noise are removed to a great extent.

Figure 4(e) provides the filtered effect in a more intuitive
way. More importantly, the edge map of the image obtained
from function (13) is well retained and barely weakened as
shown in Fig. 4(f ), which is always critical in the segmentation
of an infrared image containing a weak edge. By using the pro-
posed edge map, we can eliminate the false boundary caused by
the noise and preserve the weak edge well. This is critical in the
method based on the GVF, which is analyzed in Section 2.B,
because the edge map plays a guiding role in the process of
curve evolution. The guide filter-based edge map can provide
the edge information of the infrared image and avoid being af-
fected by noise. This avoids the incorrect segmentation results
caused by noise and oversegmentation due to the weak edge. If
a bilateral filter is used as shown in Figs. 4(g)–4(i), the edge of
the image is destroyed even if the noise is removed. As Fig. 4(i)
illustrates, there exist gradient reversal artifacts near the edge
which cause inaccurate or erroneous segmentation.

B. Weighting Function-based Energy Function
The external field is defined as a vector field V �x; y� �
�u�x; y�; v�x; y�� by minimizing the following energy function:

E�V � �
ZZ

g�x; y� × j∇V j2dxdy � h�x; y� × jV − ∇ej2dxdy;

(14)

where g�x; y� and h�x; y� are the weighted functions. The first
item, working in the homogenization region away from edge
regions, has an isotropic smoothing effect on the fields and

Fig. 4. (a) Original image with greater noise, (b) three-dimensional
gray-scale image corresponding to (a), (c) edge map of (a), (d) guide
filtered image, (e) three-dimensional gray-scale image of (d), (f ) new
edge map of (d), (g) bilateral filtered image, (h) three-dimensional
gray-scale image of (g), and (i) new edge map of (g).
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is called a smoothing energy item. The second item, working in
the edge region, is called an edge energy item, forcing the vector
field V �x; y� � ∇e. The first term guarantees the curve has an
extended capture range, and the second term preserves the edge
of the object. So it is crucial to select the appropriate weighting
functions. The weighting function is defined as follows:

g�x; y� � ϕ�e�h�x; y� � 1 − g�x; y�; (15)

where φ�e� is the function related to the edge map e. In the
homogeneous regions, we hope g�x; y� � 1 and h�x; y� � 0,
so the first smoothing item will play a main role and the vector
field will be slowly varying (or smooth) at locations far from
the edges. In the edge regions, we desire g�x; y� � 0 and
h�x; y� � 1. In this way, the smoothing term almost does no
work, avoiding a smoothing effect on the edge. Meanwhile, the
second term plays a major role, achieving the goal of preserving
the edge of the target. In the regions between edge and homo-
geneous regions, called transition regions, the values of g�x; y�
and h�x; y� are changed between 0 and 1, which induces the
vector field to continuously extend from the edge regions to
the homogeneous regions. Overall, by selecting the appropriate
weighting coefficients, the method could extend the capture
ranges while preserving edges.

Because the weighting function is related to the edge map, it
is crucial to provide good edge localization unaffected by some
unfavorable factors such as noise. Therefore, the weighting
function is defined to be relevant with the novel edge map
of e. There many ways to define the weight function, and
in this paper the function is expressed as

h�x; y� �
8<
:

1; jej ≥ τ

− e3
8τ3 � 5e

8τ � 1
2 ; 0 < jej < τ

0; jej � 0

;

g�x; y� � 1 − h�x; y�; (16)

In Eq. (16), the edge function e is normalized to the range from
0 to 1, and τ is a positive number. Our weight function is differ-
ent from GGVF, whose weight function is related to the gra-
dient of the edge map, and the proposed function is based on
the edge map itself.

C. Numerical Implementation
Now, the vector field can be acquired by minimizing
Eq. (14). According to the variable differential method, the
Euler–Lagrange functional of the energy function E�V � is
expressed as

g∇2V − h�V − ∇e� � 0. (17)

In order to obtain the vector field V in Eq. (17), we introduce a
virtual variable t and establish the following partial differential
equation (PDE):

∂V
∂t

� g∇2V − h�V − ∇e�: (18)

The above function can be solved by finding the equilibrium
solution of the following PDEs:�

ut � g∇2u − h�u − ex�; ex � ∂e
∂x

vt � g∇2v − h�v − ey�; ey � ∂e
∂y
: �19�

By using the finite difference scheme to iterate the above PDEs,
the numerical solution of function (18) can be written as

V �x; y; t � Δt� � �1 − bΔt�V �x; y; t� � r�V �x � 1; y; t�
� �V �x − 1; y; t�� � �V �x; y � 1; t��
� �V �x; y − 1; t�� − 4�V �x; y; t��� � Δtc

(20)

By making
n b � h
c � b∇e , Eq. (20) can be expressed as

V �x; y; t � Δt� � �1 − hΔt�V �x; y; t� � r�V �x � 1; y; t�
� �V �x − 1; y; t�� � �V �x; y � 1; t��
� �V �x; y − 1; t�� − 4�V �x; y; t��� � Δth∇e:

(21)

In order to ensure the stability of the iterative algorithm, we
need to define a finite difference grid ratio as r � g∇t

Δx2 ≤
1
4 .

The computational complexity of the proposed active con-
tour is mainly determined by two factors: the computation of
the external force field and the front propagation of the active
contour. Both the generation of the external force field and the
propagation of the contour front are iterative processes. Unlike
the GGVF model, in the iterative processes, the edge map is
constructed with the guide filter kernel function instead of
the Gaussian kernel. In calculating the guide filter kernel func-
tion, five addition/subtraction operations and one division op-
eration are utilized per pixel, and the computational complexity
of the novel edge map is O�N �, whereas the computational
complexity of the edge map by using a Gaussian filter is O�N 2�
and O�N 2� > O�N �. Meanwhile, in calculation of the weight-
ing function, the new edge function is used directly in our
method. Compared to GGVF, which uses the gradient of
the edge map to construct the weighting function, our ap-
proach reduces the computational complexity to a great extent.

4. RESULTS AND ANALYSIS

In order to better filter out noise and retain the weak edge of the
image, it is important to select the appropriate window param-
eter jwj and variance adjustment parameter λ in function (12).
In the homogeneous area, the filter results are better with a
larger window parameter jwj. In heterogeneous areas, a larger
window brings unfavorable filter results. Simultaneously, λ is a
regularization parameter penalizing large ak. The local areas
with variance σ2k much smaller than λ are smoothed, whereas
those with variance much larger than λ are preserved. It deter-
mines whether the local area is an edge or a high variance patch
that should be preserved. It is necessary to choose a reasonable
jwj and λ. In order to filter noise and retain the edge of an
infrared image, we choose jwj � 4 and λ � 0.04 in this paper.
The specification of τ determines, to some extent, the degree of
trade-off between field smoothness and gradient conformity,
which is set to 0.1 in all of our experiments.

To demonstrate the effectiveness of the algorithm, we list a
few properties of the proposed algorithm. The GVF field is an
external force derived from the image edge, but it has a larger
scope compared with the traditional snake module. The scope
of the GVF field is not limited to the image edge adjacent area,
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and it can capture the entire area of the image. For this reason,
we will compare our algorithm with the GVF snake module
and some improved algorithms based on GVF.

A. Capture Range, Convergence to Concavity, and
Initialization Insensitivity
In the experiments, the U-shape image is used to prove the ef-
fectiveness of our algorithm. The contour line of our proposed
model moves from a farther position to the target boundary; the
movement process is shown in Fig. 5(b). Finally, the contour line
succeeds in fitting object boundaries, which proves that the
proposed method has the property of concavity convergence.
As shown in Fig. 5(c), the effective force field of our model is
distributed throughout the image area. In order to test and
verify the initialization sensitivity of our algorithm, the initial

curves are placed at different positions as shown in Figs. 6(a)
and 6(b). Even if the position of the initial curve keeps away
from the target boundary or crosses through the target boundary,
our model can obtain accurate segmentation results.

B. Preventing Weak Edge Leakage
Figure 7 illustrates the effectiveness of the modified edge map
for image segmentation. Figure 7(a) is an infrared image. In this
part, we use it for weak edge leakage analysis. In calculating the
feature map, the HGVF active contour model uses a Gaussian
convolution to avoid the influence of noise on the segmenta-
tion processing, and typically the boundary noise is filtered.
As mentioned in Section 3.A, this method weakens the weak
edges as well, making it more difficult to segment exactly.
Figures 7(c)–7(e) clearly illustrate this phenomenon. Because
the weak edge is weakened further, which is detrimental to
the segmentation processing, the infrared image segment result
appears with weak edge leakage as shown in Fig. 7(d). By
adopting our method, the edge of the image can almost be pre-
served while noise is filtered out, as shown in Fig. 7(c). In the
process of segmentation, the calculation of external force and
the evolution of the curve are both related to the edge map. An
ideal edge map without noise and weakened object boundaries
is helpful to accurately obtain the segmentation result. We can
observe from Fig. 7(g) that the guide filter-based edge map can
characterize the boundary property of Fig. 7(a) without noise.
Under such conditions, the weighting function is not affected
by the noise and also avoids the boundary leakage caused by the
weak edge as shown in Figs. 7(h) and 7(i).

Fig. 5. (a) U-shape image, (b) evolution of the curve, (c) force field of (a), and (d) segment result.

Fig. 6. (a) Evolution of curve and (b) evolution of curve.

Fig. 7. (a) Original image with weak edge and containing noise, (b) image after Gaussian filter, (c) Gaussian filter-based edge map, (d) HGVF
result with λ � 0.1 and ρ � 0.01, (e) partial vector field of (d), (f ) image after guide filter, (g) guide filter-based edge map, (h) proposed method, and
(i) partial vector field of (h).
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C. Noise Sensitivity
In order to test the noise sensitivity of the proposed algorithm,
different types of noises are added to the U-shaped image as
shown in Figs. 8(a)–8(c). The boundaries of the images are cor-
rupted by noise, and the edge map obtained from the original
image gradients are also affected by the noise. By using the pro-
posed edge map, the adverse impact of noise on boundary and
smoothness parameters can be avoided. From Fig. 8, we ob-
serve that the evolution curve can stop on the target boundary
without being affected by noise. In order to prove the robust-
ness of our algorithm further, we enumerate another experi-
mental result.

Figures 9(a)–9(d) list the segmentation results of an infrared
aircraft image at different noise levels. It can be seen from the
first line of Fig. 9 that the evolution curves can converge on the
aircraft boundary for all cases when the image contains a lower
percentage of noise, with a higher segmentation accuracy ac-
quired by our algorithm. When the proportion of the noise
contained in the image increases, as shown in the second line
of Fig. 9, the segmentation accuracy is reduced using the nor-
mal direction gradient vector flow (NGVF) method. This is

because the NGVF active contour model only adopts the nor-
mal direction of diffusion, which cannot stop at weak edges. By
using NGVF, the evolution curve passes through the weak edge
and converges inside the target. As the noise increases to some
extent (as shown in the third line of Fig. 9), GGVF, DDGVF,
and NDVF active contour models have erroneous segmenta-
tion results. From Fig. 9, we verify that the proposed algorithm
is superior to other methods for the segmentation of noisy in-
frared images.

We demonstrate the above procedure by the following ex-
periment shown in Fig. 10. Figures 10(a)–10(d) show other
segmentation results of the infrared images with large noise
by different active contour models. It is clear to see the differ-
ence of segmentation results of these four modules as dealing
with the target edge corrupted by noise. In the edge map cal-
culation process, GGVF uses a Gaussian kernel to make con-
volution with the edge gradient, which weakens the edge. This
is detrimental, causing oversegmentation or erroneous splitting.
Both of NGVF and DDGVF modules do not work in the case
of a noisy boundary, leading to an erroneous result. The
segmentation result of our method as shown in Fig. 10(d) is
obviously more accurate than that of the GGVF, DDGVF,
and NGVF. The time consumption of different algorithms
when dealing with Fig. 9 and Fig. 10 are listed in Table 1.

D. Segmentation of Other Types of Image
In order to verify the robustness of our algorithm, we segment
other types of image not limited to the infrared images.
Figure 11 is a medical image with noise, uneven gray distribu-
tion, and weak edges. Both of the GGVF and NGVF create
erroneous segmentation results. From Fig. 11(c), we observe
that the proposed algorithm can effectively deal with such

Fig. 8. (a) Image with salt-and-pepper noise, (b) image with speckle
noise, and (c) image with Gaussian noise.

Fig. 9. (a) GGVF, (b) DDGVF with μ � 0.1 and σ � 1, (c) NGVF with μ � 0.1, and (d) proposed method.
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medical images and get satisfactory results. In Fig. 12, other
types of images are chosen to exemplify the effectiveness of
our active contour model.

5. CONCLUSION

In this paper, a guide filter-based GVF module for infrared im-
age segmentation has been introduced. By incorporating the
guide filter, a novel edge map is constructed to extract the de-
tailed information of the edge from the infrared image with
high noise, low contrast, and weak edges. In addition, we re-
defined the weighting function. It can effectively handle the
relationship between the extended capture range and preserved
edge when noise exists. Through the experimental section,
several promising properties of our algorithm have been

Table 1. Time Consumption of Different Algorithms

Image Size GGVF DDGVF NGVF Proposed Method

Fig. 9 line 1 220 × 120 1.890 s 2.850 s 1.159 s 1.402 s
Fig. 9 line 2 220 × 120 1.786 s 2.518 s 1.093 s 1.512 s
Fig. 9 line 3 220 × 120 1.760 s 1.742 s 1.569 s 1.720 s
Fig. 10 line 1 256 × 256 4.195 s 3.034 s 3.054 s 2.916 s
Fig. 10 line 2 320 × 320 9.648 s 12.752 s 6.432 s 7.146 s

Fig. 10. (a) GGVF, (b) DDGVF with μ � 0.1 and σ � 1, (c) NGVF with μ � 0.1, and (d) proposed method.

Fig. 11. (a) GGVF, (b) NGVF, and (c) proposed method.

Fig. 12. More results using the proposed method.
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demonstrated, such as large capture range, concavity conver-
gence, and noise robustness. The proposed algorithm can de-
tect and preserve the locations of edges precisely, avoiding noise
interference. It can not only accurately segment the infrared
images but also be easily adapted to other types of images.
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