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In this paper, we developed a pinhole ring diffraction model for the focusing analysis of a large photon sieve. Instead
of analyzing individual pinholes, we discuss the focusing of all of the pinholes in a single ring. An explicit equation
for the diffracted field of individual pinhole ring has been proposed. We investigated the validity range of this
generalized model and analytically describe the sufficient conditions for the validity of this pinhole ring diffraction
model. A practical example and investigation reveals the high accuracy of the pinhole ring diffraction model. This
simulation method could be used for fast and accurate focusing analysis of a large photon sieve. © 2015 Optical

Society of America
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1. INTRODUCTION

In 2001, Kipp et al. proposed [1] a diffractive focusing element
called a photon sieve (PS), which consists of a great number
of pinholes distributed over the Fresnel zones. To analyze its
focusing property, the paraxial and the nonparaxial far-field
model for individual pinholes were proposed by Cao and
co-workers [2,3] using the Rayleigh–Sommerfeld diffraction
integral. Since then, a lot of work has been done concerning
the sidelobe suppression, multiwavelength, or broadband im-
aging and resolution increase [4–7]. PS has important applica-
tions in physical and life sciences, such as in high-resolution
microscopy, spectroscopy, X-ray, or EUV lithography. Photon
sieve also is one of the appealing solutions for next generation
ultra-large �> 20 m� space telescope primaries [8]. Deployable
membrane PSs are lightweight and compact in size.
Furthermore, apodization, which is the modification of the
number of holes per zone, can be incorporated into a PS to
modify the resolution and contrast. However, a large PS would
consist of an extremely large number of circular pinholes. In
Ref. [9], Andersen gave an approximation for the number of
holes of a PS:

Number ∼
0.45�D∕2�2

�f λ�2 ; (1)

where D, f , and λ are the diameter, focal length, and design
wavelength of the PS. Thus, there are millions or even billions

of pinholes for a large PS with a big diameter or high numerical
aperture (NA). This would greatly increase the difficulty and
time for the analysis and optimization of PS.

Instead of evaluating the performance of individual pin-
holes, we present a fast, accurate analytical pinhole ring diffrac-
tion model for the focusing and imaging of the PS within
the framework of scalar field. A PS is essentially a Fresnel zone
plate in which isolated circular holes are used instead of the
rings. The pinholes in each ring usually have the same size
and are distributed uniformly in angle about the ring zone.
In Section 2, we proved that all of the pinholes in a ring zone
could be treated as a single unity when investigating the dif-
fracted field of the small focal region. We give the explicit equa-
tion for the diffracted field of an individual pinhole ring. In
Section 3, we discussed the validity range of the pinhole ring
diffraction model. And one prototype photon sieve was designed
to validate this pinhole ring diffraction model. Section 4 con-
cludes our discussion. We believe this simple, yet accurate, ana-
lytical model could be used to compute the diffracted fields of
individual pinhole rings. In terms of the linear superposition
principle, these diffracted fields could be further summed up
to quickly analyze the focusing property of big photon sieve.

2. DIFFRACTION MODEL OF PINHOLE RING

As shown in Fig. 1, the photon sieve discussed here is located in
the x–y plane and the image plane in the X –Y plane. The PS is
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perpendicularly illuminated by a collimated incident light
beam with unit amplitude. We investigated the performance
of the mth pinhole ring, which is composed of Nm circular
pinholes. Those pinholes have the same size and are distributed
uniformly in angle in the ring zone. We denoted the coordi-
nates of the center of the nth circular pinhole in the ring
by �xn; yn� and the coordinates of the diffracted field by
�X ; Y �. Obviously, the distance from the center of the nth
pinhole to the diffracted field is Hn � �q2 � �X − xn�2�
�Y − yn�2�1∕2, where q is the distance from the photon sieve
plane to the image plane. In Ref. [3], Cao and Jahns have
presented the nonparaxial far-field model to describe the
diffracted fields for the individual circular pinholes whose
Fresnel numbers Nf � πa2n∕�λq� are smaller than 0.05 and
an is the radius of the nth circular pinhole. It could be used
to analyze the focusing of the pinholes in big or high-NA
photon sieves. It should be emphasized that Cao’s definition
of a nonparaxial case refers to the relatively big off-axis distance
between the axis of individual pinholes and the focal region at
the image plane. For the imaging of PS, the focal region is quite
near the focal point (X � 0, Y � 0). In other words, the focal
region is the nonparaxial area for individual pinholes, but also
the paraxial area for the whole PS. Readers should remember
these definitions.

We started from Eq. (12) of Ref. [3], which is the nonpar-
axial far-field distribution of the nth pinhole:

Un�X ;Y � �
kAna2nq
H 2

n
exp�jk�Ln�Hn�� × Jinc

�
kan
Hn

ρ

�
; (2)

where Jinc�·� � J1�·�∕�·�, j is the imaginary unit, k � 2π∕λ is
the wave number, An is the field value of the incident wave at
the nth circular pinhole, Ln is the eikonal value at �xn; yn�, and
ρ � ��X − xn − gnHn�2 � �Y − yn − hnHn�2�1∕2, where gn �
�∂L∕∂x�jxn;yn and hn � �∂L∕∂y�jxn;yn . Equation (2) was devel-
oped in Ref. [3] to describe the diffracted field distributions for
individual pinholes within the framework of scalar field diffrac-
tion. The above expressions and definitions can be found in
Ref. [3], and are quoted here for our further analysis. It is worth
mentioning that Eq. (2) is valid for pinholes whose Fresnel
number Nf is smaller than 0.05 and we substituted the expres-
sion H in Eq. (12) of Ref. [3] with Hn for our discussion.
Also note that the PS is perpendicularly illuminated by a plane
wave in our discussion; thus, Ln � gn � hn � 0 and An can
be treated as a constant An � 1.0 here. Besides, it is more

convenient to discuss the influence of an individual pinhole
ring under a polar coordinate system. By employing the polar
coordinate variables R, ϕ, and α through the transforms
R2 � X 2 � Y 2, r2n � x2n � y2n, X � R cos ϕ, Y � R sin ϕ,
xn � rn cos α, and yn � rn sin α, and substituting all of these
relations into Eq. (2), we could obtain

Un�R;ϕ� �
kAna2nq
H 2

n
exp�jkHn�

× Jinc
�
kan
Hn

h
�R cos ϕ − rn cos α�2

� �R sin ϕ − rn sin α�2
i
1∕2

�
: (3)

According to the linear superposition principle, the total dif-
fracted field Um�X ; Y � at the image plane for those pinholes
that are centered on the mth ring can be calculated by the sum-
mation of those individual diffracted fields. Then one can obtain

Um�R;ϕ� �
XNm

n�1

kAna2nq
H 2

n
exp�jkHn�

× Jinc
�
kan
Hn

h
�R cos ϕ − rn cos α�2

� �R sin ϕ − rn sin α�2
i
1∕2

�
: (4)

In the common case, the area of interest at the image plane is
actually the focal area where the radial coordinate R is very
small. That is because the focal spot is usually quite small
for a photon sieve. When R ≪ rn, we could use the following
approximation:

��R cos ϕ − rn cos α�2 � �R sin ϕ − rn sin α�2�1∕2 ≈ rn: (5)

Then, let us focus on the value of Hn, which could be ex-
pressed as

Hn � �q2 � R2 � r2n − 2Rrn cos�ϕ� α��1∕2; (6)

in polar coordinate. In terms of binomial expansion, Hn
could be rewritten as

Hn ≈ H 0 −
Rrn cos�ϕ� α�

H 0

; (7)

where H 0 � �q2 � R2 � r2n�1∕2. Note the higher terms of the
expansion are ignored in Eq. (7). We used the approximation
Eq. (7) for the Hn in the exponent of Eq. (4). For the two Hn
in the denominators of Eq. (4), the first term on the right-hand
side of Eq. (7) is already good enough due to the relatively
small value of R. The accuracy of the above approximations
from Eq. (5) to Eq. (7) relies on the condition of R ≪ rn.
As we shall show in the second paragraph in Section 3, the
approximations are accurate enough when R∕rn ≤ 0.05.
Substituting these approximations into Eq. (4), one can get

Um�R;ϕ� �
kAna2nq
H 2

0

Jinc
�
kan
H 0

rn

�
exp�jkH 0�

×
XNm

n�1

exp

�
−jk

Rrn cos�ϕ� α�
H 0

�
: (8)

Fig. 1. Schematic view of a general photon sieve with collimated
incident light beam.
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Since the system discussed here could be treated as circularly
symmetric about R, the function Um�R;ϕ� must be indepen-
dent of the angle ϕ. In this case, we could let ϕ � 0 and a
more simplified expression can be given:

Um�R� �
kAna2nq
H 2

0

Jinc
�
kan
H 0

rn

�
exp�jkH 0�

×
XNm

n�1

exp

�
−jk

Rrn cos α

H 0

�
: (9)

We then divided the wholemth ring zone intoNm subzones
that include just one circular pinhole each. It is obvious that
each subzone subtends a small angle of Δα � 2π∕Nm. So,
Eq. (9) could be transformed into

Um�R� �
kAna2nq
H 2

0

Jinc
�
kan
H 0

rn

�
exp�jkH 0�

×
Nm

2π

XNm

n�1

exp

�
−jk

Rrn cos α

H 0

�
Δα: (10)

Note that there are usually hundreds or thousands of holes in
each pinhole ring. Then all those Δα values are quite small. It is
obvious that

PNm
n�1 Δα � 2π and the function exp�−jkRrn

cos α∕H 0� is continuous over the interval �0; 2π�. By replacing
the sum sign

P
and Δα by the integral sign

R
and dα, respec-

tively, we can obtain

Um�R� �
kAna2nq
H 2

0

Jinc
�
kan
H 0

rn

�
exp�jkH 0�

×
Nm

2π

Z
2π

0

exp

�
−jk

Rrn
H 0

cos α

�
dα: (11)

Remember that the transformation of Eq. (10) to Eq. (11) is
accurate enough only when there is a great number of pinholes
in a ring zone. As a specific example, let us check the diffracted
field of the 16th pinhole ring of a 0.1 m diameter photon sieve
illuminated normally by a plane wave with wavelength
λ � 532 nm. The pinholes in the PS are located in the bright
zones, which means r2n � 2nf λ� n2λ2 and the width w of
each zone is w � λf ∕�2rn�. The pinhole size is chosen to
be d � 1.5w, where d � 2an is the diameter of the pinhole.
The angular interval between the centers of each two circular
pinholes is 2d∕rn, R � 0.2 mm and q � 1 m, respectively.
We can prove that there are 134 pinholes in this ring zone.
The calculated complex diffracted fields using Eq. (10) and
Eq. (11) are 0.041965-0.183859i and 0.041962-0.183851i,
respectively.

Extremely high accuracy is achieved for this replacement of
the sum by the integral. We did another numerical test that 100
same size pinholes are settled uniformly in this ring zone.
Calculations show that the extremely high accuracy is main-
tained. Thus we reasonably proposed a general criterion that
the number of pinholes in each ring zone Nm should be more
than 100. Under such condition, the replacement of the sum
by the integral is highly accurate.

Employing the equality in Ref. [10]:

J0�−v� �
1

2π

Z
2π

0

exp�−jv cos α�dα; (12)

and the property J0�−v� � J0�v�, where v � kRrn∕H 0, one
can further get

Um�R� � Nm
kAna2nq
H 2

0

Jinc
�
kan
H 0

rn

�
exp�jkH 0�J0

�
kRrn
H 0

�
:

(13)

Equation (13) is the analytical expression for the diffracted field
of the individual pinhole ring. In terms of the linear superpo-
sition principle, the overall diffracted light field for all of the
pinhole rings could be given by

U �R� �
XM
m�m1

Nm
kAna2nq
H 2

0

Jinc
�
kan
H 0

rn

�
exp�jkH 0�J0

�
kRrn
H 0

�
;

(14)

where the value of m1 is the minimum ring order for which the
sufficient conditions of pinhole ring diffraction model are sat-
isfied. Equation (14) can be used to compute the focusing of a
large PS at an extremely fast speed.

3. PS SIMULATION RESULTS AND ANALYSIS

We then analyzed the validity of the pinhole ring diffraction
model by investigating the 0.1 m diameter photon sieve men-
tioned in the last part of Section 2. Table 1 lists the parameters.
Figure 2 shows an image of the central 20 pinhole rings of the
PS, with rings of order m � 1∼20.

To deduce the analytical expression for the diffracted field of
the pinhole ring diffraction model, some approximations have
been done during the transform from Eq. (4) to Eq. (8). We
found that these approximations are highly valid when the dif-
fracted field region is quite near the focal point (X � 0,
Y � 0). Concretely, we pointed out that R∕rn ≤ 0.05 could
be used as general criterion. Then we checked the validity
of this criterion. The criterion could be rewritten as

rn ≥ 20RMax: (15)

In other words, when the maximum focal region RMax is
determined, it is recommended to use the pinhole ring diffrac-
tion model for higher order pinhole rings whose radii are bigger
than 20RMax. Let us investigate the diffracted field within the
radius RMax � 0.2 mm, which is good enough to describe the
focusing property for 0.1 m diameter PS prototype. So the min-
imum pinhole ring radius rn should be bigger than 20RMax �
4 mm and the corresponding ring order is 16. The Fresnel
number Nf of pinholes in the 16th ring is smaller than
0.05. First the diffracted fields along X axis coordinate on
the focal plane for individual pinholes in the 16th ring also

Table 1. Design Parameters of the 0.1 m Diameter
Photon Sieve

Photon Sieve Property Value

Diameter D 0.1 m
Focal Length f 1 m
Wavelength λ 532 nm
d∕w factor 1.5
Number of Pinholes 23,092,272
Number of Rings 2348
Hole Size Range 4–193 microns
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are calculated using Eq. (4). Then the overall diffracted filed is
obtained by the summation of those individual diffracted fields.
For comparison, the diffracted fields were computed using
Eq. (8) in the pinhole ring model. The real part and imaginary
part of the calculated complex diffracted fields are plotted in
Figs. 3(a) and 3(b). Note the Y-Axis in Fig. 3(a) has a smaller
scale so as to show the deviation of the two curves more clearly.
From Fig. 3, we found that the differences between the calcu-
lated diffracted field distributions are relatively small when
X ≤ 0.1 mm. For those points 0.1 mm < X ≤ 0.2 mm, there
are small differences. These slight differences illustrated the
dependence of the accuracy on the R∕rn value. However, com-
bining the real part and imaginary part, the differences of the
overall complex diffracted fields are quite small. These results
show that the approximations from Eq. (5) to Eq. (7) are ac-
curate enough for the focusing analysis at the focal region
R∕rn ≤ 0.05. Keep in mind that the ring radius rn would in-
crease for higher order pinhole ring, which means the pinhole
rings in the outer ring zones would have even smaller R∕rn
value. This, in turn, leads to a much higher computation ac-
curacy. Note that big or high-NA photon sieves are usually
composed of hundreds or thousands of pinhole rings. Despite
these small differences for the inner ring zones, the overall dif-
fracted field computed using pinhole ring diffraction model
would be very accurate for those big photon sieves.

To further verify the accuracy of the pinhole ring diffraction
model, the overall diffracted fields of pinholes within ring order
m � 16–2348 (23,091,274 pinholes) of the 0.1 m diameter PS
were calculated. Then the normalized intensity distributions
along X axis on the focal plane were computed and plotted
in Fig. 4. The solid lines and asterisks plot in Fig. 4 correspond
to the results given by individual pinhole mode and pinhole
ring diffraction mode.

During the individual pinhole mode calculation the dif-
fracted fields of the 23,091,274 pinholes are calculated using

Fig. 2. Central 20 pinhole rings of the photon sieve.

Fig. 3. Comparison of the diffracted fields on the focal plane for the
pinholes in the 16th ring zone. The solid lines and the asterisks plot
correspond to the diffracted fields computed using Eq. (4) and Eq. (8).
(a) The real part of the complex diffracted fields. (b) The imaginary
part of the complex diffracted fields.

Fig. 4. Comparison of normalized intensity distributions on the fo-
cal plane for the pinholes within ring orderm � 16–2348 of the 0.1 m
diameter photon sieve. The solid lines and the asterisks plot corre-
spond to the intensity distributions computed using individual pin-
hole model and pinhole ring diffraction model.
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Eq. (2), respectively, and the results are added up to get the
total diffracted fields. The results of pinhole ring diffraction
model are calculated as follows: for pinholes within ring order
m � 16–2348 (23,091,274 pinholes), whose Fresnel numbers
Nf ≤ 0.05 and rn ≥ 20RMax, the diffracted field of the indi-
vidual pinhole ring are calculated with Eq. (13). And the results
of those 2333 rings were added to get the total diffracted fields
using Eq. (14).

Figure 4 clearly showed that the differences of the normal-
ized intensity distribution computed by individual pinhole
model and pinhole ring diffraction model are quite small across
the whole focal region. The RMS value of the differences of the
two normalized intensity distributions is 6.59 × 10−9. Besides,
it can be seen that high accuracy has been achieved not only in
the main lobe region but also the weak sidelobe region, which
were as low as 10−6 ∼ 10−7 of the peak intensity. The above
calculations are done with a standard desktop computer (a
2.7 GHz processor and 2 GB of memory). The execution times
were 5 h, 16 min, and 5 s for the diffracted field calculations
using the individual pinhole mode and pinhole ring diffraction
mode, respectively. Thus, with pinhole ring diffraction mode,
we were able to estimate that the computation time could be
less than one minute for the fields of large or high-NA PS. The
above discussions have validated the pinhole ring diffraction
model for the fast, accurate analysis of a large PS.

4. CONCLUSION

Based on the nonparaxial far-field model of individual pinhole,
we have presented a pinhole ring diffraction model for the
focusing of large photon sieve. The Fresnel number Nf of
those circular pinholes should be smaller than 0.05. The pin-
holes in each ring zone must have the same size and be distrib-
uted uniformly in angle in the ring zone. In addition, the
number of pinholes in each ring zone Nm should be more than
100. It also is worth mentioning R∕rn ≤ 0.05, which means
that the analyses in this paper were focused on the diffracted
field of the small focal region. The above four prerequisites are
the sufficient conditions for the validity of this pinhole ring
diffraction model. In such case, all of the pinholes in a ring

zone could be treated as a single unit when investigating the
diffracted field. An explicit equation within the framework
of scalar field has been given to describe the diffracted
field of individual pinhole ring. Then the computation of
the diffracted fields for millions or billions of pinholes could
be reduced to the simplified computation of several hundreds
or thousands of pinhole rings.

As a consequence, those pinhole ring diffraction model
equations could be used to accurately compute the focusing
of large photon sieve at an extremely fast speed. The diffracted
field for the pinholes within ring order m � 16–2348 of one
0.1 m diameter photon sieve has been calculated using both the
individual pinhole model and pinhole ring diffraction model.
The investigations and comparison proved that the theory is
robust and reliable.
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