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The simplified compliance matrix for right elliptical hinges is presented in this paper by nonlinear
curve fitting on the basis of the equations derived by Chen et al. [Rev. Sci. Instrum. 79, 095103
(2008)]. The equations of the rotation stiffness are then confirmed by comparison with results
from finite element analysis and experimental measurements. Percentage errors between theoretical
predictions and results from both the finite element analysis and experimental testing are within
5% for a range of geometries with the ratio s (b/t) between 1 and 14. The geometric parameter
optimization for the purposes of maximizing the rotation stiffness for one universal hinge is utilized to
illustrate the application of the simplified equations. The theoretical predictions are in good agreement
with both the result of simulation and experiment for the universal hinge: the error between them is
within 6.5%. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4936212]

I. INTRODUCTION

In planar-compliant mechanisms, flexure hinges are
beam-like cutout portions, which deform under loading by
the elastic characteristic of the matter and it can allow mo-
tion transmission between the rigid members attached by
the flexure hinges. In general, the flexure hinges play the
role of revolute pairs as the function of bearings. Comparing
to the conventional joints, it has several advantages, such
as: zero friction and backlash, high resolution, compact, no
need of assembly, easy to fabricate by the available high-
precision production technologies such as precision mill-
ing, electro-discharge machining (EDM), lithography-based
micro-manufacturing technologies, etc, and the resulting
monolithic devices reaction to unforeseen external impact.
Compliant mechanisms with flexure hinges are widely used
in robotics, high-accuracy alignment devices for optical fi-
bers, piezo-flexural positioning stages, and nanopositioning
stages where high precision1–4 is required in a relatively small
range.

The single-axis flexure hinge may be divided into two
broad categories: leaf hinges and notch hinges. The notch
hinges can be altered through their geometric configuration
by using various curves to define the in-plane thickness of the
hinges. So notch hinges can be divided into different kinds:
circular hinges, elliptical hinges, parabolic hinges, hyperbolic
hinges, Bézier curve hinges, hybrid hinges, etc.

As the critical parts of compliant mechanisms, flexure
hinges have been designed and researched in previous works.
In 1965, the circular flexure hinges were introduced by Paros
and Weisbord5 who presented both the exact and simpli-
fied design equations for calculating the compliances of the
circular flexure hinges according to Euler-bernoulli beam
model. In 2002, Wu and Zhou6 deduced more concise and
exact equations than those of Paros and Weisbord for the

circular flexure hinges. In 2001, Lobontiu et al.7 studied right
circularly corner-filleted flexure hinges, while compliance of
parabolic and hyperbolic hinges is given in 2002.8 In 2010,
Tian et al.9 presented dimensionless empirical equations and
graph expressions of filleted V-shaped flexure hinges. As for
hybrid flexure hinges: In 2013, Lobontiu et al.10 researched the
right circularly corner-filleted parabolic flexure hinge and in
2014, Lin et al.11 introduced a hybrid flexure hinge composed
of half a hyperbolic flexure hinge and half a corner-filleted
flexure hinge. The hybrid flexure hinges are then compared
with five kinds of common notch flexure hinges (circular,
corner-filleted, elliptical, hyperbolic, and parabolic flexure
hinges) quantitatively based on compliance, precision, compli-
ance precision ratios, and the maximum stress.

Right elliptical hinges, which are intermediate between
circular hinge and leaf type hinge, were first proposed and
studied by Smith et al.12 who presented closed-form equa-
tions for the elliptical flexure hinges based on modification
of the work of Paros and Weisbord in 1997. The accuracy of
the closed form equations are assessed and verified by finite
element analysis (FEA) and experimentation. In 2008, Chen
et al.13 proposed elliptical arc flexure hinges, which brings cir-
cular right-circular and elliptical profiles together and deduced
the compliance matrix by introducing the eccentric angle of
ellipse as the integral variable. In 2011, Chen et al.14 calculated
the stiffness analytically and numerically of the elliptical-arc-
filleted flexure hinges.

The research mentioned above is mostly concentrated on
the calculation of the compliance matrix for different kinds of
flexure hinges. Another main topic about the flexure hinges is
the optimization of the flexure hinges. Chen et al.15 presented
geometrical profile optimization of elliptical flexure hinge
using the modified particle swarm algorithm in 2005. Hwang
et al.16 finished optimal design of a flexure-hinge precision
stage with a lever in 2007. In 2009, Zelenika et al.17 proposed
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an integrated approach to the optimized design of flexural
hinges based on a parametric finite element model, allowing
freeform optimized hinge shape to be obtained.

From the above analysis, we can conclude that the equa-
tions to calculate the stiffness for elliptical hinges are accurate.
Considering the speed and efficiency of the optimization or the
structural design without complex computing tools, however,
they are not concise enough. In this paper, we propose simpli-
fied and accurate equations to calculate the compliant matrix
of the right elliptical hinges by means of nonlinear curve fitting
with Matlab software. By using the simplified equations, we
present the parameters optimization of the elliptical hinge to
maximize the rotation stiffness analytically.

II. NONLINEAR CURVE FITTING

For right elliptical hinge of Fig. 1 (φm = π/2), one end
is fixed, while the other end is free. By defining the force
and moment on the hinge by F = [FX,FY ,FZ,MX,MY ,MZ]
and the corresponding deformations of the hinge by D =

�
δX,

δY , δZ, θX, θY , θZ
�
, so the following relationship can be ob-

tained:

D = ChF, (1)

where Ch is the compliance matrix of the hinge, which can be
expressed by

Ch =

*.......................
,

δX
FX

0 0 0 0 0

0
δY
FY

0 0 0
δY
MZ

0 0
δZ
FZ

0
δZ
MY

0

0 0 0
θX
MX

0 0

0 0
θY
FZ

0
θY
MY

0

0
θZ
FY

0 0 0
θZ
MZ

+///////////////////////
-

. (2)

The approximate compliance matrix was presented by
Chen et al.13 and the most important element of the matrix is
the angular compliance around the flexure axis Z given by

1
Kθz,Mz

=
12a
Ewt3

�
12s2 + 8s + 2

�√
4s + 1 + 12s(2s + 1)2 arctan

√
4s + 1

(4s + 1)5/2 (2s + 1) ,

Assume N2 = f (s) =
�
12s2 + 8s + 2

�√
4s + 1 + 12s(2s + 1)2 arctan

√
4s + 1

(4s + 1)5/2 (2s + 1)
⇒ 1

Kθz,Mz
=

12a f (s)
Ewt3 ,

(3)

where f (s) is a dimensionless stiffness factor, a is the half
length of the major axis, b is the half length of the minor axis,
t is the minimum thickness of the flexure hinge, w is the depth
of the hinges, E is the elastic modulus, s is the dimensionless
factor and s = b/t.

Eq. (3) is accurate for rotation stiffness calculation but not
concise. In order to obtain the simplified equation, we simplify
the dimensionless compliance factor f (s) by nonlinear curve
fitting. The function f (s) was fitted by different models (po-
wer function, exponential, a second-degree polynomial, and a

FIG. 1. (a) Model and (b) profile of elliptical flexure hinge.

third-degree polynomial). The results of the fittings are shown
in Fig. 2. Residuals analysis showed that power function fitting
is better than the other three kinds of fittings and the maximum
residuals are less than 0.05.

The fitting function got by power function fitting is given
by

f ′(s) = msn = 1.122s−0.485. (4)

FIG. 2. The figure of the fitting curve and residuals.
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FIG. 3. Comparison between functions f (s) and f ′′.

This function is not concise enough, so we replace the
coefficients m, n with 1.15, −0.5, so,

f ′′(s) = asb = 1.15s−1/2. (5)

The curves of the function f (s), f ′′(s), residuals, and
percentage error between f (s) and f ′′(s) are plotted in Fig. 3.
The percentage error is larger than 4.2% when the variable s is
less than 2 and the percentage error is within 2.0%, while the
variable s is greater than 3.

In order to reduce percentage error when s is between 0
and 2, we re-fit the function f (s) using a power function with
constant term. The result is shown in Fig. 4. The new fitting
function is given by

f ′′′(s) = MsN + p = −1.2s0.35 + 2.27. (6)

The simplified expression for the rotation stiffness can
be obtained by substituting Eqs. (5) and (6) into Eq. (3),
respectively, yields

K ′θz,Mz =




Ewt3

12a(−1.2s0.35 + 2.27) , 0 < S ≤ 2,

Ewt
5
2 b

1
2

13.8a
, S > 2.

(7)

The seminal work on the elliptical flexure hinges was done
by Smith and co-workers12 in 1997. The full-fledged rotation

FIG. 4. Comparison between functions f (s) and f ′′′(s).

stiffness equation around the elliptical flexure axis is given by

Kθz,Mz−Smith =
2Ebax

2

3ε3 f (ε βx) , (8)

where f (β) = ( 1
2β+β2 )




3 + 4β + 2β2

(1 + β)(2β + β2)

+( 6(1 + β)
(2β + β2)3/2 )tan−1(


2 + β

β
)




. The rela-

tive errors between Eqs. (7) and (8) will be discussed in Sec-
tion IV.

The other simplified equations of the compliance matrix
shown in Eq. (2) are listed below. In these equations, except
for bending produced by forces and moments, axial loading,
shearing, and torsional effect are taken into account,

δX
FX
=

θY
MY

/( 12
w2 ) =

δZ
MY

/(−12a
w2 ) = θY

FZ
/(−12a

w2 ) = a
Ewt

H1,

(9)

δY
FY
=

24a3

Ewt3 H2 − 12a3

Ewt3 H4 +
Ka

Gwb
H1, (10)

δZ
FZ
= ( 24a3

Ew3t
+

Ka
Gwb

)H1 − 12a3

Ew3t
H3, (11)

θX
MX
=

7a
2Gw3t

H1 +
7a

2Gwt3 H2, (12)

H1 =
24
5

s−
3

40 − 3.25, (13)

H2 =



1.15s−1/2 s > 2
−1.2s0.35 + 2.27 s ≤ 2

, (14)

H3 = −2.48s
3

40 + 3.6, (15)

H4 = 1.24s−0.24 − 0.35. (16)

The percentage errors between the simplified functions
H2 and the exact functions N2 are shown in Figs. 3 and 4. The
percentage errors between the simplified functions (H1, H3,
H4) and the exact functions (N1, N3, N4) are plotted in Fig. 5,
respectively. The errors between the simplified equations of
H1, H2, H3, and H4 proposed in this paper and the exact
equations of N1, N2, N3, and N4 presented by Chen et al.13

are less than 4% when the variable s is between 1 and 15,
respectively.

FIG. 5. Percentage error between the exact functions (N1, N3, N4) and the
simplified functions (H1, H3, H4).
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FIG. 6. The finite element model for the right elliptical hinge.

III. VERIFICATION OF THE SIMPLIFIED EQUAIONS

Both finite element analysis and experimental testing have
been used to assess the accuracy of simplified Eq. (7). Before
the finite element simulation, we need to know the accuracy of
stiffness estimates for a notch type hinge.

A. Finite element analysis

Models for the finite element analysis were generated with
the Altair Hyperworks package. In an effort to assess the valid-
ity of Eq. (7), a variety of right elliptical hinge configurations
were assessed. One finite element model is shown in Fig. 6.
The model uses thin shell elements, which owes six degrees
of freedom and consists of 2376 elements. The left end of the
model was fixed and the bending moment is applied in the right
end. The global element size is 1 mm and the local element size
within the notch region is 0.15 mm.

The numerical accuracy of the finite element simulation
is relative to the size, type, and distribution of the elements.
To determine the necessary element size for an acceptable
accuracy, a number of models with the same geometric shape
were studied with different element sizes. The results of the
analysis and the input parameters of the model are summarized
in Table I. It was not until the local element size was reduced
to one fifth of the thickness t that the result errors of the
finite element analysis were less than 1%, which is within the
analytical model’s error band.

TABLE I. Values of right elliptical hinge stiffness and precision as a function
of element size.

M (N ·m) a (mm) b (mm) t (mm) w (mm) E (GPa)
15∗13∗0.001 10 6 1 8 106

Local element
size (mm) Number of elements

θ

(mrad)
Stiffness

(N ·m/rad)

1 288 10.90 17.89
0.8 360 10.19 19.14
0.6 448 12.78 15.26
0.4 737 12.95 15.06
0.2 1596 13.05 14.94
0.15 2376 13.07 14.92
0.1 5089 13.07 14.92

Using meshes of the local element size less than one fifth
of the thickness t, the stiffness values were analyzed for a va-
riety of right elliptical hinges. The minimum thickness t of the
model is 1 mm, so the global element size 1 mm and the local
element size 0.15 mm are adopted to finish the finite element
analysis. The results from finite element analysis and theoret-
ical predictions given by Eqs. (7) and (8) are shown in Table II.
The percentage errors between them are shown in Fig. 7. It
reveals that all of the percentage errors are less than 5%.

B. Experiment testing

An experiment was performed to determine the rotation
stiffness for a range of right elliptical hinges to verify the
validity of simplified Eq. (7). Five flexure hinge samples are
machined by the wire cut electrical discharge machine on an
8 mm thick titanium alloy stock (Tc4). The Young’s modulus
of the material is theoretically estimated to be E = 106 GPa.
The other geometric parameters are listed in Table I.

The schematic and the setup of the experimental testing
are shown in Fig. 8. The setup comprises a photoelectric
auto-collimator (0.2 in. resolution), hinge samples, base plate,
connecting plate, small size mirror attached to the connecting
plate, known masses, and thin wire.

Rotation stiffness is evaluated by placing known masses
on the connecting plate with a fine thin wire and noting the
subsequent rotation angle measured by photoelectric auto-
collimator. The experimental rotation stiffness can be obtained

Kexp = M/θ = mgL cos θ/θ, (17)

TABLE II. Results from finite element analysis and the theoretical calculation.

No. of
elements

S

(b/t)
a

(mm)
b

(mm)
M

(N ·mm)
Θ

(mrad)
K-fem (N

m/rad) (FEM)
K-smith (N

m/rad) (Eq. (8))
K-app (N ·m/rad)

(Eq. (7))

1424 1 10 1 150 22.12 6.78 6.83 6.6
1578 2 10 2 250 26.96 9.27 9.06 9.54
1874 4 10 4 450 36.03 12.49 12.40 12.29
2376 6 10 6 650 43.56 14.92 15.01 15.05
2512 8 10 8 850 49.26 17.26 17.24 17.38
3084 10 10 10 1050 55.69 18.85 19.21 19.43
6436 12 20 12 1250 114.47 10.92 10.50 10.64
6801 14 20 14 1450 122.31 11.86 11.32 11.5
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FIG. 7. Percentage error between finite element analysis and theoretical
predictions (by Eqs. (7) and (8)) for right elliptical hinges as a function of
s.

where M is the bending moment, θ is the rotation angle, m is
the mass, and L is the distance from the center of rotation to
the vertical wire.

This method of testing the rotation stiffness possesses
the advantages over traditional testing since the rotation angle
can be noted directly. The potential error of the inclusion of
measured distortion was eliminated. But, there are still a lot
of potential error sources that can arise with this setup such as
reading error, environmental error, manufacturing error, and so
on. So as to reduce the reading error and environmental error,
every test was repeated three times. The fitting curve of the
flexure hinge 3 is plotted in Fig. 9 and the slope of the curve
is the rotation stiffness.

Table III lists the experimental results for the five samples
comparing to the theoretical simplified equation for the rota-
tion stiffness given by Eq. (7). It is clear that the relative errors
between them were less than 5%.

IV. APPLICATION

In this section, we use the simplified equations to optimize
the design of the two-degree universal hinge illustrated in
Fig. 10(b). The universal hinge is made of Tc4 with elastic
modulus E = 106 GPa and it is composed of four identical
right elliptical hinge shown in Fig. 10(a). It can rotate around
axis X by the deflection of hinge 1 and hinge 3, while it
rotates around axis Y by the deflection of hinge 2 and hinge 4.
The coordinate of the single hinge is o-xyz and O-XYZ is the

FIG. 9. Fitting curve of the flexure hinge 3.

coordinate of the universal hinge. The purpose of this design
is to maximize the rotation stiffness so as to maximize the
resonant frequency under the condition that the parameters E,
a, b, w, σmax, θ are given (E = 106 GPa, a = 6 mm, b = 4 mm,
w = 7.5 mm, σmax = 160 MPa, θ = 10 mrad). The top of the
universal hinge will connect with some mechanism and it will
be actuated by piezoelectric.

According to the theory of the dynamics, the relationship
between the rotation stiffness and the natural frequency for the
universal hinge is given by

funi =
1

2π


KX

JX
, (18)

where KX is the rotation stiffness of the universal hinge, while
JX is the moment of inertia of the universal hinge around axis
X .

A. Analytical model of the universal hinge

The rotation stiffness can be deduced by lumped param-
eter analysis and the model of calculating rotation stiffness
(KX, for example, KY can be obtained by the same way)
for the universal hinge is plotted in Fig. 11. The equation
of the equivalent stiffness of the universal hinge is given by
Eq. (19),

KX =
(K1,θz,Mz + K3,θz,Mz)(K2,θy,My

+ K4,θy,My
)

(K1,θz,Mz + K3,θz,Mz + K2,θy,My
+ K4,θy,My

) , (19)

where Kθz,Mz represents the rotation stiffness around the axis
z of the single right elliptical hinge, Kθy,My is the rotation
stiffness around the axis y of the single right elliptical hinge.
It is easy to know that K1,θz,Mz = K3,θz,Mz = Kθz,Mz, K2,θy,My

= K4,θy,My
= Kθy,My and in most cases Kθy,My ≫ Kθz,Mz.

FIG. 8. (a) Schematic and (b) the setup of experimental testing for the calculation of the rotation stiffness for right elliptical hinge.
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TABLE III. Experimental testing of right elliptical hinge stiffness and theoretical comparison.

Hinge No. tnom (mm) ttes (mm) a (mm) b (mm) wnom (mm) wtes (mm) Kexp K ′θz,Mz Error (%)

1 1 1.010 10 2 8 8.010 9.21 9.54 3.46
2 1 1.013 10 4 8 8.015 11.70 12.29 4.82
3 1 0.985 10 6 8 7.985 14.67 15.05 2.50
4 1 1.012 10 8 8 8.006 16.71 17.38 3.84
5 1 0.992 10 10 8 7.988 19.13 19.43 1.57

Eq. (19) can be simplified to

KX =
2Kθz,Mz × 2Kθy,My

2Kθz,Mz + 2Kθy,My

≈ 2Kθz,Mz. (20)

According to Eqs. (18) and (20), when the moment of
inertia is constant, we need to maximize the rotation stiffness
of the single flexure hinge for maximizing the natural fre-
quency. When the force F was applied in the universal hinge
indicated in Fig. 10, the universal hinge will rotate around axis
X . Suppose the force F is in the plane of YOZ and it is parallel
with the axis Z . l is the distance between the force and the axis
Z . In order to satisfy the requirements of the structural design,
the distance l is equal to 12 mm. According to the theorem on
translation of force, the force F can be replaced by force F ′ and
the moment M (F = F ′,M = Fl), force F ′ and the moment M
can be translated into single flexure hinge shown in Fig. 12.

In order to express the displacement-loading relationship
at the free end in xoy plane, Eq. (2) can be simplified and be
written as




θz

y

x




=



Cθz,Mz Cθz,F y 0
Cy,Mz Cy,F y 0

0 0 Cx,Fx






Mz

Fy

Fx




. (21)

So we can deduce that

θz = Cθz,MzMz + Cθz,F yFy. (22)

FIG. 10. Diagrams of (a) right elliptical hinge and (b) two-axis universal
hinge.

When the universal hinge is at work, force Fy = 0, then,

Mz = θz/Cθz,Mz = K ′θz,Mzθz. (23)

The maximum stress which occurs at each of the outer surfaces
of the thinnest part of the elliptical hinge can be calculated
from a nominal stress by equation

σmax = kb
(Mz + LFy)

W
+ ka

Fx

S
=

kb(Mz + LFy)
t2w/6

+ ka
Fx

wt
,

(24)

where the stress concentration factor in bending kb and ka, to
within better 1.7% over a wide range of elliptic flexure hinges,
is given by18

kb =
ζ + 0.253
ζ + 0.097

, (25)

ka =
ζ + 0.371
ζ + 0.097

, (26)

where ζ = ρ/t = a2/(bt), ρ is the radius of curvature of the
cutouts at the notch bottom.

In this case, mechanical designs require a specific rotation
angle θ (θ = 10 mrad). The parameters a, b, w, E, θ for
right elliptical hinge are given, substituting Eqs. (23) and (7)
and Mz = M/2, Fx = F ′/2 = M/(2l), Fy = 0 to Eq. (24), the
maximum stress is given by

σmax = (3kb
t2w
+

ka
2wtl

)Ewθt
5
2 b

1
2

6.9a
= (3kb

t2 +
ka
2tl

)Eθt
5
2 b

1
2

6.9a
.

(27)

It is clear that the maximum stress is not relevant with
the width w. The maximum stress increases with the increase
of thickness t when the other parameters remain constant
illustrated in Fig. 13. Substituting the parameters of E, a, b,
w, σmax, θ to Eq. (27), we can get the maximum thickness
t = 1.019 mm. It is evident that the rotation stiffness increases
with the increase of thickness t given by Eq. (7). So when
t is 1.019 mm, we can get the maximum rotation stiffness
when the other parameters are given above. Considering the

FIG. 11. Equivalent stiffness of the universal hinge.
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FIG. 12. Schematic representation of single flexure hinge with loading.

FIG. 13. The relationship between the maximum stress and the minimum
thickness t (E = 106 GPa, a = 6 mm, b = 4 mm, w = 7.5 mm, σmax= 160
MPa, θ = 10 mrad).

FIG. 14. Finite element model of the universal hinge.

TABLE IV. Results comparison between theoretical calculation and finite
element analysis.

Force
(N)

Rotation
angle (mrad)

Maximum
stress (MPa)

KX (theo)
(N m/rad)

KX (FEA)
(N m/rad)

Error
(%)

32 9.741 143.9
38.4 39.42 −2.59

32.8 9.995 147.5

convenience of the manufacturing and the manufacturing er-
ror, we adopted the value of t = 1 mm. The maximum rotation
stiffness Kθz,Mz = 19.20 N m/rad for the single right elliptical
hinge. So the maximum rotation stiffness and the maximum
stress for the universal hinge is about 38.4 N m/rad and 158.5
MPa, which is less than 160 MPa, respectively.

B. Finite element results

Fig. 14 shows the finite element model of the universal
hinge. The model contains 186 757 elements and Tetra10
elements are used. The element size is 2 mm. But in order to
ensure the accuracy of the finite element analysis, the mini-
mum size of the elements in the regions of the flexure hinges
is 0.2 mm. In this analysis, the universal was rigidly fixed at
one end, with a bending moment M and force F ′ being applied
to the other end of the universal hinge around axis X .

The numerical results from the finite element analysis are
shown in Table IV. The theoretical stiffness for the universal
hinge is relatively small than the values from finite element
analysis; however, the error between them is less than 3%. The
model showed in Fig. 11 is verified. When the rotation angle is
10 mrad, the maximum stress is close to but less than the value
of σymax = 160 MPa. Eq. (7) is verified to be accurate enough
to maximize the rotation stiffness of the right elliptical hinge
in most engineering design.

C. Experimental results

Experimentation was also used to assess the validity of the
theoretical calculation of the rotation stiffness for the universal
hinge. One universal hinge made of Tc4 was machined by
using wire electro discharge machining technology according
to the geometric parameters decided above (a = 6 mm, b =
4 mm, w = 7.5 mm and t = 1 mm). The experimental setup
was shown in Fig. 15. The universal hinge was fixed to the
optical platform by glue and the load mass was put on one of
the top surfaces of the specimen, respectively, while the probe
of the inductance micrometer contacted with the center of the
other side of the top surface. The mass of the load masses
is known. When the sample deformed due to the load, the
inductance micrometer records the displacements of the top
surface. The rotation stiffness of the sample can be evaluated
by placing known load masses and the data of the inductance
micrometer. The experimental result is 35.98 N m/rad. So the
relative error between the results of theoretical calculation and
experiment is 6.3%.

FIG. 15. The setup of the rotation stiffness testing for the universal hinge.
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V. CONCLUSIONS

The simplified compliance matrix for right elliptical
hinges is created by nonlinear curve fitting in this paper with
an acceptable error within 5%. The equation of the rotation
stiffness is verified by means of finite element analysis and
experimental measurements. The simplified equation is further
utilized to geometric parameter optimization of the right ellip-
tical hinges. As an example, a universal hinge is engaged in
illustrating the method of the optimal parameter design for the
purposes of the maximum rotation stiffness. The results are in
good agreement with both the results from the finite element
analysis and the experimental testing.
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