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Abstract This paper presents the topology optimization-
based computational design methodology for nanostruc-
tures in surface plasmon polaritons. Using the proposed
method, nanostructures can be designed solely based on
the user’s desired performance specification for the surface
plasmon polaritons. This topology optimization-based com-
putational design methodology is implemented based on the
material interpolation with hybrid formulation of logarith-
mic and power law approaches, to mimic the metal surface
with exponential decay of the electromagnetic field. The
constructed computational design problem is analyzed using
the continuous adjoint method, and the filter and projection
techniques are utilized to ensure the minimum length scale
in the obtained nanostructures. The outlined design method-
ology is used to investigate the nanostructures for local-
ized surface plasmonic resonances, extraordinary optical
transmission, and surface plasmonic cloaking, respectively.
For localized surface plasmonic resonances and extraordi-
nary optical transmission, the metallic nanostructures are
designed with spectra peaks at the prescribed wavelengths
and the shift of the spectra peak is controlled by solv-
ing the computational design problem corresponding to a
different incident wavelength; for surface plasmonic cloak-
ing, the cloak covered at a curved metal-dielectric interface
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is designed to bound the surface plasmon polariton at the
interface and remove the radiation, where the conventional
simple isotropic dielectric readily available in nature is
used instead of the material possessing gradient electromag-
netic properties with challenges on realization for optical
frequencies.
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Introduction

Surface plasmon polaritons (SPPs) are electromagnetic
waves trapped at the interface between a metal with a neg-
ative real part and a dielectric with a positive real part of
the permittivity [1, 2]. The metals used for SPPs are usually
noble metals, e.g., silver and gold. At optical frequen-
cies, the metal’s free electrons can sustain, under certain
conditions, oscillations with distinct resonance frequencies
[3–5]. The existence of surface plasmons is characteris-
tic for the interaction between metal and light, where the
Kretschmann-Raether and Otto configurations are com-
monly used for plasmon excitation.

Many innovative concepts of SPPs have been developed
over the past few years, e.g., localized surface plasmon
resonances (LSPRs) [7], extraordinary optical transmission
(EOT) [6], and transformational plasmon optics [8, 9]. Cor-
respondingly, many related applications have also been pro-
posed for SPPs, e.g., biomolecular manipulation and label-
ing [10], surface-enhanced Raman spectroscopy (SERS)
[11], chemical and biological sensors [12], photo-voltaics
[13], near-field lithography and imaging [14], optical
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trapping [15, 16], nano-optic circuits [17], opto-electronic
devices, wavelength-tunable filters, optical modulators [18–
21], plasmonic Luneburg lens, and surface plasmonic cloak-
ing [8, 9]. All these applications utilize surface plasmonic
effects by reasonably designing the nano-scale structures.
For the design of surface plasmonic devices, transforma-
tional plasmon optics has been developed to determine the
refractive index distribution and guide the SPP propaga-
tion [8, 9]. However, the derived distribution has extreme
electromagnetic properties, i.e., permittivity and permeabil-
ity, which are achieved based on the use of metamaterials.
The tailored microstructure of such metamaterials has to be
much smaller than the wavelength, and this makes it very
challenging to realize the desired magnetic properties for
optical frequencies. To overcome the similar problems in
bulk optical waves and use the conventional simple isotropic
dielectric readily available in nature, topology optimization-
based computational design method has been used to imple-
ment the inverse design of cloak for bulk optical wave
[22–24]. On surface plasmons, most related researches are
focused on designing nanostructures by tuning a handful of
structural parameters [25–27], although the topology opti-
mization method has been applied for the grating couplers to
enhance the excitation efficiency of surface plasmons [28].
Therefore, it is still deficient on the systematic research of
full-parameter computational design of nanostructures for
SPPs.

Topology optimization is a full-parameter method used
to inversely determine the distribution of materials [29]. In
contrast to designing devices by tuning a handful of struc-
tural parameters, topology optimization method utilizes the
full-parameter space to design structures solely based on the
user’s desired performance specification. Therefore, topol-
ogy optimization can inversely find the reasonable shape
and topology, simultaneously, and it is a more general com-
putational design methodology than shape optimization,
which usually improves the performance of a device by
adjusting the positions of structural boundaries, keeping the
topology of the structure unchanged. And topology opti-
mization has been extended to multiple physical problems,
such as acoustic, electromagnetic, fluidic, optical, thermal,
and material design problems [30–42]. Therefore, topology
optimization is chosen to develop the computational design
methodology for SPPs.

This paper is organized as follows: the topology
optimization-based computational design methodology is
stated in “Methodology” section; by specifying the desired
functionality and performance of the SPP nanostructures,
several results are obtained in “Results and Discussion”
section for localized surface plasmon resonances, extraordi-
nary optical transmission, and surface plasmonic cloaking
(SP cloaking), respectively, and the paper is concluded in
“Conclusion” section. All the mathematical descriptions

are carried out using Cartesian coordinate system in the
following sections.

Methodology

Modeling

This paper is focused on the two-dimensional (2D) SPP
problems. In 2D modeling case, SPPs are excited by TM
(magnetic field in the z direction) polarized waves, scattered
by metallic nanostructures. For TM waves propagating in
the x − y plane, the scattered-field formulation is used in
order to reduce the dispersion error

∇ ·
[
ε−1
r ∇ (Hzs + Hzi)

]
+ k2

0μr (Hzs + Hzi) = 0, in � (1)

where Hz = Hzs + Hzi is the total field, Hzs and Hzi

are the scattered and incident fields, respectively; εr and μr

are the relative permittivity and permeability, respectively;
k0 = ω

√
ε0μ0 is the free space wave number with ω, ε0, and

μ0 representing the angular frequency, free space permittiv-
ity, and permeability, respectively; � is the computational
domain; the time dependence of the fields is given by the
factor ejωt , with t representing the time. The incident field
can be obtained by solving the electromagnetic equations in
free space, with boundary conditions representing realistic
working conditions.

The boundary conditions of Eq. 1 usually include the
first-order absorbing condition, periodic boundary condi-
tion, and symmetric condition. The first-order absorbing
condition is usually used to truncate the field distribution at
infinity [44]

ε−1
r ∇Hsz · n + jk0

√
ε−1
r μrHsz = 0, on �ab (2)

where j is the imaginary unit; n is the unit outward normal
vector at the boundary ∂� of the computational domain;
�ab is the absorbing boundary included in ∂�. Periodicity
of nanostructures plays a crucial role in tuning the opti-
cal response, and single nanostructure can be approximated
by the periodic case with low volume ratio of the nanos-
tructure. Therefore, the periodic boundary condition for the
scattered field, induced by the periodic incident wave, is
often imposed on the piecewise pair included in ∂�

Hsz(x + a) = Hsz(x),

n(x + a) · ∇Hsz(x + a) = −n(x) · ∇Hsz(x),

for ∀x ∈ �ps, x + a ∈ �pd (3)

where �pd and �ps composes one piecewise periodic
boundary pair, with �pd and �ps , respectively, being the
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destination and source boundaries; a is the lattice vector of
the periodic nanostructures. The symmetry of the incident
wave and material distribution gives rise to the symmetri-
cal characteristic of the scattered field. Then the symmetric
condition can be used to reduce the computational cost and
ensure the computational accuracy effectively

ε−1
r ∇Hsz · n = 0, on �sm (4)

where �sm is the symmetric boundary included in ∂�.
The topology optimization-based computational design

of SPP nanostructure is implemented based on the material
interpolation between two different materials. In the design
with the requirement to commonly determine the structural
topology of metal and dielectric, e.g., the design of nanos-
tructures for LSPRs and EOT, the material interpolation
should be implemented between metal and dielectric. Mean-
while, the material interpolation should be implemented
between two different dielectrics (or between dielectric
and free space) for the design of dielectric nanostructures
adjoined to the metal with fixed configuration, e.g., the
design of SP cloak. In SPPs, the used noble metal is usu-
ally nonmagnetic. Therefore, the relative permeability μr

is set to be 1. Then, only the spatial distribution of rela-
tive permittivity is varied iteratively in the evolution of the
design variable representing the structural topology. In this
research, the design variable is filtered by the Helmholtz
filters [43, 45] to ensure the distribution smoothness and
numerical stability, where the Helmholtz filters are imple-
mented by solving the following Helmholtz equations

− r2∇ · ∇ρf + ρf = ρ, in � (5)

∇ρf · n = 0, on ∂�

where r is the filter radius chosen based on numerical exper-
iments [45]; ρ ∈ [0, 1] is the design variable; ρf is the
filtered design variable. To ensure the minimum length scale
and remove the gray area in the obtained structural topol-
ogy, the filtered design variable is projected by the threshold
method [46–48]

ρfp

(
ρf

) = tanh (βξ) + tanh
(
β
(
ρf − ξ

))

tanh (βξ) + tanh (β (1 − ξ))
(6)

where ρfp is the projected design variable called physical
density which takes the place of the design variable to rep-
resent the structural topology [48]; ξ ∈ [0, 1] and β are the
threshold and projection parameters for the threshold pro-
jection, respectively. On the choice of the values of ξ and β,
one can refer to [46, 49]. Then, the physical density ρfp is
utilized to interpolate the relative permittivity between two
different materials corresponding to ρfp = 0 and ρfp = 1,
respectively. For surface plasmons at the metal-dielectric
interface, the electromagnetic field decays exponentially;

hence, the material interpolation should decays rapidly
away from interface to mimic the metal surface. Therefore,
the material interpolation is implemented in the hybrid of
logarithmic and power law approaches [50]

εr (ω) = 10
log εrm(ω)− 1−ρ3

fp

1+ρ3
fp

[log εrm(ω)−log εrd (ω)]
(7)

where εrm and εrd are the relative permittivity of metal and
dielectric (or free space), respectively. If the structural topol-
ogy is determined between two dielectrics adjoined to the
metal with fixed configuration, one only need to change the
relative permittivity εrm in Eq. 7 to be that of one dielectric.
In the visible light region, the relative permittivity of noble
metals can be described by the Drude model

εrm (ω) = εr∞ − ω2
p

ω (ω − jγc)
(8)

where εr∞ is the high-frequency bulk permittivity; ω is the
angular frequency of the incident wave; ωp is the bulk plas-
mon frequency; γc is the collision frequency. The values
of the parameters in Eq. 8 can be obtained by fitting the
experimental data in the literature [51].

Based on the above description, the variational problem
for the topology optimization-based computational design
of 2D SPP nanostructures can be formulated as

Find ρ

minimize or maximize J
(
Hzs, ∇Hzs, ρfp; ρ

)

Subject to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇ · ε−1
r ∇ (Hzs + Hzi)

+ k2
0μr (Hzs + Hzi) = 0, in �

−r2∇ · ∇ρf + ρf = ρ, in �

0 ≤ ρ ≤ 1, in �

(9)

where the Helmholtz filter equation is included in the partial
differential equation constraints. J is the generally formu-
lated design objective, which include both the domain and
boundary integrations about the unknowns

J
(
Hzs, ∇Hzs, ρfp; ρ

) =
∫

�

A
(
Hzs, ∇Hzs, ρfp; ρ

)
d�

+
∫

∂�

B (Hzs) d∂� (10)

where A and B are integral functionals chosen based on
the mathematical description of the desired performance of
SPPs.

Analyzing

In this section, the variational problem for computational
design is analyzed to obtain the gradient information used
to iteratively evolve the design variable. According to [52–
54], the adjoint method is an efficient approach to derive the
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derivative of the objective in the partial differential equation
constrained variational problem. Then, the adjoint equations
of Eqs. 1 and 6 are obtained using the Lagrangian multiplier-
based adjoint method (see Appendix for more details)

∇ ·
(
ε−1
r ∇H̃ ∗

zs

)
+ k2

0μrH̃
∗
zs =− ∂A

∂Hzs

+ ∇ · ∂A

∂∇Hzs

, in �

ε−1
r ∇H̃ ∗

zs ·n+jk0

√
ε−1
r μrH̃

∗
zs = ∂A

∂∇Hzs

·n+ ∂B

∂Hzs

, on �ab

ε−1
r ∇H̃ ∗

zs · n = ∂A

∂∇Hzs

· n + ∂B

∂Hzs

, on �pd ∪ �ps ∪ �sm

(11)

and

− r2∇2ρ̃∗
f + ρ̃∗

f = ∂ε−1
r

∂ρfp

∂ρfp

∂ρf

∇ (Hzs + Hzi) · ∇H̃ ∗
zs

− ∂A

∂ρfp

∂ρfp

∂ρf

, in �

r2∇ρ̃∗
f · n = jk0

∂

√
ε−1
r

∂ρfp

∂ρfp

∂ρf

√
μrHzsH̃

∗
zs

−∂ε−1
r

∂ρfp

∂ρfp

∂ρf

∇Hzi · nH̃ ∗
zs, on �ab

r2∇ρ̃∗
f · n = −∂ε−1

r

∂ρfp

∂ρfp

∂ρf

∇Hzi · nH̃ ∗
zs,

on �pd ∪ �ps ∪ �sm (12)

where H̃zs ∈ H1∗ (�) and ρ̃f ∈ H1∗ (�) are the adjoint
variables of the state variables Hzs ∈ H1 (�) and ρf ∈
H1 (�), respectively; H1 (�) is the first-order Sobolev
space, and H1∗ (�) is the dual space of H1 (�); for com-
plex, ∗ represents the conjugate operation. It is valuable to
notice that H̃ ∗

zs and ρ∗
f are more convenient to be solved

than H̃zs and ρf in the adjoint Eqs. 11 and 12. Therefore,
the adjoint Eqs. 11 and 12 are utilized to solve H̃ ∗

zs and ρ∗
f ,

and H̃zs and ρf can be obtained using conjugate operation.
The adjoint derivative of the computational design problem
is obtained as (see Appendix for more details)

δĴ
δρ

= R

(
∂A
∂ρ

− ρ̃∗
f

)
, in � (13)

where ρ is valued in L2 (�), the second-order Lebesgue
integrable functional space; R (·) is the real part of an
expression. In Eq. 13, only the real part of the adjoint
derivative is utilized because the design variable ρ is the
distribution defined on real space. In engineering, the vari-
ational problem for computational design may need to be
regularized furthermore by some integral constraints, e.g.,
constraint of the material volume. The adjoint analysis of

the integral constraints is the same as that of the design
objective. The topology optimization-based computational
design problem usually has strong nonlinearity, and it is dif-
ficult to solve the system directly. Therefore, the iterative
approach is widely adopted. In the iterative approach, the
descent direction can be defined based on the adjoint deriva-
tive, where the state and adjoint variables are obtained by
solving the partial differential equations and corresponding
adjoint equations, respectively.

Solving

After adjoint analysis, the computational design problem
for SPP nanostructures can be solved using the iterative
approach based on the obtained sensitivity information. The
procedure for the iterative approach includes the follow-
ing steps (Table 1): (a) the partial differential equations
are solved with the current design variable; (b) the adjoint
equations are solved based on the solution of the partial dif-
ferential equations; (c) the adjoint derivative of the design
objective is computed; and (d) the design variable is updated
using the method of moving asymptotes (MMA) [55]. The
above steps are implemented iteratively until the stopping
criteria are satisfied. In this paper, the stopping criterion
is specified as the change of the objective values in five
consecutive iterations satisfying

1
5

4∑
i=0

|Jk−i − Jk−i−1|
/|Jk| < ε (14)

in the kth iteration, where Jk and γk are the objective value
and distribution of the design variable in the kth iteration,
respectively; ε is the tolerance chosen to be 1 × 10−3. The
maximal iterative number is set to be 660. During the solv-
ing procedure, the threshold parameter ξ in Eq. 6 is set to
be 0.5; the initial value of the projection parameter β is set
to be 1 and it is doubled every 60 iterations until the pre-
set maximal value 1024 is reached; the partial differential
equations and corresponding adjoint equations are solved
by the finite element method using the commercial finite
element software COMSOL Multiphysics (Version 3.5)
[56], where all the numerical implementation are based on
the software’s basic module: Comsol Multiphysics → PDE
Modes → PDE, General Form. For the details on the set-
ting of the PDE Modes and numerical integrations, one can
refer to [40, 57].

In the computational design of SPP nanostructures, the
partial differential equations are solved using the standard
Galerkin finite element method. The state variables and cor-
responding adjoint variables are interpolated quadratically;
the Helmholtz filter and corresponding adjoint equations
are solved using linear elements; and the design variable is
linearly interpolated.
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Table 1 Procedure of the iterative solving approach

1. Give the initial values of the design variable

2. Solve the partial differential equations

3. Solve the adjoint equations

4. Compute the adjoint derivative

and corresponding objective value

5. Update the design variable using MMA

6. Check for convergence; if the stopping

criteria are not satisfied, go to 2

7. Post processing

Results and Discussion

In the following, the computational design problems of
SPP nanostructures are, respectively, defined and solved for
localized surface plasmon resonances, extraordinary opti-
cal transmission, and surface plasmonic cloaking to verify
the feasibility and robustness of the proposed topology
optimization-based computational design methodology.

Metallic Nanostructures for Localized Surface Plasmon
Resonances

Localized surface plasmon resonances (LSPRs) are the
strong interaction between metal nanostructures and vis-
ible light through the resonant excitations of collective
oscillations of conduction electrons. In LSPRs, the local
electromagnetic field near the nanostructure can be many
orders of magnitude higher than the incident field, and the
incident field around the resonant-peak wavelength is scat-
tered strongly; the enhanced electric field is confined within
only a tiny region of the nanometer length scale near the
surface of the nanostructures and decays significantly there-
after [7]. Surface-enhanced Raman spectroscopy (SERS)
is one typical application of LSPRs [11]. In this section,
the computational design is carried out for the metallic
nanostructures of SERS using the proposed methodology.

In SERS, the strength of LSPRs can be measured by the

maximal enhancement factor (EF) defined as supx∈�
|E|4
E4

0
,

where

E = 1

jεrε0ω
∇ × (0, 0, Hz) (15)

is the total electric field and E0 = √
μ0/ε0 is the amplitude

of the electric wave corresponding to the incident magnetic
wave. Then, the design objective can be chosen to maximize
the enhancement factor

J = 1

fe0

|E|4
E4

0

∣∣∣∣
x=x0

= 1

fe0

∫

�

|E|4
E4

0

δ (dist (x, x0)) d�

(16)

where the enhancement factor is normalized by fe0; and
fe0 is the enhancement factor at x0, corresponding to
the nanostructure with metal material filled the design
domain completely; x0 is the reasonably chosen enhance-
ment position in �; δ (·) is the Dirac function; dist (x, x0)

is the Euclidian distance between the point ∀x ∈ � and
the specified position x0. The enhancement position x0

should be presented at the surface or coupling position
of nanostructures because the maximal enhancement fac-
tor must be at the metal surface or coupling position in
LSPRs.

For the parameters in the relative permittivity described
by the Drude model in Eq. 8, the high-frequency bulk per-
mittivity εr∞ = 6, the bulk plasmon frequency ωp =
1.5 × 1016 rad/s, and the collision frequency γc = 7.73 ×
1013 rad/s are set by fitting the experimental data in the liter-
ature [51]. The computational domain is set to be the square
with side length equal to 190 nm; the maximal enhancement
position x0 is chosen to be the center of the square domain
� (Fig. 1). The incident TM wave, launched from the left
boundary, is set as the parallel-plane wave

Hzi = H0e
−jk0k·x (17)

where H0 = 1 is the amplitude of the wave; k = (kx, ky

)
is

the normalized directional wave vector.
The incident wavelength is scanned in the visible light

region (350 ∼ 770 nm). For different incident wavelengths,
the obtained topologies of the nanostructures are obtained
as shown in Fig. 2a∼h, with corresponding distribution of

the magnitude order of enhancement factor

(
log |E|4

E4
0

∣∣
x=x0

)

shown in Fig. 3a∼h. The convergent histories of the objec-
tive values, corresponding to the computational design of
the nanostructure with incident wavelength equal to 770 nm,
are shown in Fig. 4, where snapshots for the evolution
of the physical density variable are included. In Figs. 2
and 3, the pit configuration is formed at the metal sur-
face to increase the charge density and achieve LSPR at
the enhancement position, for short incident wavelengths;
the pit configuration is evolved to a tip-slit configuration
as the increase of the incident wavelength, where two tips
near the enhancement position are presented to increase the
charge density, and a slit is formed between these two tips
to enforce the given enhancement position to be the cou-
pling position of the two tips and achieve LSPR based on
the coupling effect. The enhancement factor spectra of the
obtained nanostructures shows that resonant peaks appear at
the specified incident wavelengths (Fig. 5). This illustrates
the wavelength dependence of the computationally designed
LSPR nanostructures; furthermore, it is concluded that the
resonant peak of the computationally designed nanostruc-
ture can be achieved at a specified incident wavelength, and
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Fig. 1 Schematic for the computational domain of the periodic metal-
lic nanostructures for LSPRs, where � is the computational domain, k
is the wave vector, x0 is the enhancement position specified at the cen-
ter of the computational domain, and periodic boundary condition of
the scattered-field is, respectively, imposed on the two boundary pairs,
where the first boundary pair is composed by �pd1 and �ps1, and the
second one is composed by �pd2 and �ps2

red or blue shift of the resonant peak can be controlled by
specifying larger or smaller wavelength for the correspond-
ing computational design problem.

Periodic Metallic Slits for Extraordinary Optical
Transmission

Extraordinary optical transmission (EOT) is the phe-
nomenon of greatly enhanced transmission of light through
a subwavelength aperture in an otherwise opaque metallic
film which has been patterned with a regularly repeating
periodic structure. In EOT, the regularly repeating structure
enables much higher transmissivity to occur, up to several
orders of magnitude greater than that predicted by classical
aperture theory. EOT was first described by Ebbesen et al.
[6]. And the mechanism of EOT is attributed to the scatter-
ing of SPPs [58, 59]. EOT offers one key advantage over a
SPR device, an inherently nano- or microscale device, and
it is particularly amenable to miniaturization. To achieve the
required transmission performance, metallic layouts with
subwavelength apertures, e.g., subwavelength hole array
[6], periodic slit array, tapered slits [60], diatomic chain
of slit-hole [61], groove array flanking slit [62], and bull’s
eye structures [63], have been proposed for EOT, and para-
metric optimization of metallic layouts with subwavelength
apertures have been implemented to enhance the transmis-
sivity [64, 65]. This section is devoted to addressing the
more challenging problem on full-parameter computational
design of the periodic metallic slits for EOT to enhance the
transmissivity.

In periodic metallic slits, EOT is featured by its high
transmission of the optical energy. The input and output
transmission power for one period of the metallic slits

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 2 Computationally, designed topologies of the SERS silver cells
corresponding to different incident wavelengths in the visible light
region, where the enhancement factor is maximized at the center of the
computational domain shown in Fig. 1

demonstrated in Fig. 6 can be measured by the integration
of the average Poynting vector

Pi = ∫
�ab1

− 1
2 Re

(
Ei × H∗

i

) · n d�

= ∫
�ab1

1
2

√
μ0μr

ε0εr
HziH

∗
zi d�

Po = ∫
�ab2

1
2 Re (E × H∗) · n d�

= ∫
�ab2

1
2

√
μ0μr

ε0εr
HzH

∗
z d� (18)



Plasmonics (2015) 10:569–583 575

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3 Distribution of the magnitude order of the enhancement fac-
tor corresponding to the computationally designed cells in Fig. 2a∼h,
respectively

where ∗ represents the conjugate of the complex quantity;
Pi and Po are the input and output transmission power,
respectively; �ab1 and �ab2, set to be first-order absorbing
type, are respectively the input and output boundary of the
TM wave as shown in Fig. 6; Ei is the electric field corre-
sponding to the incident magnetic wave Hi = (0, 0, Hzi); E
is the total electric field; H is the total magnetic field. Ei and
E in Eq. 18 can be derived using Eq. 15. Then, the design

objective of the metallic slit can be chosen to maximize the
transmissivity defined as the normalized transmission power

J = Po/Pi (19)

With the incident wave set to be the same as that in “Metallic
Nanostructures for Localized Surface Plasmon Resonances”
section, the input power Pi is constant. Therefore, the sen-
sitivity analysis is only necessary to implemented for the
transmission power Po using the procedure introduced in
“Analyzing” section.

The periodic metallic slits with silver material are inves-
tigated in free space for EOT, where the parameters of
the Drude model for relative permittivity are the same
as that in “Metallic Nanostructures for Localized Surface
Plasmon Resonances” section. The sizes of the computa-
tional domain shown in Fig. 6 are set to be the typical
values: 1050 nm for the periodic length of the metallic slit,
40 nm for the slit width, 350 nm for the thickness of the
fixed silver layers, and 350 nm for the thickness of the
design domain. The incident wave with the form of parallel-
plan wave in Eq. 17 is launched from the left boundary in
the positive direction of the x-axis.

In the visible light region, the metallic slit formed by
the fixed silver layers shown in Fig. 6 has two transmission
peaks corresponding to the incident wavelength 526 and
616 nm, respectively. Then, by choosing the incident wave-
length to respectively be 526 and 616 nm, the nanoscale
structural topologies of the metallic slits are obtained as
shown in Fig. 7 with corresponding distribution of the mag-
netic fields shown in Fig. 8. The convergent histories of
the objective values, corresponding to the computational
design of the metallic slit with incident wavelength equal
to 526 nm, are shown in Fig. 9, including snapshots for
the evolution of the physical density variable. Based on
the computational design method, the transmissivity of the
obtained metallic slits is enhanced 3.27 and 4.06 times com-
pared with that of the slits formed by the fixed silver layers
in Fig. 6, respectively, and transmission peaks in the spectra
of the designed metallic slits are achieved at the correspond-
ing incident wavelengths (Fig. 10). This demonstrates the
effectivity of the outlined computational design method on
the enhancement of EOT performance of nanostructures.
The magnetic field in Fig. 8 demonstrate that the metallic
configuration formed at the inlet side of the computationally
designed slit excites SPP and guides it to propagate along
the two sides of the slit; the propagating SPP at the two sides
of the metallic slit is coupled and resonated, where Fabry-
Pérot resonance behavior is established and the transmission
is strengthened [66–70]; the resonated SPP is guided and
radiated into free space by the metallic configuration formed
at the outlet side of the slit, and EOT is achieved and
strengthened based on the computational design method.
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Fig. 4 Convergent histories of
the objective values and
snapshots for the evolution of
the physical density variable,
corresponding to the
computational design of the
LSPR nanostructure with
incident wavelength equal to
770 nm

Fig. 5 Enhancement factor
spectra of the computationally
designed nanostructures
(Fig. 2a∼h) at the specified
enhancement position

Fig. 6 Schematic for the computational domain of the periodic metal-
lic slits, where Hz is the propagating TM wave; k is the normalized
wave vector; �ab1 and �ab2, respectively, are the input and output
boundary of the metallic slit; �ps and �pd are the source and desti-
nation boundary of the periodic boundary pair. In the computational
domain, there is a fixed metallic slit with relative permittivity εrm; two
pieces of design domain with interpolated relative permittivity εr are
located at the bilateral of the fixed metallic slit; and the other area of
the computational domain is free space

From the transmission spectra shown in Fig. 10, one
can see that there are second peaks for the computationally
designed metallic slits with incident wavelengths at 575 and
725 nm, respectively. The magnetic field distribution cor-
responding to the second peaks of the transmission spectra
is shown in Fig. 11, where SPP is also excited effectively
at the inlet side of the computationally designed metallic
slits, and the propagating SPP is guided into the metallic
slits. Increase of the incident wavelength is helpful for the
coupling and resonance of the SPP propagating along the
two sides of the metallic slits. Therefore, the second peaks

(a) (b)

Fig. 7 Computationally designed metallic slits for extraordinary opti-
cal transmission corresponding to different incident wavelengths in the
visible light region

are presented as shown in Fig. 10. However, the metal-
lic slits can be redesigned using the proposed method by
setting the incident wavelengths, respectively, at 575 and
725 nm to derived more efficient EOT. Then the computa-
tionally designed metallic slits in Fig. 12 are obtained with
transmissivity spectra shown in Fig. 13.

To demonstrate the effect of the slit thickness, several
metallic slits are computationally designed using the pro-
posed method by choosing different slit thicknesses. The
obtained computational designs and corresponding trans-
missivity with incident wavelength 526 nm are plotted in
Fig. 14. From these results, one can see that reasonably
reducing the slit thickness can enhance the transmissiv-
ity, where the Fabry-Pérot resonance behavior is achieved
and SPP propagation distance and energy absorption are
reduced.
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Fig. 8 Magnetic field
distribution in the
computationally designed
metallic slits, respectively,
corresponding to the topological
configurations shown in
Fig. 7a, b

(a) (b)

Surface Plasmonic Cloaking

The technique of transformation optics (TO) provides a
powerful means to precisely control bulk optical waves in
almost arbitrary ways [71, 72]. With TO technique, the
optical cloak has been designed to hide a given object for
a specific frequency range in the electromagnetic spec-
trum [71, 72]. The TO designed cloak usually has extreme
electromagnetic properties. And they are achieved based
on the use of metamaterials. The tailored microstructure
of such metamaterials has to be much smaller than the
wavelength, and this makes it very challenging to realize
the desired magnetic properties for optical frequencies. To
solve this problem, the topology optimization-based com-
putational design method has been utilized to design cloak
using conventional simple isotropic dielectric media readily
available in nature [22–24]. Correspondingly, the technique
of transformational plasmon optics (TPO) has also been
developed for precisely controlling SPPs [8, 9]. With TPO
technique, SPPs can be tightly bounded at curved metal-
dielectric interfaces to reduce the scattering losses and
achieve SP cloaking, where the propagation of SPPs can
be manipulated in a prescribed manner by carefully con-
trolling the properties of the material adjoined to a metal.
However, the extreme electromagnetic properties of the
TPO design still needs to be achieved based on the use of
metamaterials. Therefore, this section will use the topology

Fig. 9 Convergent histories of the objective values and snapshots
for the evolution of the physical density variable, corresponding to
the computationally designed metallic silt for extraordinary optical
transmission with incident wavelength equal to 526 nm

optimization-based computational design method to solve
this problem based on the conventional isotropic dielectrics.

SPP propagation can be scattered by the curved metal-
free space interface and radiated into the free space. To
achieve the cloaking of the curved part of interface to
SPP propagation, the topology optimization-based com-
putational design method can be used to implement the
design of the dielectric cloak covered on the curved part of
the interface. Then the design objective can be chosen to
minimize the norm of the scattered field

J = 1

J0

∫

�f

HzsH
∗
zs d� (20)

where the objective is normalized by J0 corresponding to
the norm of the scattered field without dielectric cloak cov-
ered on the curved interface. The computational domain,
with all the boundaries set to be first-order absorbing type,
is shown in Fig. 15a, where �f is the free space with rel-
ative permittivity εrf = 1, �d is the design domain of the
SP cloak, and �m is the metallic domain filled with silver

Fig. 10 Transmission spectra of the computationally designed metal-
lic slits shown in Fig. 7 and the metallic slit formed by the fixed
silver layers in Fig. 6. There are two transmission peaks at the wave-
length 526 and 616 nm of the fixed metallic slit. Based on the
topology optimization-based computational design method, these two
transmission peaks are enhanced 3.27 and 4.06 times, respectively
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Fig. 11 Magnetic field
distribution corresponding to the
second peaks of the
transmission spectra of the
computationally designed
metallic slits shown in Fig. 7

(a) (b)

(a) (b)

Fig. 12 Computationally designed metallic slits for extraordinary
optical transmission corresponding to the incident wavelengths 575
and 725 nm

material with the same choice of Drude model parameters
as that in “Metallic Nanostructures for Localized Surface
Plasmon Resonances” section. The incident wave is set to
be the SPP propagating at the flat interface without curved
part (Fig. 15b)

Hzi =
{

H0e
−jβSPP x−kfyy, y ≥ 0

H0e
−jβSPP x+kmyy, y < 0

(21)

where H0 = 1 is the amplitude of the incident wave;

βSPP = k0

√
εrf εrm

εrf +εrm
is the propagation constant of SPP;

kfy =
√

β2
SPP − k2

0εrf and kmy =
√

β2
SPP − k2

0εrm are the
wave numbers of SPP in free space and metal, respectively.
The SPP propagation scattered by the curved interface
expressed as

y =
{

λ cos2
(

x−12λ
6λ

π
)

, 9λ ≤ x ≤ 15λ

0, x < 9λ or x > 15λ
(22)

is shown in Fig. 15c, where the SPP is broken away from
the interface and radiated into the free space.

Based on the above presetting, the SP cloak shown in
Fig. 15d is obtained using the proposed methodology with
material interpolation between dielectric and free space,
where the isotropic dielectric with relative permittivity
equal to 2 is utilized. The corresponding SPP distribution
at the cloaked interface is shown in Fig. 15e. The conver-
gent histories of the objective values are shown in Fig. 15f,
with snapshots for the evolution of the physical density vari-
able. Using the designed cloak covered at the curved part
of the interface, the energy of the scattering field is reduced

Fig. 13 Transmission spectra of the computationally designed metal-
lic slits shown in Fig. 12

Fig. 14 Computationally designed metallic slits with different thick-
nesses and the corresponding transmissivity

to be 5.06 % of that of the uncloaked case with field dis-
tribution shown in Fig. 15c, and the SPP propagation is
bounded at the interface and radiation of the field is removed
as shown in Fig. 15e, which demonstrates that phase match
is achieved for the SPP propagation behind the curved part
of the interface. Therefore, cloaking of the curved part of
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Fig. 15 a Computational
domain of the SP cloak, where
�f is the free space with relative
permittivity εrf = 1, �m is the
metallic domain with relative
permittivity εrm, and �d is the
design domain with relative
permittivity εr interpolated
between free space and the
dielectric with relative
permittivity equal to 2; b field
distribution of the incident SPP
wave Hzi analytically expressed
in Eq. 21; c field distribution of
the scattered SPP wave at the
curved interface expressed in
Eq. 22; d SP cloak designed
using the computational design
method; e field distribution of
the SPP wave at the curved
interface covered by the
designed cloak; f convergent
histories of the objective values,
with snapshots for the evolution
of the physical density variable

(a)

(b) (c)

(d) (e)

(f)

the interface is realized for the SPP propagation, with the
cloak computationally designed using conventional simple
isotropic dielectric, which is readily available in nature.

Conclusion

This paper has developed and implemented a topol-
ogy optimization-based computational design method for

nanostructures in surface plasmon polaritons. This method
allows user to design nanostructures solely based on the
desired performance of surface plasmon polaritons, where
the minimum length scale of the derived nanostructures
can be ensured by the filter and projection techniques.
The capability and robustness of the proposed method has
been demonstrated by designing various nanostructures for
localized plasmonic resonances, extraordinary optical trans-
mission, and surface plasmonic cloaking.
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In addition, the computational design method can also be
extended to implement the inverse design of other nanos-
tructures for surface plasmon polaritons, e.g., optical trap-
ping and optical antenna. This will also be helpful for the
designer to give more reasonable nano-optics design to cater
for the engineering requirement.
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Appendix

The details on deriving the adjoint equations and derivative
of the computational design problem in Eq. 9 are presented
as follows. According to the Lagrangian multiplier method,
the augmented Lagrangian functional corresponding to the
variational problem in Eq. 9 can be introduced as

Ĵ =
∫

�

A
(
Hzs, ∇Hzs, ρfp; ρ

)
d� +

∫

∂�

B (Hzs) d�

+�
(
Hzs, ∇Hzs, ρfp; ρ

)+ �
(
ρf , ∇ρf ; ρ

)

(23)

where

�
(
Hzs, ∇Hzs, ρfp; ρ

) =
∫

�

−ε−1
r ∇ (Hzs + Hzi) · ∇H̃ ∗

zs

+k2
0μr (Hzs + Hzi) H̃ ∗

zs +
∫

�ab

(
− jk0

√
ε−1
r μrHzs

+ε−1
r ∇Hzi · n

)
H̃ ∗

zs d� +
∫

�pd

ε−1
r ∇ (Hzs + Hzi) ·

nH̃ ∗
zs d� +

∫

�ps

ε−1
r ∇ (Hzs + Hzi) · nH̃ ∗

zs d�

+
∫

�sm

ε−1
r ∇Hzi · nH̃ ∗

zs d�

(24)

�
(
ρf , ∇ρf ; ρ

) =
∫

�

r2∇ρf · ∇ρ̃∗
f d�

+
∫

�

ρf ρ̃∗
f d� −

∫

�

ρρ̃∗
f d� (25)

H̃zs and ρ̃f are the adjoint variables of Hzs and ρf , respec-
tively; H̃zs satisfies the same periodicity as Hzs . Hzs and
ρf are distributions in H1 (�), the first-order Sobolev space
defined on �; H̃zs and ρ̃f are distributions in H1∗ (�),
the dual space of H1 (�); ρ is the distribution in L2 (�),
the second-order Lebesgue integrable functional space; for

functional space, ∗ represents the dual space; for com-
plex, ∗ represents the conjugate operation. Because of the
periodicity of the field expressed by the periodic boundary
condition, it is satisfied that

∫

�pd

ε−1
r ∇ (Hzs + Hzi) · nH̃ ∗

zs d�

+
∫

�ps

ε−1
r ∇ (Hzs + Hzi) · nH̃ ∗

zs d� = 0
(26)

Then Eq. 24 can be reduced to be

�
(
Hzs, ∇Hzs, ρfp; ρ

) =
∫

�

−ε−1
r ∇ (Hzs + Hzi) · ∇H̃ ∗

zs

+ k2
0μr (Hzs + Hzi) H̃ ∗

zs d�

+
∫

�ab

(
−jk0

√
ε−1
r μrHzs + ε−1

r ∇Hzi · n
)

H̃ ∗
zs d�

+
∫

�pd

⋃
�ps

⋃
�sm

ε−1
r ∇Hzi · nH̃ ∗

zs d� (27)

From the first-order variational of Ĵ , one can obtain

〈
δĴ
δρ

, δρ
〉
L2∗,L2

= 〈JHzs , δHzs

〉
H1∗,H1 + 〈�Hzs , δHzs

〉
H1∗,H1

+ 〈J∇Hzs , ∇δHzs

〉
L2∗,L2 + 〈�∇Hzs , ∇δHzs

〉
L2∗,L2

+
〈
Jρfp

ρfpρf
, δρf

〉
H1∗,H1

+
〈
�ρfp

ρfpρf
, δρf

〉
H1∗,H1

+ 〈�ρf
, δρf

〉
H1∗,H1 + 〈�∇ρf

, ∇δρf

〉
L2∗,L2

+ 〈Jρ, δρ
〉
L2∗,L2 + 〈�ρ, δρ

〉
L2∗,L2 (28)

where 〈·, ·〉 represents the dual pairing between two dual
spaces; δHzs ∈ H1 (�), δρf ∈ H1 (�) and δρ ∈ L2 (�)

are, respectively, the first-order variational of Hzs , ρf ,
and ρ; L2 (�) is the vector valued second-order Lebesgue
integrable functional space. According to the Kurash-Kuhn-
Tucker condition [52] and setting

〈
JHzs , δHzs

〉
H1∗,H1 + 〈�Hzs , δHzs

〉
H1∗,H1

+ 〈J∇Hzs , ∇δHzs

〉
L2∗,L2 + 〈�∇Hzs , ∇δHzs

〉
L2∗,L2 = 0

〈
Jρfp

ρfpρf
, δρf

〉
H1∗,H1

+
〈
�ρfp

ρfpρf
, δρf

〉
H1∗,H1

+ 〈�ρf
, δρf

〉
H1∗,H1 + 〈�∇ρf

, ∇δρf

〉
L2∗,L2 = 0 (29)
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the adjoint equations of Eqs. 1 and 6 in weak forms can be
obtained as follows:
∫

�

−ε−1
r ∇δHzs · ∇H̃ ∗

zs

+
(

k2
0μr H̃

∗
zs + ∂A

∂Hzs

− ∇ · ∂A

∂∇Hzs

)
δHzs d�

+
∫

�ab

(
−jk0

√
ε−1
r μr H̃

∗
zs +

∂A

∂∇Hzs

· n+ ∂B

∂Hzs

)
δHzs d�

+
∫

�pd

⋃
�ps

⋃
�sm

(
∂A

∂∇Hzs

· n + ∂B

∂Hzs

)
δHzs d� = 0

⇐⇒∫

�

−ε−1
r ∇H̃ ∗

zs · ∇ ˆ̃
Hzs

+
(

k2
0μr H̃

∗
zs + ∂A

∂Hzs

− ∇ · ∂A

∂∇Hzs

)
ˆ̃

Hzs d�

+
∫

�ab

(
−jk0

√
ε−1
r μr H̃

∗
zs + ∂A

∂∇Hzs

· n+ ∂B

∂Hzs

)
ˆ̃

Hzs d�

+
∫

�pd

⋃
�ps

⋃
�sm

(
∂A

∂∇Hzs

· n + ∂B

∂Hzs

)
ˆ̃

Hzs d� = 0,

for ∀ ˆ̃
Hzs ∈ H1 (�) (30)

and

∫

�

r2∇δρf · ∇ρ̃∗
f

+
[
ρ̃∗

f + ∂A

∂ρfp

∂ρfp

∂ρf

− ∂ε−1
r

∂ρfp

∂ρfp

∂ρf

∇ (Hzs + Hzi) · ∇H̃ ∗
zs

]
δρf d�

+
∫

�ab

⎛
⎜⎝−jk0

∂

√
ε−1
r

∂ρfp

√
μrHzs + ∂ε−1

r

∂ρfp

∇Hzi · n
⎞
⎟⎠ H̃ ∗

zs

∂ρfp

∂ρf

δρf d�

+
∫

�pd

⋃
�ps

⋃
�sm

∂ε−1
r

∂ρfp

∂ρfp

∂ρf

∇Hzi · nH̃ ∗
zsδρf d� = 0

⇐⇒∫
�

r2∇ρ̃∗
f · ∇ ˆ̃ρf

+
[
ρ̃∗

f + ∂A

∂ρfp

∂ρfp

∂ρf

− ∂ε−1
r

∂ρfp

∂ρfp

∂ρf

∇ (Hzs + Hzi) · ∇H̃ ∗
zs

]
ˆ̃ρf d�

+
∫

�ab

⎛
⎜⎝−jk0

∂

√
ε−1
r

∂ρfp

√
μrHzs + ∂ε−1

r

∂ρfp

∇Hzi · n
⎞
⎟⎠ H̃ ∗

zs

∂ρfp

∂ρf

ˆ̃ρf d�

+
∫

�pd

⋃
�ps

⋃
�sm

∂ε−1
r

∂ρfp

∂ρfp

∂ρf

∇Hzi · nH̃ ∗
zs

ˆ̃ρf d� = 0,

for ∀ ˆ̃ρf ∈ H1 (�) (31)

Based on the arbitrariness of ˆ̃
Hzs and ˆ̃ρf and Gauss theory

[52], the weak forms in Eqs. 30 and 31 can be transformed
into the strong forms of the adjoint Eqs. 11 and 12. After the

derivation of the adjoint equations, the adjoint derivative of
the computational design problem can be further obtained as
〈
δĴ
δρ

, δρ
〉
L2∗,L2

= 〈
Jρ, δρ

〉
L2∗,L2 + 〈�ρ, δρ

〉
L2∗,L2

= ∫
�

(
∂A
∂ρ

− ρ̃∗
f

)
δρ d�

(32)

which can be transformed into the strong form

δĴ
δρ

= ∂A
∂ρ

− ρ̃∗
f , in � (33)

In the adjoint derivative, only the real part is utilized because
the design variable ρ is the distribution defined on real
space.
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