
Knowledge-Based Systems 88 (2015) 195–209
Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/ locate /knosys
A novel single multiplicative neuron model trained by an improved
glowworm swarm optimization algorithm for time series prediction q
http://dx.doi.org/10.1016/j.knosys.2015.07.032
0950-7051/� 2015 Elsevier B.V. All rights reserved.

q This work was supported by the National 973 Program of China (Grant Nos.
51334020202-2 and 51334020204-2).
⇑ Corresponding author at: State Key Laboratory of Laser Interaction with Matter,

Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of
Sciences, Changchun 130033, China.

E-mail address: cui_huimin2012@126.com (H. Cui).
Huimin Cui a,b,⇑, Jianxin Feng a, Jin Guo a, Tingfeng Wang a

a State Key Laboratory of Laser Interaction with Matter, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
b University of Chinese Academy of Sciences, Beijing 100049, China

a r t i c l e i n f o
Article history:
Received 17 January 2015
Received in revised form 23 July 2015
Accepted 25 July 2015
Available online 30 July 2015

Keywords:
Glowworm swarm optimization (GSO)
Differential evolution (DE)
Linearly decreasing inertia weight
Single multiplicative recurrent neuron
(SMRN)
Local convergence
Time series prediction
a b s t r a c t

To better predict time series, in this paper the single multiplicative recurrent neuron (SMRN) is con-
structed by adding feedforward and feedback links at the nodes of the original single multiplicative neu-
ron (SMN). Glowworm swarm optimization (GSO) algorithm as a method for training the parameters of
various kinds of neural network models gets easily into locally optimal traps during optimization process
and its movement stability is also poor because of no memory about search history. To overcome the
aforementioned disadvantages, firstly the linearly declining inertia weight is incorporated into the loca-
tion update formula of standard GSO (LWGSO). After that in order to further enhance the robustness
capability, differential evolution (DE) algorithm is introduced into LWGSO forming LWGSODE.
Standard unimodal and multi-modal static test functions in high dimensions have been used to test its
properties. The statistically experimental results show that the proposed LWGSODE approach performs
much better than basic GSO whatever in terms of solutions precision, robustness or convergence speed.
Moreover, the function optimization results are also competitive when compared with other
state-of-the-art methods in the literature. Finally, the LWGSODE algorithm is used to train SMRN for time
series prediction, and approximation results have improved significantly. All the results obtained reveal
the novel SMRN model combined with the proposed LWGSODE algorithm provides a promising means to
approximate nonlinear series in the future.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Time series prediction is actually a complex function approxi-
mation problem in the real world. Among many existing tech-
niques, neural networks (NNs) simulating the human brain NNs’
structures and characteristics by mathematical tools have strong
input–output mapping capabilities, which makes them a powerful
tool for modeling time series [1,2,4,12,49]. There are various types
of NNs according to different nodes, layers, connection distribution
and activation functions such as multi-layer feed-forward architec-
ture, radial basis function network and recurrent neural network
[1–11,39].

Artificial single neuron model has been used to solve many
engineering problems [12,14,15,49], exhibiting its advantages of
simpler structure and lower computing complexity when com-
pared with other neural network models. In [12], a single multi-
plicative neuron (SMN) model in which the input signal of the
neuron is estimated by the multiplication function was proposed
by Yadav, and its input–output mapping ability, nonlinear general-
ization ability, and noise fault tolerance capability were also stud-
ied in this literature. This model has been applied in many
occasions where multi-layer neural networks with multiple neu-
rons are needed [16]. For example, in [49] single multiplicative
neuron model has been used to forecast time series and yielded
excellent forecasting performance.

Considering the dynamically temporal property in the inter of
NNs has great impact on network prediction performance, in the
paper, feed-forward and feedback links have been added to the
SMN to make it change dynamically with the system state’s
changes. That means the current outputs of SMRN model are a
function of the previous outputs and the current inputs. Thus,
SMRN has the advantage over SMN in feedbacking the data gener-
ated by the network which is to be used in future iterations, in
which way the feedback path enables the network to learn

http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2015.07.032&domain=pdf
http://dx.doi.org/10.1016/j.knosys.2015.07.032
mailto:cui_huimin2012@126.com
http://dx.doi.org/10.1016/j.knosys.2015.07.032
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys


196 H. Cui et al. / Knowledge-Based Systems 88 (2015) 195–209
temporal patterns or sequences dynamically, thus capturing
dynamically nonlinear properties more effectively.

Currently, there have been many various algorithms used to
train NNs. Among them the mostly used one is the
back-propagation (BP) algorithm. However, it does not provide a
suitable solution. One main reason is that the objective function’s
gradient information must be know to BP algorithm. Another
important reason is that it is very easy for the BP algorithm to
get trapped into local optimum, especially for complex function
approximation problems [14,21,24,26,35]. During recent decades,
inspired from natural phenomena, many heuristic search
algorithms have been developed [13] such as Gravitation Search
Algorithm (GSA) [46], Particle Swarm Optimization (PSO)
[36,39,49,51], Ant Colony Optimization (ACO) [19], Differential
Evolution (DE) [17,34,40], Artificial Bee Colony (ABC) [20],
Glowworm Swarm Optimization (GSO) [21], Artificial Immune Sys-
tem (AIS) [23] and Estimation of Distribution Algorithm (EDA) [18].
The above-mentioned algorithms as well as their variants have
been proven efficient in a wide range of problems, such as function
optimization [20,22,29,31,38,41,42], image processing [26], data
clustering [25] and economic dispatch [23,24,48]. However,
suffering from premature convergence as to miss the global opti-
mum is usually inevitable for many of them. But it should be noted
that there is no specific algorithm which is capable of obtaining
adequately high performance for all the optimization problems in
comparison with other alternatives [27]. In other words, some
algorithms give a better solution for some particular problems than
others. Hence, it remains an open issue to search for new effective
heuristic algorithms for optimization areas [28].

In 2005, inspired from the nature phenomenon that glowworms
exchange information of searching food with their peers through
luciferin dissemination in the night, Indian scholars proposed a
new kind of stochastic, meta-heuristic optimization algorithm,
artificial GSO algorithm [21]. In the algorithm, glowworm particles
as initial solutions are randomly distributed in the search space,
and then each glowworm moves towards the brighter neighbors
generation by generation just as the movement of glowworms in
nature. Ultimately particles gather around the brightest one which
locates at or near the optimal solutions of problems so as to
achieve the purpose of optimizing functions. Compared with a
majority of other intelligent algorithms, GSO is characterized as a
simple concept that is easy to implement with higher computa-
tional efficiency and smaller numbers of parameters to adjust.

Following its introduction, dynamic decision domain for GSO
was improved by Krishnan and Ghose in 2006. In 2009, the algo-
rithm was applied to multi-extremum function optimization and
was successfully applied to clustering analysis and wireless sensor
network layout. Up to now, artificial GSO has exhibited excellent
performance in multi-modal function optimization, multi-source
tracing, harmful gas leak location, multi-source localization, com-
binational optimization and other problems [29–31].

However, the GSO algorithm is not free from the drawback of
premature convergence in optimization process which is common
for many heuristic, stochastic optimization algorithms. When pre-
mature convergence occurs glowworms tend to carry the same
luciferin. That means particles will not be able to explore new
areas, conducing low optimizing accuracy and slow search effi-
ciency. In addition, since the original GSO is a memory-less algo-
rithm and ignores each individual’s fitness history in the process
of iterations, its movement stability is also poor. To overcome
the disadvantages, strategies of making glowworms jump out of
local optimum to explore new areas more stably should be
proposed.

Differential evolution (DE) proposed by Storn and Price is an
optimization algorithm based on groups evolution, which uses
the basic framework of the genetic algorithm but designs a unique
differential mutation operator drawing on the Nelder Mead sim-
plex method. Differential evolution algorithm can dynamically
track the current search situation to adjust its search strategy by
virtue of its unique ability of remember. It has strong global con-
vergence capability and robustness, less undetermined parameters
and fast convergence speed. More importantly, it is difficult to fall
into local optima. DE has also been widely applied in practice, and
many comparative studies have shown that DE is an algorithm
with excellent global optimization performance and numerical sta-
bility [17,37,38,40–42].

In order to achieve more rapid convergence speed, stronger
robustness and better convergence accuracy, an improved variant
of GSO algorithm is proposed in this paper. The work is done as fol-
lows. First, to overcome premature convergence, linearly declining
inertia weight is introduced to help advance the search into the
regions that otherwise might not be exploited. Furthermore, in
allusion to GSO’s poor robustness the evolutionary operations of
differential evolution algorithm have been made full use by gener-
ating new solutions through combining with the ever found best
solution. Overall, The twofold modifications try to balance between
the explorative and exploitative tendencies of the swarm with the
objective of achieving better search performance.

This paper is organized as follows. The next section depicts the
models of the original SMN and the proposed SMRN in detail. In the
third section, a brief description of nature-inspired heuristic GSO
algorithm and differential evolution algorithm is given. And the
variant of GSO algorithm is also presented in the same section.
The fourth section presents the comparative study of LWGSODE
with PSO, GSO and other representative heuristic stochastic algo-
rithms against ten recognized test functions as well as the degree
of glowworms assemble for GSO and LWGSODE algorithms at dif-
ferent iterations for the same function. To show the efficiency of
the SMRN model trained by LWGSODE algorithm, the fourth sec-
tion provides prediction results of the SMRN model combined with
LWGSODE algorithm for Box–Jenkins (BJ), Mackey–Glass (MG) and
Electroencephalogram (EEG) time series and the results compar-
ison with other algorithms has also been provided. Finally, the last
section concludes the paper and gives some suggestions for the rel-
evant future work.
2. The models of single multiplicative neuron and single
multiplicative recurrent neuron

Generally, the fitness function to be calculated during the train-
ing of neural network models is the mean square error (MSE). It is
calculated from the difference between output values and target
values for all training samples as below:

MSE ¼ 1
n

Xn

i¼1

ðdi � yiÞ
2 ð1Þ

where di and yi represent the target value and the output of net-
work corresponding to the ith learning sample, respectively.

The output function for SMN model or the newly proposed
SMRN model is logistic function whose output range is between
0 and 1, so it is very necessary to normalize time series data to
the interval ½0:1;0:9�. Normalization formula is as follows [49]:

xnew ¼ 0:1þ 0:8ðxold � xminÞ
xmax � xmin

ð2Þ

where xold and xnew represent data sets before normalization and
after normalization, respectively. xmin and xmax represent the mini-
mum and the maximum among learning data sets before
normalization.



H. Cui et al. / Knowledge-Based Systems 88 (2015) 195–209 197
2.1. Single multiplicative neuron (SMN)

The structure of single multiplicative neuron model for n inputs
is given in Fig. 1.

The model has a single neuron and multiplication is performed
to the signal coming into the neuron, which is different from other
neural network models. Function Xðh; xÞ is the product of the
weighted inputs. As shown in Fig. 1 the multiplicative neural
model with n inputs has 2 � n parameters, of which n are the
weights corresponding to the inputs and the others are the biases.
Suppose that activation function is taken as logistic, which is given
as follows [12,14,15,49]:

f ðxÞ ¼ 1
1þ e�x

ð3Þ

In this case, the net value of the neuron is obtained as follows:

net ¼ Xðx; hÞ ¼ Pn
i¼1ðxixi þ biÞ ð4Þ

Thus, as the net value passes through activation function, output of
the network is obtained as y ¼ f ðnetÞ.

2.2. Single multiplicative recurrent neuron (SMRN)

With the deepening of neurophysiological studies, it has been
recognized that biological nervous systems has the dynamic nature
showing in the delay of synaptic connections, the pulse transmis-
sion and stimulated membrane excitability, etc. In order to simu-
late dynamic functions such as learning, adaptation, memory and
recall, and thus better reflect the dynamic properties of biological
neurons, it is necessary to introduce the feedback link into the
mathematical modeling of biological neurons. In this paper we
propose a single multiplicative recurrent neuron (SMRN) model,
by adding feed-forward and feedback links in the feed-forward
channel of the original SMN model as shown in Fig. 2. It is obvious
from the figure that the dynamic SMRN model with feed-forward,
feedback and delay links has different structures from traditional
static SMN model. The following experimental results will prove
that the introduction of feed-forward and feedback loops make
SMRN have a stronger dynamic tracking capability than the origi-
nal SMN.

sðkÞ ¼
Yn

i¼1

ðwixiðkÞ þ biÞ ð5Þ

uðkÞ ¼ �b11uðk� 1Þ � b12uðk� 2Þ þ a0sðkÞ þ a1sðk� 1Þ
þ a2sðk� 2Þ ð6Þ

yðkÞ ¼ f ðuðkÞÞ ð7Þ
Fig. 1. The structure of single multiplicative neuron (SMN).
The model of SMRN is described in Fig. 2, where
xiðkÞ ði ¼ 1;2; . . . ;nÞ are the inputs to the whole system,
wi ði ¼ 1;2; . . . ;nÞ are weights, bi ði ¼ 1;2; . . . ;nÞ are biases,
aff ¼ ½a0; a1; a2� are feed-forward weights, bff ¼ ½b11; b12� are feed-
back weights, sðkÞ is the input to a linear dynamic system and is
also the output to a linear dynamic system, uðkÞ is the input vari-
able to nonlinear activation function of sigmoid, yðkÞ is the output
to the whole system and k is the moment.

3. The glowworm swarm optimization algorithm and its
variants

3.1. Glowworm swarm optimization (GSO) algorithm

In the artificial GSO algorithm each agent i is thought of as a
glowworm that carries a luminescence quantity called luciferin
(liðtÞ) along with them and emits a light intensity of which is pro-
portional to the associated luciferin. Every agent i has a variable
decision range ri

d which is bounded by a circular sensor range
rs ð0 < ri

d < rsÞ and all other glowworms located within its current
decision domain are identified as its neighbors. Once there are
brighter neighboring glowworms, the current agent will be
attracted and moves towards one of them based on a probabilistic
mechanism.

Initially, all the agents contain an equal quantity of luciferin.
During each iteration a luciferin-update phase is followed by a
movement-phase which is based on a transition rule and a
local-decision range update phase.

3.1.1. Luciferin update phase
The luciferin update depends on the function value at the glow-

worm’s current position. Although all glowworms own the same
luciferin value at the initial iteration, these values change accord-
ing to the function values of their positions. Meanwhile, to simu-
late the decay in luciferin with time a fraction of the luciferin
value is subtracted. The luciferin update rule is given by:

liðtÞ ¼ ð1� qÞliðt � 1Þ þ c� f ðxiðtÞÞ ð8Þ

where q is the luciferin decay constant ð0 < q < 1Þ and c is the luci-
ferin enhancement constant and f ðxiðtÞÞ represents the value of the
objective function at agent i’s location at iteration t.

3.1.2. Movement phase
During the movement phase, each glowworm decides to move

towards a brighter neighbor according to a probabilistic mecha-
nism. For each glowworm i, the probability of moving towards a
neighbor j is given by:

pijðtÞ ¼
ljðtÞ � liðtÞP

k2NiðtÞ lkðtÞ � liðtÞ
ð9Þ

where NiðtÞ behaves agent i’s neighbor muster during iteration t.
NiðtÞ is shown as follows:

NiðtÞ ¼ fj : kxjðtÞ � xiðtÞk < ri
dðtÞ; liðtÞ < ljðtÞg ð10Þ

where xjðtÞ is the location of agent j at iteration t, kxjðtÞ � xiðtÞk
represents the euclidian distance between glowworms i and j at
iteration t, ljðtÞ represents the luciferin level associated with
glowworm j at iteration t, ri

dðtÞ is the variable local-decision range
associated with glowworm i at iteration t. Let the glowworm i select
a glowworm j (j 2 NiðtÞ) with pijðtÞ given by Eq. (9). Then the
discrete-time model of the glowworm movements can be stated as:

xiðt þ 1Þ ¼ xiðtÞ þ s
xjðtÞ � xiðtÞ
kxjðtÞ � xiðtÞk

� �
ð11Þ

where s is the step-size.



Fig. 2. The structure of single multiplicative recurrent neuron (SMRN).

198 H. Cui et al. / Knowledge-Based Systems 88 (2015) 195–209
3.1.3. Local-decision range update phase
When the glowworms determine their movements only

depending on their local information, it is expected that the num-
ber of peaks captured would be a strong function of the radial sen-
sor range. For instance, if the sensor range of each agent covers the
entire workspace, all the agents move to the global optimum point
thus ignoring the local optima. Sometimes, we need to detect mul-
tiple peaks for a special problem, in this case the sensor range must
be made a varying parameter. That means, each agent i is associ-
ated with a local-decision domain whose radial range ri

d is dynamic
in nature. The local-decision domain update rule is given below:

ri
dðt þ 1Þ ¼ minfrs;maxf0; ri

dðtÞ þ bðnt � jNiðtÞjÞgg ð12Þ

where ri
dðtÞ is the agent i’s decision radius at iteration t and satisfies

0 < ri
d < rs, rs is the sensor radial range, b is change rate of

neighbor-domain and nt is threshold for numbers of glowworms
within decision range.

3.2. The differential evolution algorithm

In [41,42], DE is introduced to solve constrained optimization
problems. It creates new candidate solutions by perturbing the
parent individual with the weighted difference of several other
randomly chosen individuals of the same population. A parent is
replaced by the candidate only when it is better than its parent.
Thereafter, DE guides the population towards the vicinity of the
global optimum through repeated cycles of mutation, crossover
and selection operation. The main procedure of DE is explained
in detail as follows [50]:

3.2.1. Mutation
For each individual in n dimensions at generation

t;Xt
i ¼ fxt

i;1; x
t
i;2; . . . ; xt

i;ngfi 2 1;2; . . . ;Ng where N is the number of
agents in a swarm. An associated mutant individual
Yt

i ¼ fyt
i;1; y

t
i;2; . . . ; yt

i;ngfi 2 1;2; . . . ;Ng can be created by using one
of the mutation strategies. The most commonly used strategies
are:

Rand/1:

yt
i;j ¼ xt

r½a�;j þ Fðxt
r½b�;j � xt

r½c�;jÞ ð13Þ

Best/1:

yt
i;j ¼ xt

best;j þ Fðxt
r½a�;j � xt

r½b�;jÞ ð14Þ

where r½k� ðk 2 1;2; . . . ;NÞ is a uniformly distributed random num-
ber in the range ½1;N�; xt

best;j is the best individual of the population
at generation t, and FðF 2 ½0;3�Þ is a amplification factor.
3.2.2. Crossover
DE applies a crossover operator on Xt

i and Yt
i to generate the off-

spring individual Zt
i ¼ fzt

i;1; z
t
i;2; . . . ; zt

i;ng fi 2 1;2; . . . ;Ng. The genes

of Zt
i are inherent from Xt

i or Yt
i , determined by a parameter called

crossover probability CR 2 ½0;1�, as follows:

zt
i;j ¼

yt
i;j; if rand <¼ CR or j ¼ jrand

xt
i;j; otherwise

(
ð15Þ

where rand is a uniformly distributed random number in the range
½0;1�, and jrand is a uniformly distributed random number in the
range ½1; n�.

3.2.3. Selection
The offspring individual Zt

i competes against the parent individ-
ual Xt

i using the greedy criterion and the survivor enters the t þ 1
generation:

Xtþ1
i ¼ Zt

i ; if f ðZt
i Þ < f ðXt

i Þ
Xt

i ; otherwise

(
ð16Þ

where finding the minimum of function f is optimization objective.
3.3. The proposed algorithm

3.3.1. The LWGSO algorithm
In the speed update formula of standard particle swarm opti-

mization algorithm, the inertia weight x is usually taken to be a
constant. Thus, it cannot make full use of feedback information
in the particle search process. Consequently, it cannot make adjust-
ments to the parameters of the update equation in time, causing
unsatisfying experimental results. Through the study it is found
that a greater inertia weight x favors the global search and a smal-
ler inertia weight x is conducive to the local search. Generally, at
early in the search process, using a larger inertia weight can make
a stronger global search capability. In the latter evolution process it
can enhance the local search ability to use a smaller inertia weight,
thus reducing the number of iterations to find the optimal solution.
Therefore, this paper chooses a linearly decreasing inertia weight
strategy for GSO algorithm. The inertia weight is calculated as fol-
lows [32,33]:

xðtÞ ¼ tmax � t
tmax

ðxmax �xminÞ þxmin ð17Þ

where tmax behaves the maximum iteration number, t is the current
iteration number, xmax and xmin behave the maximum and mini-
mum inertia weight. Then, during the movement phase, Eq. (11)
of the glowworm movements will be changed to be:



H. Cui et al. / Knowledge-Based Systems 88 (2015) 195–209 199
xiðt þ 1Þ ¼ xðtÞ � xiðtÞ þ s
xjðtÞ � xiðtÞ
kxjðtÞ � xiðtÞk

� �
ð18Þ

This is so called linearly decreasing inertia weight glowworm
swarm optimization (LWGSO).

3.3.2. The proposed LWGSODE algorithm
In order to further improve the search performance of LWGSO,

for each agent when there is no better solution in the perception of
its area, a new solution will be generated randomly by the differen-
tial mutation operation. The difference between selected individu-
als is used to perturb a third individual (called target vector), thus
obtaining a new trial solution. This process, dubbed mutation oper-
ator, can be performed by choosing one among many alternatives.
If location of the newly produced solution is better it will replace
the original solution and continue to evolve as the process of
LWGSO.

The pseudocode of LWGSODE is described in detail as follows:

1 Initialize fluorescein volatile factor, fitness extraction ratio,
rates of changes in the field, field threshold, fluorescein
concentration, step, perception radius, decisions radius,
population size, function space dimension, maximum
number of iterations; set Cr and F; set the maximum inertia
weight and minimum inertia weight; set upper and lower
bounds of the variables.

2 while (t < the maximum iteration number)
3 for i ¼ 1 : n
4 Update fluorescein according to Eq. (8)
5 end
6 Find location of the current optimal particle
7 for i ¼ 1 : n
8 Find better particles in the decision-radius
9 if (There is no better one)

10 Operate mutation according to Eq. (13) or Eq. (14)
11 Restrict the newly generated solution in the

setting range
12 Operate crossover according to Eq. (15)
13 Operate selection according to Eq. (16)
14 if (The new solution is better)
15 Replace the original solution with the new one
16 end
17 else
18 Select the better neighboring glowworm

according to Eq. (10)
19 Accumulate and normalize the selection

probability according to Eq. (9)
20 Decide to make forward to one glowworm finally
21 Determine value of the inertia weight x according

to Eq. (17)
22 Update the current location of the glowworm

according to Eq. (18)
23 Update the decision radius according to Eq. (12)
24 if (The updated decision radius < 0)
25 Decision radius = 0
26 end
27 if (The updated decision radius > the sensor

radius)
28 Decision radius = sensor radius
29 end
30 end
31 t ¼ t þ 1
32 end
33 Select the optimal particle
34 end
4. Results and discussion

4.1. Unconstrained multidimensional functions optimization

It is usually difficult to derive the best solutions of some
multi-dimensions functions because of their many peaks in search
space, so they are commonly used to evaluate the performance of
evolution algorithms. In the paper, in order to validate the good
performance of the proposed LWGSODE, ten well-known bench-
mark functions with different complexity listed in Table 1 have
been adopted. As we know, unimodal functions have only one local
minimum while multimodal functions have more than one local
minimum. Among the used functions, functions f 1–f 5 are unimodal
while the remaining five functions are multimodal. Table 1 shows
formulations, search domains, and minimum values for corre-
sponding functions.

It should be noted that during experiments the initialization
domain is set the same as its corresponding function’s search
range. Additionally, experiments for the same functions but in dif-
ferent dimensions have also been carried out and the relative con-
vergence results are similar. Consequently, we only set
optimization of functions in 30 dimensions as an example to clarify
the proposed method’s effectiveness. All the experiments are con-
ducted in a Windows XP Professional system using Intel Core i5,
2.67 GHz, 2G RAM and the codes are performed in Matlab 2011b.

The numerical function optimization’s task is to obtain the min-
imal value of each function. The results derived have been com-
pared with the standard GSO, the commonly used PSO, LWGSO
and other algorithms available in the literature.

For the comparisons to be fair, all algorithms are forced to use the
value of each function as their fitness and have the same number of
function evaluations. In addition, the same setting of parameters is
assigned for GSO, PSO, LWGSO and LWGSODE. That is, in all the
experiments carried out in the paper, the population size is set to
be 50, the dimension of all the benchmark functions is determined
as 30, and the maximum generation of glowworms’ search is
assumed as 1000. For PSO, x ¼ 0:5; c1 ¼ c2 ¼ 2 while for LWGSO
and LWGSODE x is declining linearly with generation increasing
as indicated in Eq. (17). In addition, for GSO as well as its variants,
the fluorescein volatile factor q ¼ 0:4, fitness extraction ratio
c ¼ 0:6, rates of changes in the field b ¼ 0:08, field threshold
nt ¼ 5, fluorescein concentration iot0 ¼ 5, step s ¼ 0:03, perception
radius rs ¼ 500 and decisions radius r0 ¼ 500. For LWGSODE algo-
rithm, the mutation operator F ¼ 1:2 and the crossover operator
Cr ¼ 0:9. For each algorithm and each function, 50 dependent runs
are performed. The best solutions, the worst solutions, the average
standard deviations and the total computation time of CPU for four
methods with 50 runs over all functions are presented in Table 2.

It can be observed from the numerical optimization results in
Table 2 that LWGSO and LWGSODE greatly outperform GSO and
PSO with better best; worst; mean and standard deviation items
for all the test functions. The derived best, worst values and the
mean best results illustrate a better exploring ability for promising
area and a better exploiting ability for locating the optima. We can
conduct robustness comparisons of the algorithms by checking the
standard deviations. With respect to significantly low standard
deviations of LWGSO and LWGSODE in Table 2, we conclude both
of them own more stable agents’ movements compared with GSO
and PSO. For the comparison of LWGSO and LWGSODE, the mean
convergence precise and the average standard deviation in
LWGSODE method is a little higher than LWGSO or at least com-
parative with it for all the ten functions except for f 6. That illus-
trates the introduction of DE not only further improve LWGSO’s
ability of searching global optimum but also enhance its
robustness.



Table 1
High-dimensional benchmark functions.

Benchmark functions Domain f min

f 1 ¼
Pn

i¼1jxij þ
Qn

i¼1jxij [�10,10]n 0

f 2 ¼
Pn

i¼1
Pi

j¼1xj

� �2 [�10,10]n 0

f 3 ¼
Pn

i¼1x2
i

[�100,100]n 0

f 4 ¼
Pn

i¼1ix4
i

[�10,10]n 0

f 5 ¼
Pn

i¼1ð0:2x2
i þ 0:1x2

i sin 2xiÞ [�10,10]n 0

f 6 ¼
Pn

i¼1ðx2
i � 10 cosð2pxi þ 10Þ [�5.12,5.12]n 0

f 7 ¼ 1
4000

Pn
i¼1x2

i �
Qn

i¼1
xiffi

i
p
� �

þ 1 [�32,32]n 0

f 8 ¼ �20 exp �0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1x2

i

q� �
� exp 1

n

Pn
i¼1 cosð2pxiÞ

� �
þ 20þ e [�32,32]n 0

f 9 ¼
Pn�1

i¼1 ð100ðxiþ1 � x2
i Þ

2 þ ðxi � 1Þ2Þ [�30,30]n 0

f 10 ¼
Pn

i¼1x2
i þ

Pn
i¼10:5ixi

� �2 þ
Pn

i¼10:5ixi
� �4 [�5,10]n 0

Table 2
The performance comparison among PSO, GSO, LWGSO and LWGSODE with ten
unconstrained high-dimensional functions. All results are the statistical results over
50 independent runs, where ‘‘Best’’, ‘‘Worst’’, ‘‘Mean’’, ‘‘Stdard deviation’’ are the best,
the worst, the average, the standard deviation of the final results.

Function Algorithm Best Worst Mean Standard
deviation

f 1 PSO 7.90E+1 2.05E+2 1.43E+2 2.9E+1
GSO 3.77E+1 5.65E+1 4.70E+1 4.25
LWGSO 1.20E�4 5.00E�3 1.80E�3 1.2E�3
LWGSODE 2.78E�4 2.00E�3 1.10E�3 4.09E�4

f 2 PSO 2.59E+4 5.35E+5 1.84E+5 1.15E+5
GSO 4.25E+5 8.29E+6 2.82E+6 1.90E+6
LWGSO 4.12E�8 4.47E�6 9.42E�7 9.27E�7
LWGSODE 5.96E�9 2.46E�6 5.77E�7 5.43E�7

f 3 PSO 1.54E+3 5.35E+5 1.93E+4 1.10E+4
GSO 4.63E+4 7.17E+4 6.12E+4 5.82E+3
LWGSO 2.35E�9 6.42E�7 1.68E�7 1.63E�7
LWGSODE 1.13E�8 6.94E�7 1.68E�7 1.63E�7

f 4 PSO 3.25E+3 3.53E+5 1.13E+5 7.68E+4
GSO 3.73E+3 1.50E+4 9.16E+3 3.01E+3
LWGSO 8.74E�19 1.46E�11 1.55E�12 4.13E�12
LWGSODE 1.34E�16 1.46E�11 8.32E�13 2.24E�12

f 5 PSO 1.65E+1 1.35E+2 2.19E+1 2.19E+1
GSO 1.04E+1 2.14E+1 1.67E+1 2.12
LWGSO 3.44E�10 3.49E�7 4.41E�8 5.67E�8
LWGSODE 1.81E�10 2.00E�7 3.60E�8 3.46E�8

f 6 PSO 1.79E+2 4.57E+2 3.22E+2 6.55E+1
GSO 1.17E+2 2.28E+2 1.86E+2 1.91E+1
LWGSO 1.65E�6 1.21E�4 3.25E�5 2.90E�5
LWGSODE 8.77E�7 1.95E�4 3.85E�5 3.75E�5

f 7 PSO 1.09 2.07 1.51 2.40E�1
GSO 2.05 2.40 2.21 8.00E�2
LWGSO 2.84E�11 2.96E�8 7.91E�9 7.18E�9
LWGSODE 1.44E�10 4.27E�8 7.24E�9 7.08E�9

f 8 PSO 7.13 2.03E+1 1.86E+1 2.33
GSO 1.90E+1 2.00E+1 1.90E+1 1.30E�1
LWGSO 6.28E�5 1.43E�3 3.06E�4 2.27E�4
LWGSODE 6.82E�5 8.75E�4 2.99E�4 1.86E�4

f 9 PSO 1.87E+5 2.40E+8 3.91E+7 5.14E+7
GSO 8.09E+7 1.34E+8 1.10E+8 1.21E+7
LWGSO 2.66E+1 2.87E+1 2.60E+1 2.70E�2
LWGSODE 2.66E+1 2.87E+1 2.60E+1 2.70E�2

f 10 PSO 7.08E+2 1.46E+3 1.08E+3 1.71E+2
GSO 3.20E+2 5.39E+9 1.05E+9 1.47E+9
LWGSO 3.75E�9 9.28E�7 2.43E�7 2.21E�7
LWGSODE 1.08E�8 1.05E�6 2.43E�7 2.02E�7

200 H. Cui et al. / Knowledge-Based Systems 88 (2015) 195–209
In order to compare convergence rates of the methods, the
mobility of average best fitness evaluation in logarithmic scale
for the ten functions in 30 dimensions has been shown in Figs. 3
and 4. As Table 2 illustrates, it is obvious that there is a statistically
significant difference between the four different algorithms in
average convergence speed and precision. While GSO and PSO
get stuck in local minima, LWGSO and LWGSODE escape from traps
and acquire better results.

To further illustrate LWGSODE method’s superiority, function
optimization results including mean best solutions and standard
deviations have been compared with GSA [46], MGSA [47],
GSAWM [47], HS [44], APO [45] and pPSA [43] in Table 3.

From examined results provided in this table, the LWGSODE
method finds best mean solutions for f 2 and f 7 and it is always
located first three rank for all the test functions. More importantly,
the mean rank of LWGSODE is first among all the listed competing
algorithms, which means the proposed method is generally suc-
cessful no matter for unimodal functions or multimodal functions.

In order to get a more thorough analysis of LWGSODE’s perfor-
mance, the searching process of GSO and LWGSODE is illustrated
with more details. The contours for function f 6 in two dimensions
have been plotted and the global optimum of it is (0,0) which is
just located in the center of each figure. In the LWGSODE
algorithm, the agents’ positions for different iterations are shown
in Fig. 5. For comparison the agents’ evolution process for the same
function in GSO method has also been shown in Fig. 5. It is neces-
sary to be mentioned that both GSO and LWGSODE start the search
process with the same initial population. The optimization results
at different iteration numbers have been depicted in Table 4.

Both Fig. 5 and Table 4 reveal that the GSO algorithm loses
rapidly the exploration ability while the LWGSODE preserves the
swarm diversity not only in the beginning iterations but also in
the final iterations. In other words, the strong exploration ability
of the proposed LWGSODE could be concluded, while the GSO
misses the global optimum because of loss of diversity in the
beginning iterations.

4.2. Time series prediction problems

4.2.1. Box–Jenkins (BJ) gas furnace time series prediction problem
Box–Jenkins gas furnace data is widely used to verify the perfor-

mance of a new identification model [12,49]. Data is recorded from
the methane–air mixed gas combustion process. The data sets
ranging from time t ¼ 1 to t ¼ 296 include 296 pairs of data yðtÞ
and uðtÞ. yðtÞ is the concentration of output CO2; uðtÞ is the input
flow of gas. It is found that there is a good performance when using
yðt � 1Þ and uðt � 4Þ to predict yðtÞ. This chapter uses 150 samples
to train the proposed model and the testing is performed on 140
samples.

In simulation, the SMRN model has 9 parameters to be
identified. The length of agents is set to be 30. In
addition, rs ¼ 100; r0 ¼ 70, the maximum iteration number
itermax ¼ 1000; F ¼ 2 and Cr ¼ 0:9. The error precision goal of



0 200 400 600 800 1000
−5

0

5

10

15

20

25

30

Iteration number

Lo
ga

rit
hm

ic
 m

ea
n 

fu
nc

tio
n 

va
lu

e

f1

PSO
GSO
LWGSO
LWGSODE

0 200 400 600 800 1000
−8

−6

−4

−2

0

2

4

6

8

10

Iteration number

Lo
ga

rit
hm

ic
 m

ea
n 

fu
nc

tio
n 

va
lu

e

f2

PSO
GSO
LWGSO
LWGSODE

0 200 400 600 800 1000
−8

−6

−4

−2

0

2

4

6

Iteration number

Lo
ga

rit
hm

ic
 m

ea
n 

fu
nc

tio
n 

va
lu

e

f3

PSO
GSO
LWGSO
LWGSODE

0 200 400 600 800 1000
−15

−10

−5

0

5

10

Iteration number

Lo
ga

rit
hm

ic
 m

ea
n 

fu
nc

tio
n 

va
lu

e

f4

PSO
GSO
LWGSO
LWGSODE

0 200 400 600 800 1000
−8

−6

−4

−2

0

2

4

Iteration number

Lo
ga

rit
hm

ic
 m

ea
n 

fu
nc

tio
n 

va
lu

e

f5

PSO
GSO
LWGSO
LWGSODE

0 200 400 600 800 1000
−5

−4

−3

−2

−1

0

1

2

3

Iteration number

Lo
ga

rit
hm

ic
 m

ea
n 

fu
nc

tio
n 

va
lu

e

f6

PSO
GSO
LWGSO
LWGSODE

0 200 400 600 800 1000
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

Iteration number

Lo
ga

rit
hm

ic
 m

ea
n 

fu
nc

tio
n 

va
lu

e

f7

PSO
GSO
LWGSO
LWGSODE

0 200 400 600 800 1000
−4

−3

−2

−1

0

1

2

Iteration number

Lo
ga

rit
hm

ic
 m

ea
n 

fu
nc

tio
n 

va
lu

e

f8

PSO
GSO
LWGSO
LWGSODE

Fig. 3. Average best evolution performance comparison among PSO, GSO, LWGSO and LWGSODE for benchmark functions f 1–f 8.

H. Cui et al. / Knowledge-Based Systems 88 (2015) 195–209 201



0 200 400 600 800 1000
1

2

3

4

5

6

7

8

9

10

Iteration number

Lo
ga

rit
hm

ic
 m

ea
n 

fu
nc

tio
n 

va
lu

e

f9

PSO
GSO
LWGSO
LWGSODE

0 200 400 600 800 1000
−8

−6

−4

−2

0

2

4

6

8

10

12

Iteration number

Lo
ga

rit
hm

ic
 m

ea
n 

fu
nc

tio
n 

va
lu

e

f10

PSO
GSO
LWGSO
LWGSODE

Fig. 4. Average best evolution performance comparison among PSO, GSO, LWGSO and LWGSODE for benchmark functions f 9–f 10.

Table 3
The performance comparison among GSA, MGSA, GSAWM, HS, APO and pPSA for function f 2; f 3; f 6; f 7; f 8; f 9. All results are the statistical results over 50 independent runs, where
the digital in bracket is average result and the digital out of bracket is the standard deviation of the final results.

LWGSODE GSA MGSA GSAWM HS APO pPSA

f 2 5.77E�7 6.87E+1 8.06E+1 3.00E�1 2.06E+1 3.82E+2 1.27E+1
(5.43E�7) (2.69E+1) (2.76E+1) (5.84E�1) (1.64E+1) (3.44E+1) (3.98E+1)
1 5 6 2 4 7 3

f 3 1.68E�7 2.31E�16 5.42E�4 8.42E�4 2.05E�7 3.56E+2 7.88E�6
(1.63E�7) (2.90E�17) (7.25E�4) (1.74E�3) (9.13E�5) (2.99E+1) (1.01E�6)
2 1 5 6 3 7 4

f 6 3.85E�5 9.15 1.24E+1 1.11E�3 2.75E�7 3.17E+2 8.11E+1
(3.75E�5) (1.93) (2.83) (1.48E�3) (8.74E�6) (1.19E+1) (2.04E+1)
2 4 5 3 1 7 6

f 7 7.24E�9 5.66E�3 5.79E�3 4.42E�3 7.31E�6 3.18E+1 1.21E�2
(7.08E�9) (8.38E�3) (8.59E�3) (9.71E�3) (1.07E�5) (4.02) (1.23E�2)
1 4 5 3 2 7 6

f 8 2.99E�4 1.10E�8 7.01E�2 1.19E�2 4.21E�3 1.94E+1 1.19
(1.86E�4) (7.86E�10) (4.31E�3) (9.91E�3) (4.54E�3) (2.90) (2.35)
2 1 5 4 3 7 6

f 9 2.6E+1 2.63E+1 2.77E+1 3.34E�2 2.56 7.30E+5 6.37E+1
(2.70E�2) (7.70E�2) (3.27E�1) (3.98E�3) (5.47) (1.06E+5) (8.96E+1)
3 4 5 1 2 7 6

Total 11 19 31 19 15 42 31

Rank 1 3 4 3 2 5 4

202 H. Cui et al. / Knowledge-Based Systems 88 (2015) 195–209
training and testing is set to be 0.0040. For each algorithm, 50
dependent experiments have been implemented.

The mean, the best, the worst solutions, the standard deviation
and the success rate for training data sets have been presented in
Table 5, in which the ‘‘baseline’’ methods (i.e., XPSO, GSO, BP and
GA) [49] are with the ‘‘baseline’’ SMN model when they are used
for BJ time series prediction. The results of LWGSODE method are
superior to the original GSO. More importantly, when SMRN is
combined with LWGSODE, the approximation results get signifi-
cantly improved. The best mean MSE 0.0015, the smallest MSE
8.76E�4, the biggest MSE 0.0016 and the best standard deviation
2.69E�4 among all these listed algorithms have been derived and
the success rate also adds up to 100%.

The testing results for BJ series have been presented in Table 6.
It can be concluded from this table that the SMRN model trained by
LWGSODE algorithm owns the best values considering all four
items for 50 independent experiments. Thus, SMRN model based
on LWGSODE training algorithm can be used to predict BJ time ser-
ies better.

From Table 7 it can be seen that SMRN combined with
LWGSODE has obtained the best MSE; MAD and MAPE values. In
addition, the coefficient of determination R2 indicating the good-
ness of fit of the proposed method is good.

The mobility of average best fitness for 50 runs is provided in
Fig. 6. Fig. 7 depicts the real model, the training and testing approx-
imation results. The approximation error for training and testing
data sets has also been presented in Fig. 8.

In order to show how sensitive the proposed approach is to the
initial settings of these parameters, how far the improvements
shown in the experimental evaluation depend on the ‘‘lucky’’ selec-
tion of these parameters and how far they are ‘‘consistent’’/‘‘syste
matic’’ over various initial settings, different parameters settings
have been made, i.e. the parameters at the beginning are
F ¼ 2; Cr ¼ 0:9; n ¼ 30; rs ¼ 100; nt ¼ 5; c ¼ 0:6 and experiments
are preformed when single variant is changed. For each algorithm,
10 dependent experiments have been implemented. The training
and testing results have been shown in Tables 8 and 9. From the
two tables we know that when initial parameters change within
small ranges, the training and testing results for all items are sim-
ilar to the initial results. That means the proposed method is
robust. However, each parameter has a threshold value. From the
changes of parameter F we know when the value of F changes to



a

dim1

di
m

2

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5
e

dim1

di
m

2

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

b

dim1

di
m

2

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5
f

dim1

di
m

2

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

c

dim1

di
m

2

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5
g

dim1

di
m

2

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

d

dim1

di
m

2

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
−1.3

−1.2

−1.1

−1

−0.9

−0.8

−0.7

h

dim1

di
m

2

−0.15 −0.1 −0.05 0 0.05 0.1 0.15
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Fig. 5. The particles’ positions for two dimensional function f 6. a, b, c and d exhibit the swarm positions of GSO in iterations 5, 100, 200 and 400, respectively. e, f, g and h
exhibit the swarm positions of LWGSODE at iterations 5, 10, 20 and 100, respectively. In these figures a star sign represents the position of one particle of the swarm and the
position of the optimum is located at (0,0).

H. Cui et al. / Knowledge-Based Systems 88 (2015) 195–209 203



Table 4
The function optimization results comparison of LWGSODE with GSO for f 6 at different iteration numbers. In the table x1 behaves one dimension of function f 6 ; x2 represents the
other dimension, and y is the finally optimized function value within fixed iteration numbers.

Iteration numbers 5 10 20 100 200 400

GSO x1 �1.43E�1 – – �1.12E�1 3.37E�3 1.26E�4
x2 �9.19E�1 – – �1.03 �9.95E�1 �9.95E�1
y 5.94 – – 3.67 9.97E�1 9.95E�1

LWGSODE x1 9.64E�1 �5.80E�4 �3.02E�3 �2.06E�3 – –
x2 �1.03 �2.06E�2 �1.84E�2 �8.85E�4 – –
y 2.49 1.40E�1 6.92E�2 9.97E�4 – –

Table 5
The training performance comparison for predicting the BJ time series. All results are the statistical results over 50 independent runs, where ‘‘Mean’’, ‘‘Best’’, ‘‘Worst’’, ‘‘Std.dev.’’ and
‘‘S.R.’’ are the mean, the best, the worst, the standard deviation and the success rate of the results.

XPSO GSO BP PSO GA LWGSODE LWGSODE + SMRN

Mean 0.0017 0.0018 0.0030 0.0029 0.0018 0.0018 0.0015
Best 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 8.76E�4
Worst 0.0039 0.0050 0.0080 0.0078 0.0042 0.0036 0.0016
Std.dev. 6.55E�4 8.33E�4 0.0019 0.0019 7.78E�4 7.74E�4 2.69E�4
S.R. (%) 100 74 66 67 96 100 100

Table 6
The testing performance comparison for predicting the BJ time series. ‘‘Mean’’, ‘‘Best’’, ‘‘Worst’’ and ‘‘Std.dev.’’ are the mean, the best, the worst and the standard deviation of the
results.

XPSO BP PSO GA LWGSODE LWGSODE + SMRN

Mean 0.0021 0.0056 0.0054 0.0023 0.0026 0.0020
Best 0.0018 0.0019 0.0019 0.0018 0.0018 0.0018
Worst 0.0045 0.0095 0.0096 0.0046 0.0047 0.0040
Std.dev. 0.0015 0.0038 0.0040 0.0021 0.0014 4.17E�4

Table 7
The testing performance comparison for predicting the BJ time series. ‘‘MSE’’, ‘‘MAD’’,
‘‘MAPE’’ and ‘‘R2’’ are the mean square error, the mean absolute deviation, the mean
absolute percentage error and the coefficient of determination of the results.

SVR ANFIS MLR LWGSODE + SMRN

MSE 0.0033 0.1615 0.0157 0.0018
MAD 0.0479 0.3005 0.1251 0.0256
MAPE 0.1371 0.6263 0.2871 0.0629

R2 0.8492 7.0846 3.6435 0.6248

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Fi
tn

es
s

Iteration number

LWGSODE+SMRN

Fig. 6. The fitness mobility of LWGSODE for BJ time series prediction.

204 H. Cui et al. / Knowledge-Based Systems 88 (2015) 195–209
be 2.2 or 1.6, the training and testing improvements decrease
obviously.

4.2.2. Mackey–Glass (MG) time series prediction problem
Mackey–Glass (MG) time series represents a model for white

blood cell production in leukemia patients and has nonlinear oscil-
lation which is often used to test the performance of neural net-
work models as a benchmark problem [12,49]. It is a chaotic
time sequence which is produced by the following formula [49]:

dyðtÞ
dt
¼ ayðt � sÞ

1þ y10ðt � sÞ � byðtÞ ð19Þ

where s ¼ 17; a ¼ 0:2; b ¼ 0:1.
0 50 100 150 200 250 300
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

y

training testing

Training/testing data boundary(red)
Real model(blue)
LWGSODE+SMRN training model(green)
LWGSODE+SMRN testing model(green)

Fig. 7. The training and testing results of LWGSODE method for BJ time series
prediction.



0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

training testing

x

er
ro

r

Training/testing data boundary(red)
LWGSODE+SMRN training error(green)
LWGSODE+SMRN testing error(green)

Fig. 8. The training and testing approximation error of SMRN model trained by
LWGSODE algorithm for BJ time series prediction.

Table 8
The training performance comparison for predicting the BJ time series with different initia
worst, the standard deviation and the success rate of the results.

F = 2.2 F = 2 F = 1.6 Cr = 0.8

Mean 0.0016 0.0016 0.0016 0.0016
Best 8.47E�4 8.75E�4 0.0016 8.76E�
Worst 0.0025 0.0020 0.0028 0.0021
Std.dev. 8.73E�4 5.75E�4 3.11E�4 5.88E�
S.R. (%) 98 100 81 98

Table 9
The testing performance comparison for predicting the BJ time series with different initial p
the standard deviation of the results.

F = 2.2 F = 2 F = 1.6 Cr = 0.8

Mean 0.0030 0.0020 0.0179 0.0021
Best 0.0022 0.0018 0.0028 0.0018
Worst 0.0090 0.0042 0.0180 0.0045
Std.dev. 9.90E�4 4.20E�4 0.0141 4.52E�4

Table 10
The training performance comparison for predicting the MG time series. All results are the
and ‘‘S.R.’’ are the mean, the best, the worst, the standard deviation and the success rate o

XPSO GSO BP PSO

Mean 5.24E�4 0.0057 0.0038 0.0
Best 5.23E�4 0.0021 5.35E�4 5.2
Worst 0.0012 0.0096 0.0078 0.0
Std.dev. 2.19E�6 0.0038 0.0037 0.0
S.R. (%) 98 0 56 78

Table 11
The testing performance comparison for predicting the MG time series. ‘‘Mean’’, ‘‘Best’’, ‘‘W
results.

XPSO BP PSO

Mean 5.49E�4 0.0046 0.0018
Best 5.46E�4 5.65E�4 5.31E�4
Worst 0.00139 0.0057 0.0046
Std.dev. 3.05E�6 0.0040 0.0027

H. Cui et al. / Knowledge-Based Systems 88 (2015) 195–209 205
The destination of this research is to use four previous measure-
ments, i.e. yðtÞ; yðt � 6Þ; yðt � 12Þ and yðt � 18Þ, to predict yðt þ 1Þ.
In this case, 450 training samples are taken and 500 samples are
used to test the model’s generation property. The error goal of
training and testing is set to be 0.001. In the SMRN model 13
parameters should be identified. The size of particles’ population
is set to be 100. In addition, rs ¼ 30; r0 ¼ 27, the maximum itera-
tion number itermax ¼ 1000; F ¼ 0:9 and Cr ¼ 1:2. The experiment
has been carried out for 50 times independently.

The detailed training and testing results for different algorithms
have been given in Tables 10 and 11, respectively. Similarly, in the
two tables the ‘‘baseline’’ methods (i.e., XPSO, GSO, BP and GA) [49]
are with the ‘‘baseline’’ SMN model when they are used for MG
time series prediction. From the training table we know the results
for the LWGSODE method has improved greatly in comparison
with GSO for whatever items. Furthermore, the SMRN model com-
bined with LWGSODE training algorithm has reached the best
results for the Mean; Best; Worst, and S:R. items among all the
l parameters. ‘‘Mean’’, ‘‘Best’’, ‘‘Worst’’, ‘‘Std.dev.’’ and ‘‘S.R.’’ are the mean, the best, the

n = 35 rs = 110 nt = 7 c = 0.8

0.0016 0.0016 0.0016 0.0016
4 8.65E�4 8.77E�4 8.96E�4 9.01E�4

0.0021 0.0022 0.0022 0.0021
4 5.78E�4 6.87E�4 6.90E�4 5.84E�4

98 98 97 96

arameters. ‘‘Mean’’, ‘‘Best’’, ‘‘Worst’’ and ‘‘Std.dev.’’ are the mean, the best, the worst and

n = 35 rs = 110 nt = 7 c = 0.8

0.0020 0.0020 0.0021 0.0020
0.0020 0.0019 0.0020 0.0019
0.0043 0.0051 0.0049 0.0045
4.65E�4 4.50E�4 4.51E�4 4.83E�4

statistical results over 50 independent runs, where ‘‘Mean’’, ‘‘Best’’, ‘‘Worst’’, ‘‘Std.dev.’’
f the results.

GA LWGSODE LWGSODE + SMRN

017 5.95E�4 0.0022 3.40E�4
5E�4 5.38E�4 4.05E�4 3.22E�4
052 0.0012 0.0031 9.62E�4
025 7.17E�5 9.03E�4 2.58E�5

98 58 100

orst’’, ‘‘Std.dev.’’ are the mean, the best, the worst and the standard deviation of the

GA LWGSODE LWGSODE + SMRN

6.22E�4 0.0019 5.02E�4
5.18E�4 5.10E�4 4.52E�4
0.0017 0.0030 9.87E�4
7.25E�4 0.0012 3.16E�4



Table 12
The testing performance comparison for predicting the MG time series. ‘‘MSE’’, ‘‘MAD’’,
‘‘MAPE’’ and ‘‘R2’’ are the mean square error, the mean absolute deviation, the mean
absolute percentage error and the coefficient of determination of the results.

SVR ANFIS MLR LWGSODE + SMRN

MSE 5.4947E�4 0.0591 9.1590E�4 5.7381E�4
MAD 0.0020 0.1501 0.0088 0.0015
MAPE 0.0032 0.2409 0.0142 0.0099

R2 1.0018 3.1225 1.0286 1.0543

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Iteration number

Fi
tn

es
s

LWGSODE+SMRN

Fig. 9. The fitness mobility of LWGSODE for MG time series prediction.

0 100 200 300 400 500 600 700 800 900 1000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

n

y

training testing

Training/testing data boundary(red)
Real model(blue)
LWGSODE+SMRN training model(green)
LWGSODE+SMRN testing model(green)

Fig. 10. The training and testing results of LWGSODE method for MG time series
prediction.

0 200 400 600 800 1000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

training testing

er
ro

r

n

Training/testing data boundary(red)
LWGSODE+SMRN training error(green)
LWGSODE+SMRN testing error(green)

Fig. 11. The training and testing approximation error of SMRN model trained by
LWGSODE algorithm for MG time series prediction.

206 H. Cui et al. / Knowledge-Based Systems 88 (2015) 195–209
listed algorithms. From the testing results table it is obvious that
SMRN with LWGSODE performs much better than all the other
methods for the Mean; Best; Worst items. In addition, the table
also illustrates the SMRN combined with LWGSODE method has
better standard deviation values compared with other methods.
Overall, the novel SMRN model trained by the proposed LWGSODE
training method is an effective alternative to predict MG time
series.
From Table 12, it can be seen that SMRN combined with
LWGSODE has obtained the best MAD values for MG prediction ser-
ies. In addition, the proposed method has similar values of
MSE; MAPE and R2 with SVR whose coefficient of determination
has reached 1.0018.

The mobility of average best fitness for 50 runs is presented in
Fig. 9. Fig. 10 depicts the real model, the training and testing
approximation for Mackey–Glass time series. The approximation
error for training and testing data sets has also been presented in
Fig. 11.
4.2.3. Electroencephalogram (EEG) time series prediction problem
EEG signal is the overall electrophysiological reflection of brain

cells in the cerebral cortex. It includes very rich and useful infor-
mation. Because EEG has characteristics of reflecting function
changes of brain lesion, it has great significance in respects of
physiological research and clinical applications such as epilepsy,
encephalitis, brain tumors and other brain disease diagnoses. With
the development of computers and signal processing techniques,
EEG is playing an increasingly important role in the clinical diagno-
sis of brain diseases. One of the most obvious examples is the diag-
nosis of epilepsy.

Using four previous measurements, i.e. yðt�1Þ; yðt�2Þ; yðt�4Þ
and yðt�8Þ, to predict yðtÞ is our research destination. In this case,
150 training samples are taken and 150 samples are used to test
the model’s generation property. The error goal of training and test-
ing is set to be 0.009. In the SMRN model 13 parameters should be
identified. The size of particles’ population is set to be 50. In addi-
tion, rs¼500; r0¼498; itermax¼1000; F¼0:9 and Cr¼1:5. The
experiment has been carried out for 50 times independently.

The detailed training and testing results for different algorithms
among which the ‘‘baseline’’ methods (i.e., XPSO, GSO, BP and GA)
[49] are with the ‘‘baseline’’ SMN model when they are used for
EEG time series prediction have been given in Tables 13 and 14,
respectively. From the training table we know the results for the
LWGSODE method have improved greatly in comparison with
GSO. Furthermore, the SMRN model combined with LWGSODE
training algorithm has reached the best results for the
Mean; Best; Worst; Std:dev. and S:R. items among all the listed
algorithms.

From the testing results table it is obvious that SMRN with
LWGSODE performs better than all the other methods for the
Mean; Best and Worst items. In addition, the table also illustrates
the SMRN combined with LWGSODE method has better standard



Table 13
The training performance comparison for predicting the EEG time series. All results are the statistical results over 50 independent runs, where ‘‘Mean’’, ‘‘Best’’, ‘‘Worst’’, ‘‘Std.dev.’’
and ‘‘S.R.’’ are the mean, the best, the worst, the standard deviation and the success rate of the results.

XPSO GSO BP PSO GA LWGSODE LWGSODE + SMRN

Mean 0.0082 0.0171 0.0142 0.0081 0.0081 0.0094 0.0080
Best 0.0080 0.0080 0.0082 0.0080 0.0080 0.0082 0.0070
Worst 0.0087 0.0301 0.0287 0.0081 0.0087 0.0098 0.0081
Std.dev. 4.56E�4 0.0030 0.0045 7.60E�9 5.77E�4 7.23E�4 2.23E�4
S.R. (%) 100 15 25 100 100 80 100

Table 14
The testing performance comparison for predicting the EEG time series. ‘‘Mean’’, ‘‘Best’’, ‘‘Worst’’, ‘‘Std.dev.’’ are the mean, the best, the worst and the standard deviation of the
results.

XPSO BP PSO GA LWGSODE LWGSODE + SMRN

Mean 0.0067 0.0107 0.0066 0.0067 0.0069 0.0064
Best 0.0064 0.0066 0.0066 0.0064 0.0066 0.0063
Worst 0.0070 0.0145 0.0071 0.0070 0.0070 0.0067
Std.dev. 3.00E�4 0.0040 3.22E�7 3.00E�4 2.12E�4 2.00E�4

Table 15
The testing performance comparison for predicting the EEG time series. ‘‘MSE’’, ‘‘MAD’’, ‘‘MAPE’’ and ‘‘R2’’ are the mean square error, the mean absolute deviation, the mean
absolute percentage error and the coefficient of determination of the results.

SVR ANFIS MLR LWGSODE + SMRN

MSE 0.0090 0.0086 0.0087 0.0064
MAD 0.0687 0.0645 0.0708 0.0607
MAPE 0.1355 0.1212 0.1391 0.1144

R2 0.0055 0.7972 0.1378 0.6337

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Iteration number

Fi
tn

es
s

LWGSODE+SMRN

Fig. 12. The fitness mobility of LWGSODE for EEG time series prediction.

0 50 100 150 200 250 300
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

n

y

training testing

Training/testing data boundary(red)
Real model(blue)
LWGSODE+SMRN training model(green)
LWGSODE+SMRN testing model(green)

Fig. 13. The training and testing results of LWGSODE method for EEG time series
prediction.

H. Cui et al. / Knowledge-Based Systems 88 (2015) 195–209 207
deviation values compared with other methods except PSO. Over-
all, the novel SMRN model trained by the proposed LWGSODE
learning algorithm is effective to predict EEG time series.

From Table 15, it can be seen that SMRN combined with
LWGSODE has reached the best MSE; MAD and MAPE values for
EEG prediction series. Furthermore, the coefficient of determina-
tion of the proposed method is 0.6337 which is much better than
SVR and MLR. The ANFIS has the best R2, but its other values are
inferior to the proposed method.

The mobility of average best fitness for 50 runs is presented in
Fig. 12. Fig. 13 depicts the real model, the training and
testing approximation for EEG time series. The approximation
error for training and testing data sets has also been presented in
Fig. 14.



0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

training testing

er
ro

r

n

Training/testing data boundary(red)
LWGSODE+SMRN training error(green)
LWGSODE+SMRN testing error(green)

Fig. 14. The training and testing approximation error of SMRN model trained by
LWGSODE algorithm for EEG time series prediction.

208 H. Cui et al. / Knowledge-Based Systems 88 (2015) 195–209
5. Conclusions

In order to improve the SMN’s capability of time series predic-
tion, SMRN, a variant of SMN, is firstly proposed in the paper. After
that, GSO employed as a training method for SMN model has been
improved significantly in allusion to its disadvantages of prema-
ture convergence and poor robustness. In the first class, a variable
parameter, linearly decreasing inertia weight, is introduced into
the location update formula of standard GSO to keep balance
between the exploration and exploitation abilities of the original
algorithm. In the second class DE is hybrided with LWGSO to
enhance the swarm’s memory ability and swarm diversity, thus
further improving stability of agents’ movements during evolution
process. The numerical optimization results show LWGSODE con-
verge faster, more precisely and more stably than GSO itself, and
comparison with other state-of-the-art algorithms on several com-
monly used benchmark functions has also confirmed the proposed
algorithm’s superiority. Finally, when SMRN is trained by
LWGSODE, its function approximation capability has been tested
on three famous time series prediction cases. Simulation results
exhibit better or at least comparative performance as compared
with those of the SMN model which is trained by several other dif-
ferent algorithms. Thus, it can be concluded that the proposed
SMRN model effectively enhances the function approximation abil-
ity of the original SMN and the combination of SMRN with
LWGSODE gives a perspective approach for time series prediction.
In future work, we will focus on applying this novelly combined
method to solve other more complex approximation problems.
References

[1] Z.H. Guo, J. Wu, H.Y. Lu, J.Z. Wang, A case study on a hybrid wind speed
forecasting method using BP neural network, Knowl.-Based Syst. 24 (2011)
1048–1056.

[2] J.P. Donatea, P. Cortez, Evolutionary optimization of sparsely connected and
time-lagged neural networks for time series forecasting, Appl. Soft Comput. 23
(2014) 432–443.

[3] R. Chao, N. An, J.Z. Wang, L. Li, B. Hu, D. Shang, Optimal parameters selection
for BP neural network based on particle swarm optimization: a case study of
wind speed forecasting, Knowl.-Based Syst. 56 (2014) 226–239.

[4] W. Shen, X.P. Guo, C. Wu, D.S. Wu, Forecasting stock indices using radial basis
function neural networks optimized by artificial fish swarm algorithm, Knowl.-
Based Syst. 24 (2011) 378–385.

[5] P.J. Angeline, G.M. Sauders, An evolutionary algorithm that constructs
recurrent neural networks, IEEE Trans. Neural Networks 5 (1994) 54–65.

[6] Y. Ji, X. Li, S. Wang, An improved particle swarm optimization for evolving
feedforward artificial neural networks, Neural Process. Lett. 26 (3) (2007) 217–
231.
[7] J.R. Zhang, J. Zhang, T.M. Lok, M.R. Lyu, A hybrid particle swarm optimization-
back-propagation algorithm for feedforward neural network training, Appl.
Math. Comput. 185 (2007) 1026–1037.

[8] R.K. AlSeyab, Y. Cao, Differential recurrent neural network based predictive
control, Comput. Chem. Eng. 32 (2008) 1533–1545.

[9] R.K. AlSeyab, Y. Cao, Nonlinear system identification for predictive control
using continuous time recurrent neural networks and automatic
differentiation, Process Control 18 (2008) 568–581.

[10] M.M. Noel, B.J. Pandian, Control of a nonlinear liquid level system using a new
artificial neural network based reinforcement learning approach, Appl. Soft
Comput. 23 (2014) 444–451.

[11] X.L. Deng, P.F. Zhou, Nonlinear identification based on diagonal recurrent
neural network and particle filter, Nat. Comput. (2009) 217–221.

[12] R.N. Yadav, P.K. Kalra, J. John, Time series prediction with single multiplicative
neuron model, Appl. Soft Comput. 7 (2007) 1157–1163.

[13] W.C. Yeh, Orthogonal simplified swarm optimization for the series-parallel
redundancy allocation problem with a mix of components, Knowl.-Based Syst.
64 (2014) 1–12.

[14] E.M. Iyoda, H. Nobuhara, K. Hirota, A solution for the N-bit parity problem
using a single multi-plicative neuron, Neural Process. Lett. 18 (2003) 233–238.

[15] A. Yadav, D. Mishra, R.N. Yadav, S. Ray, P.K. Kalra, Time series prediction with
single integrate-and-fire neuron, Appl. Soft Comput. 7 (2007) 739–745.

[16] M. Schmitt, VC dimension bounds for higher-order neurons, in: Proceedings of
the Ninth International Conference on Artificial Neural Networks, 1999, pp.
563–568.

[17] Y. Zhou, X. Li, L. Gao, A differential evolution algorithm with intersect mutation
operator, Appl. Soft Comput. 13 (1) (2013) 390–401.

[18] H. Karshenas, R. Santana, C. Bielza, P. Larrafinaga, Regularized continuous
estimation of distribution algorithms, Appl. Soft Comput. 13 (5) (2013) 2412–
2432.

[19] Q. Cai, D.F. Zhang, W. Zheng, S.C.H. Leung, A new fuzzy time series forecasting
model combined with ant colony optimization and auto-regression, Knowl.-
Based Syst. 74 (2015) 61–68.

[20] D. Karaboga, B. Basturk, Artificial bee colony (ABC) optimization algorithm for
solving constrained optimization problems, Lect. Notes Comput. Sci. 4529
(2007) 789–798.

[21] K.N. Krishnanand, D. Ghose, Glowworm swarm optimization for simultaneous
capture of multiple local optima of multimodal functions, Swarm Intell. 3 (2)
(2009) 87–124.

[22] C.H. Dai, W.R. Chen, Y.H. Song, Seek optimization algorithm: a novel stochastic
search algorithm for global numerical optimization, Syst. Eng. Electron. 21 (2)
(2010) 300–311.

[23] M. Basu, Artificial immune system for dynamic economic dispatch, Electron.
Power Energy Syst. 33 (1) (2011) 131–136.

[24] A. Chatterjee, S.P. Ghoshal, V. Mukherjee, A maiden application of gravitational
search algorithm with wavelet mutation for the solution of economic load
dispatch problems, Bio-Inspired Comput. 4 (1) (2012) 33–46.

[25] X. Han, X. Chang, A chaotic digital secure communication based on a modified
gravitational search algorithm filter, Inform. Sci. 208 (2) (2012) 14–27.

[26] G. Sun, A. Zhang, A hybrid genetic algorithm and gravitational search
algorithm for image segmentation using multilevel thresholding, Pattern
Recognit. Image Anal. (2013) 707–714.

[27] D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization, IEEE
Trans. Evol. Comput. 1 (1) (1997) 67–82.

[28] E.D. Taillard, Few guidelines for analyzing methods, in: The Sixth
Metaheuristics International Conference, 2005, pp. 1–10.

[29] K.N. Krishnanand, D. Ghose, Glowworm swarm based optimization algorithm
for multimodal functions with collective robotics applications, Multiagent
Grid Syst. 35 (2006) 209–222.

[30] K.N. Krishnanand, D. Ghose, Theoretical foundations for rendezvous of
glowworm-inspired agent swarms at multiple locations, Robot. Auton. Syst.
(2008) 549–569.

[31] K.N. Krishnanand, D. Ghose, Glowworm swarm optimization: a new method
for optimizing multi-modal functions, Comput. Intell. Stud. 1 (1) (2009) 93–
119.

[32] R.C. Eberhart, Y.H. Shi, Comparing inertia weights and constriction factors in
particle swarm optimization, in: IEEE Congress on Evolutionary Computation,
2000, pp. 84–88.

[33] Y.H. Shi, R.C. Eberhart, Empirical study of particle swarm optimization, in:
Congress on Evolutionary Computation, 1999.

[34] G. Quarantaa, G. Carlo Maranob, R. Grecob, G. Monti, Parametric identification
of seismic isolators using differential evolution and particle swarm
optimization, Appl. Soft Comput. 22 (2014) 458–464.

[35] A. Kyprianou, K. Worden, M. Panet, Identification of hysteretic systems using
the differential evolution algorithm, Sound Vib. 248 (2001) 289–314.

[36] S. Salehi, A. Selamat, M.R. Mashinchi, H. Fujita, The synergistic combination of
particle swarm optimization and fuzzy sets to design granular classifier,
Knowl.-Based Syst. 76 (2015) 200–218.

[37] H. Tang, S. Xue, C. Fan, Differential evolution strategy for structural system
identification, Comput. Struct. 86 (21–22) (2008) 2004–2012.

[38] F.Z. Huang, L. Wang, Q. He, An effective co-evolutionary differential evolution
for constrained optimization, Appl. Math. Comput. 186 (1) (2007) 340–356.

[39] L.Z. Wang, H. Geng, P. Liu, K. Lu, J. Kolodziej, R. Ranjan, A.Y. Zomaya, Particle
swarm optimization based dictionary learning for remote sensing big data,
Knowl.-Based Syst. 79 (2015) 43–50.

http://refhub.elsevier.com/S0950-7051(15)00286-5/h0005
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0005
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0005
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0010
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0010
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0010
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0015
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0015
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0015
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0020
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0020
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0020
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0025
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0025
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0030
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0030
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0030
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0035
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0035
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0035
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0040
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0040
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0045
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0045
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0045
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0050
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0050
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0050
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0055
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0055
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0060
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0060
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0065
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0065
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0065
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0070
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0070
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0075
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0075
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0085
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0085
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0090
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0090
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0090
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0095
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0095
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0095
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0100
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0100
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0100
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0105
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0105
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0105
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0110
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0110
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0110
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0115
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0115
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0120
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0120
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0120
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0125
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0125
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0130
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0130
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0130
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0135
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0135
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0145
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0145
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0145
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0150
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0150
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0150
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0155
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0155
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0155
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0170
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0170
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0170
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0175
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0175
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0180
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0180
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0180
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0185
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0185
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0190
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0190
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0195
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0195
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0195


H. Cui et al. / Knowledge-Based Systems 88 (2015) 195–209 209
[40] A. Salman, A.P. Engelbrecht, M.G.H. Omran, Empirical analysis of self-adaptive
differential evolution, Oper. Res. Int. J. 183 (2) (2007) 785–804.

[41] R.L. Becerra, C.A. Coello, Cultured differential evolution for constrained
optimization, Comput. Methods Appl. Mech. Eng. 195 (2006) 4303–4322.

[42] K. Zielinski, R. Laur, Constrained single-objective optimization using
differential evolution, in: IEEE Congress on Evolutionary Computation, 2006,
pp. 223–230.

[43] X.C. Zhao, A perturbed particle swarm algorithm for numerical optimization,
Appl. Soft Comput. 10 (1) (2010) 119–124.

[44] X. Yuan, J. Zhao, Y. Yang, Y. Wang, Hybrid parallel chaos optimization
algorithm with harmony search algorithm, Appl. Soft Comput. 17 (2014) 12–
22.

[45] Y. Wang, J. Zeng, Z. Cui, X. He, A novel constraint multi-objective artificial
physics optimization algorithm and its convergence, Innovative Comput. Appl.
3 (2) (2011) 61–70.
[46] E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, GSA: a gravitational search
algorithm, Inform. Sci. 179 (13) (2009) 2232–2248.

[47] X. Han, X. Chang, A chaotic digital secure communication based on a modified
gravitational search algorithm filter, Inform. Sci. 208 (2) (2012) 14–27.

[48] A. Chatterjee, S.P. Ghoshal, V. Mukherjee, A maiden application of gravitational
search algorithm with wavelet mutation for the solution of economic load
dispatch problems, Bio-Inspired Comput. 4 (1) (2012) 33–46.

[49] L. Zhao, Y. Yang, PSO-based single multiplicative neuron model for time series
prediction, Expert Syst. Appl. 36 (2009) 2805–2812.

[50] H. Liu, Z.X. Cai, Y. Wang, Hybridizing particle swarm optimization with
differential evolution for constrained numerical and engineering optimization,
Appl. Soft Comput. 10 (2010) 629–640.

[51] H.S. Wang, X.F. Yan, Optimizing the echo state network with a binary particle
swarm optimization algorithm, Knowl.-Based Syst. 86 (2015) 182–193.

http://refhub.elsevier.com/S0950-7051(15)00286-5/h0200
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0200
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0205
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0205
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0215
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0215
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0220
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0220
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0220
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0225
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0225
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0225
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0230
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0230
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0235
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0235
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0240
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0240
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0240
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0245
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0245
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0250
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0250
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0250
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0255
http://refhub.elsevier.com/S0950-7051(15)00286-5/h0255

	A novel single multiplicative neuron model trained by an improved glowworm swarm optimization algorithm for time series prediction
	1 Introduction
	2 The models of single multiplicative neuron and single multiplicative recurrent neuron
	2.1 Single multiplicative neuron (SMN)
	2.2 Single multiplicative recurrent neuron (SMRN)

	3 The glowworm swarm optimization algorithm and its variants
	3.1 Glowworm swarm optimization (GSO) algorithm
	3.1.1 Luciferin update phase
	3.1.2 Movement phase
	3.1.3 Local-decision range update phase

	3.2 The differential evolution algorithm
	3.2.1 Mutation
	3.2.2 Crossover
	3.2.3 Selection

	3.3 The proposed algorithm
	3.3.1 The LWGSO algorithm
	3.3.2 The proposed LWGSODE algorithm


	4 Results and discussion
	4.1 Unconstrained multidimensional functions optimization
	4.2 Time series prediction problems
	4.2.1 Box–Jenkins (BJ) gas furnace time series prediction problem
	4.2.2 Mackey–Glass (MG) time series prediction problem
	4.2.3 Electroencephalogram (EEG) time series prediction problem


	5 Conclusions
	References


