
Journal of the Optical Society of Korea
Vol. 19, No. 1, February 2015, pp. 84-87

- 84 -

Fast Sub-aperture Stitching Algorithm Using Partial Derivatives
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For large optical elements which are tested by many sub-apertures, it takes too much time for a 
sub-aperture stitching algorithm to get the stitching result. To solve this problem, we propose a fast 
sub-aperture stitching algorithm to quickly compensate for piston, tilt, and defocus errors. Moreover, the 
new algorithm is easy to understand and program. We use partial derivatives of measurement data to 
separately solve piston, tilt, and defocus errors. First, we show that the new algorithm has a lower time 
complexity than the currently used algorithm. Although simulation results indicate that the accuracy of 
the new algorithm is lower than the current algorithm in all 20 simulations, our experimental results validate 
the algorithm and show it is sufficiently accurate for general use.
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I. INTRODUCTION

With the development of astronomical optics, space 
optics [1-3] and inertial confinement fusion, large-aperture 
optical systems have been widely used. For very large 
optical elements, however, the aperture may be too large 
for the interferometer to test in one pass. In 1982, C. J. 
Kim solved this problem with the sub-aperture stitching 
method [4]. However, location errors are inevitable with 
this method. Thus, researchers use overlapping areas between 
the sub-apertures to compensate for location errors [5-9] 
such as piston, tilt, defocus, clocking, and position errors. 
In most cases, only piston, tilt, and defocus errors are 
corrected. For large optical elements which are tested by 
many sub-apertures, it takes much time for a sub-aperture 
stitching algorithm to get the stitching result. To quickly 
compensate for piston, tilt, and defocus errors, we develop 
a fast algorithm, which is easy to understand and program.

In Section 2, we briefly introduce our algorithm. In 
Section 3, we compare the time complexity of our algorithm 
with the current algorithm. In Section 4, we study the 
accuracy of our algorithm using simulation. In Section 5, 
we discuss an experimental result demonstrating the effecti-

veness of the proposed algorithm. Finally, we present our 
conclusions in Section 6.

 
II. FAST ALGORITHM FOR 
SUB-APERTURE STITCHING

The current algorithm uses a least-squares method to 
remove relative piston, tilt and defocus errors directly. In 
our algorithm, we calculate the partial derivative of data 
before using a least-squares method to remove relative 
piston, tilt and defocus errors. The reason for calculating 
the partial derivative of data is that it makes the least-squares 
method much easier. Actually, using the least-squares 
method after calculating the partial derivative of data is 
just averaging, so it makes the algorithm faster than current 
algorithm.

For convenience, we only discuss the testing of spherical 
optical elements in this article; however, with some modifi-
cations, this algorithm can be easily applied to the testing 
of both flat and aspheric optical elements. 

One sub-aperture, usually the center sub-aperture, is 
selected as the reference sub-aperture. The remaining 
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sub-apertures have nonzero piston, tilt, and defocus errors 
that are relative to the reference sub-aperture. Thus, we 
compensate for relative piston, tilt and defocus errors [9] 
as follows:

* 2 2( , ) ( , ) ( )i i i i i iz x y z x y a x b y c d x y= + + + + + (1)

where x and y are the coordinates of pixels; zi(x, y) is the 
testing value measured for the i-th sub-aperture; zi

*(x, y) is 
the value after compensation; ai and bi are the coefficients 
of the relative tilt of the i-th sub-aperture in the x and y 
directions, respectively, ci is the coefficient of the relative 
piston value of the i-th sub-aperture, and di is coefficient 
of relative defocus.

Assuming that there are N sub-apertures and that the 
reference sub-aperture is number 1, current sub-aperture 
stitching algorithms use the least-squares method to 
directly calculate the necessary compensations [5-9]:

(2)   

   

In our algorithm, we first calculate the second-order 
partial derivative of Equation 1 with respect to the 
independent variable x:

2 * 2

2 2

( , ) ( , ) 2i i
i

z x y z x y d
x x

∂ ∂= +
∂ ∂

(3)

Then, we use the least-squares method to calculate the 
needed compensation between two adjacent sub-apertures:

i, j≠1
(4)

k≠1

Solving Equation 4, we obtain the following over-determined 
linear equations:

i, j≠1
(5)

k≠1

As we can see, using a least-squares method after calculating 
the partial derivative of data is just averaging. Here, Nij is 
the total number of pixels in the overlapping area of the 
i-th sub-aperture and the j-th sub-aperture, and Nk is the 

total number of pixels in the overlapping area of 1-st 
sub-aperture and k-th sub-aperture.

We can easily use the weighted least-squares method to 
solve the over-determined linear equations by setting the 
weight equal to the total number of pixels in the corresponding 
overlapping area. 

Using the calculated coefficients of the relative defocus, 
we compensate the defocus errors:

2 2( , ) ( , ) ( )i i if x y z x y d x y= + + (6)

where fi(x, y) is the data of the i-th sub-aperture after 
compensating for the defocus error. According to Equation 
2 and Equation 6, we obtain

*( , ) ( , )i i i i iz x y f x y a x b y c= + + + , (7)

To compensate for the relative tilt errors, we calculate 
the first-order partial derivative of Equation 7 with respect 
to independent variable x and the independent variable y:

*( , ) ( , )i i
i

z x y f x y a
x x

∂ ∂= +
∂ ∂ , (8)

*( , ) ( , )i i
i

z x y f x y b
y y

∂ ∂= +
∂ ∂

(9)

We use a similar procedure to calculate ai and bi. Then, 
we compensate for the tilt errors:

*( , ) ( , )i i iz x y g x y c= + (10)

where gi(x, y) is the data of i-th sub-aperture after com-
pensating for the tilt and defocus errors.

Finally, we use the same method to compensate for the 
piston errors and stitch the resulting measurement data to 
obtain a full-aperture result.

III. TIME COMPLEXITY OF THE ALGORITHM

In this section, we assume that there are only two 
sub-apertures, where one sub-aperture is the reference sub-
aperture, and the overlapping area is a square (n × n pixels).

In the algorithm currently in use, Equation 2 leads to 
linear equations:
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(11)
  



Journal of the Optical Society of Korea, Vol. 19, No. 1, February 201586

TABLE 1. Time complexity

 Current algorithm New algorithm
Multiplication operations 12 n2 5 n2

Addition operations 18 n2 12 n2

FIG. 1. Measurement result used for the simulation. All units are 
in wavelengths.

TABLE 2. Simulation results

 
a

(10-5wavelength/
pixel)

b
(10-5wavelength/

pixel)

d
(10-5wavelength/

pixel2)
Initial
Error 3.6153 2.3282 -2.2228

Old
algorithm 3.6167 2.3276 -2.2228

New
algorithm 3.6189 2.3154 -2.2223

FIG. 2. Real system including real sample.

where  is the disparity between the two measure-
ments (z1(x, y)-z2(x, y)).  

Solving Equation 11, we obtain the coefficients a, b, c, 
and d, and we can use Equation 1 to compensate for the 
errors. In the current algorithm, we use about 12 n2 

multiplication operations and about 18 n2 addition operations 
(shown in Table 1).

In our new algorithm, we use differences to calculate 
partial derivatives. For instance, we find the first-order 
partial derivative using

( , ) ( ( , ) ( , )) ( ( , ) ( , ))
2

i i i i if x y f x x y f x y f x y f x x y
x x

∂ + Δ − + − −Δ=
∂ Δ

(12)

where  is the distance between two adjacent pixels. 
In our method, we do not divide (fi (x + ∆x, y) - fi(x, y)) + 
fi (x, y) - fi(x-∆x, y)) by 2∆x for each point. For instance, 
when we obtain

1
1( ( , ) ( , ))1 k

k
k

k

f x y f x ya
N x

∂ −=
∂∑

I

(13)

we calculate it using

11 1 ( ( , ) ( , )) ( ( , ) ( , ))
2

k

k i i i i
k

a f x x y f x y f x y f x x y
x N

= + Δ − + − − Δ
Δ ∑

I

(14)

Thus, we use about 5 n2 multiplication operations and 
about 12 n2 addition operations in our algorithm (shown in 
Table 1).

In Table 1, we can see that our algorithm has a much 
lower time complexity than the current algorithm.

IV. SIMULATION

In the simulation, a measurement result (501 × 801 pixels, 
shown in Fig. 1) was first divided into two sub-apertures. 
After dividing the measurement result into sub-apertures, 
we add random noise ([-0.001, 0.001] wavelength) and 
piston, tilt, and defocus errors to each sub-aperture. We 
use both the current algorithm and the new algorithm to 
calculate the compensators. We repeated the simulation 
calculations 20 times. In all 20 simulations, the accuracy 
of the new algorithm is lower than that of the current 
algorithm. We present one typical result in Table 2. 

V. EXPERIMENT

In this section, we test a convex spherical surface (caliber 
of 100 mm and radius of 76.56 mm) using a sub-aperture 
stitching interferometer (a Fizeau interferometer whose working 
wavelength is 632.8 nm) with a reference surface whose 
F-number is 1.5. A real system including a real sample is 
shown in Fig. 2. The layout of the sub-apertures is shown 
in Fig. 3. The measurement results using our algorithm are 
shown in Fig. 4(a). Comparing with the measurement 
results obtained using a full-aperture interferometer (shown 
in Fig. 4(b)), the root mean squared error was 0.003014λ 
and the residual error image is shown in Fig. 5.
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FIG. 3. Layout of the sub-apertures.

(a)

(b)

Unit: micron
FIG. 4. Experimental results: (a) stitched using our algorithm; 
(b) full-aperture measurement.

Unit: micron
FIG. 5. Residual error image.

VI. CONCLUSION

We propose a fast algorithm for sub-aperture stitching 
to quickly compensate for piston, tilt, and defocus errors. 
We prove that our algorithm runs more than two times 
faster than the current algorithm. Although the simulation 
results demonstrate that the accuracy of the new algorithm 
is lower than that of the current algorithm in all 20 
simulations, the new algorithm is sufficiently accurate for 
generally use. Using an experimental measurement, we verified 
the validity of the new algorithm and demonstrated successful 
sub-aperture stitching. 
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