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The conventional Broyden–Fletcher–Goldfarb–Shanno (BFGS) method used to solve the cost function of a phase
diversity (PD) algorithm converges to a global optimum only when the cost function is convex. We present a
modified BFGS method, which has fine global convergences for both convex and nonconvex functions, guarantees
that the solutions will converge to the global minimum, corresponding to the actual wavefront coefficients,
and apply it to minimize the PD cost function to co-phase the segmented active optics system and recover
the unknown object under different noise levels. The noise amplification effect on the accuracy of the algorithm
is removed by our proposed estimated strategy of the regularization parameter for the PD problem. The vast
contrast results demonstrate that the modified method has a much higher accuracy than the conventional
BFGS method for the nonconvex condition even under a considerably high noise level. © 2015 Optical

Society of America
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1. INTRODUCTION

The trend in next-generation large aperture telescope design
will be segmented mirror synthetic aperture optical (SAO) sys-
tems. Classic examples of such systems include the James Webb
space telescope [1] and the Keck telescope [2]. The segmented
primary mirror stitches a series of submirrors together to reach
the optimal capabilities equivalent to a monolithic one while
avoiding the considerable problems encountered in the fabri-
cation of a monolithic primary mirror with apertures larger
than 8 m. However, high-quality images equivalent to those
of a monolithic mirror can only be achieved if co-phasing of the
segmented mirrors occurs. Co-phasing a segmented mirror is to
remove misalignments resulting from relative piston aberra-
tions between segments and tip-tilt aberrations of each seg-
ment, which is one of the most important problems related to
segmented telescopes.

Considerable effort has been directed toward the co-phasing
of the segmented mirror to obtain nearly diffraction-limited
performance from the total aperture. Many methods have been
proposed for sensing piston and tip-tilt misalignments, such as
modified Shack–Hartmann wavefront sensing (WFS) [3], the
Mach–Zehnder interferometer sensor [4], the pyramid sensor

[5], curvature sensing [6], the Zernike phase contrast sensor
[7], and phase diversity (PD) WFS [8,9]. PD WFS stands out
in the development of technologies for the co-phasing of SAO
systems because traditional wavefront reconstruction using
methods such as Shack–Hartmann WFS tend to break down
at the mirror segment edges. Meanwhile, the additional hard-
ware required for this technique is modest and it is highly sen-
sitive to the continuous or discontinuous input of a distorted
wavefront for a point source or extended scene.

The PD algorithm is an a posteriori, image-based wavefront-
sensing technique that utilizes a pair of simultaneously collected
images with a known phase diversity to construct the optimi-
zation cost function based on the maximum likelihood or
least squares estimation theory, then jointly estimates both
the system aberrations and the unknown object by minimizing
the constructed cost function. Conventional nonlinear optimi-
zation methods are employed to find those misalignments that
are consistent with both degraded images, such as the gradient
descent method, conjugate gradient method, quasi-Newton
method, neural network algorithm, and genetic algorithm
[10]. A common quasi-Newton method called the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) method, which was
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brought up by Broyden, Fletcher, Goldfarb, and Shanno in
1970, is widely recognized as one of the most effective methods
to solve unconstrained optimization problems and has become
a popular way to solve engineering optimization problems due
to its fine stability and fast convergence. Currently, the BFGS
method has an impeccable global convergence property for
convex functions. However, for nonconvex functions this
method will fall into local minimums and cannot yield a global
optimization solution. Aimed at the situation that the cost
functions are nonconvex, a modified BFGS method is pre-
sented in this paper and applied to sense the co-phase errors
and restore the unknown object for segmented active optics
systems under different noise levels. In order to overcome
the noise amplification effect on the accuracy of the modified
algorithm, we also present an efficient and feasible technique to
estimate the regularization parameter for the regularized PD
cost function.

This paper is organized as follows. In Section 2 we review
the PD algorithm for segmented telescopes and introduce the
modified BFGS method and estimate strategy of the regulari-
zation parameter. In Section 3 we describe the numerical
simulations that compare the modified BFGS method to the
conventional BFGS method under different noise levels and
give the statistics results of the contrast experiments. In
Section 4, we summarize and conclude the paper.

2. THEORY

This section first describes the basic theory of the PD algorithm
and then presents the modified BFGS optimization method
and estimate strategy of the regularization parameter.

A. Statement of the PD Algorithm
The PD algorithm utilizes multichannel images of the same
target to jointly estimate both the system aberrations and
the unknown object. One of these images is recorded in the
focal plane of the optical system degraded by some unknown
aberrations, such as turbulence or telescope optical aberration;
the other of these images is collected in a separate channel that
introduces an extra known aberration to perturb the infocus
image, such as defocus, astigmatism, or coma. Figure 1 shows
the optical layout of the phase diversity method used for the
segmented active optics system. The quadratic defocus is intro-
duced here since it is easier to obtain the out-of-focus image
and the defocus length can be precisely measured. The use

of multichannel images can effectively resolve the absence of
the solution’s uniqueness by adding constraints.

When the object or scene is illuminated with spatially in-
coherent quasi-monochromatic light, the imaging system can
be simplified to a linear shift-invariant system, leading to
the following basic imaging equation,

dk�u; v� � o � sk�u; v� � nk�u; v� k � 1; 2…K ; (1)

where o is the true object, sk�u; v� and nk�u; v� are the point
spread function (PSF) and additive noise term of the kth
channel, respectively, and dk�u; v� is the kth detected image.
The asterisk denotes two-dimensional (2D) convolution and
�u; v� represents the coordinate vector in the image plane.

In order to simplify the situation, just like Keck [11] all of
the subapertures are assumed to have the same shape and are
perfect without high-order aberrations except co-phasing
errors, namely pistons and tip-tilts. Thus, the generalized pupil
function can be shown as

P�ε;η��
XN
n�1

pn�ε;η�exp
�
i
2π

λ
�enZ 1� txnZ 2� tynZ 3�

�
; (2)

where Z 1, Z 2 and Z 3 are piston, tip, and tilt aberrations in the
Zernike polynomials, respectively, en, txn, and tyn are the cor-
responding aberration coefficients of the nth submirror, respec-
tively, �ε; η� is the coordinate vector in the pupil plane, and pn is
the binary function of the nth subaperture.

Under the near-field approximation, the PSF of the kth
channel is the squared modulus of the coherent impulse
response function given by Eq. (3),

sk�u; v� � jhk�u; v�j2;

�
����I
��XN

n�1

pn�ε; η� exp
�
i
2π

λ
�enZ 1

� txnZ 2 � tynZ 3�
��

eiϕdk

�����
2

; (3)

where hk�u; v� denotes the coherent impulse response function
and ϕdk is the known defocused aberration introduced by the
kth defocused length, which is defined as Eq. (4),

ϕPV
dk �

�
0 k � 1;
2π
λ

ΔZ
8�F #�2 k � 2; �4�

where PV stands for the peak-to-valley value and ΔZ is the
known defocus length.

In order to estimate the coefficients of the Zernike aberra-
tions and the unknown object, a cost function, presented in
Eq. (5), is used to fit the data such that the total root mean
square (RMS) difference between the images that are actually
collected in the different channels and those assumed by the
imaging mode based on the least squares approach is

L � 1

2

�XK
k�1

‖dk�u; v� − o�u; v� � sk�u; v�‖2
�
� γ

2
‖o‖2; (5)

where ‖ • ‖2 represents the norm squared, the adding con-
straint γ

2 ‖o‖
2, called the regularization function, that simply

fixes the norm of the object estimate, thus preventing wide os-
cillations that otherwise might occur due to noise amplification,
and γ is a nonnegative regularization parameter.Fig. 1. Optical layout for the phase diversity method.
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According to the convolution theorem and the Parseval
theorem, the cost function can be rewritten in the frequency
domain as Eq. (6),

L � 1

2

�XK
k�1

‖Dk�f u; f v� − O�f u; f v�Sk�f u; f v�‖2
�

� γ

2
‖O‖2; (6)

where Dk, O, and Sk are discrete Fourier transforms of dk, o,
and sk, respectively, and �f u; f v� is the coordinate vector in the
frequency domain. Recall that Sk has the role of the optical
transfer function (OTF) of the kth image plane.

In order to reduce the dimensions of the parameter space
over which a numerical optimization is performed, the partial
differential of the cost function L with respect to the object
frequency spectrum O is set to zero, and then the regularized
object estimate is obtained as shown below:

O �
PK

k�1 DkS�kPK
k�1 jSkj2 � γ

: (7)

Substituting this expression into Eq. (6) yields the new cost
function shown in Eq. (8) that does not explicitly rely on
the object estimate:

L �
X
f ∈χ

X
k

jDkj2 −
X
f ∈χ

����PkDkS�k

����
2

P
k
jSkj2 � γ

: (8)

Thus, the problem of reconstructing aberration coefficients of
the wavefront is transferred to optimizing the cost function,
namely to finding the coefficient set for which the cost function
[Eq. (8)] is a global minimum.

B. Modified BFGS Method
A nonlinear optimization routine is used to minimize this cost
function with respect to the unknown parameters. The BFGS
method is commonly used due to its fast convergence and
fine stability. The conventional BFGS method [12] has a good
global convergence for convex functions; however, when the
cost function is nonconvex, the solution will fall into local min-
imums, which leads to the failure of reconstructing the wave-
front and recovering the object. This paper presents a modified
BFGS method based on paper [13]; it has a good global con-
vergence for nonconvex unconstrained optimization problems,
which guarantees that the solution will converge to the global
minimum, corresponding to the actual aberration coefficients.
The modified BFGS method presented in this paper is
shown below.

1. Make initial estimates for the aberration coefficient set
x0 ∈ Rn and give the accuracy threshold ε. Set B0 � I and
k � 0, where I is the identity matrix and k is the number
of iterations.

2. Determine the search direction dk by solving the linear
equation [Eq. (9)],

Bkd k � gk � 0; (9)

where Bk denotes the approximation to the Hessian matrix and
gk is the gradient vector of the cost function. Thus, dk �
−B−1

k · gk.

3. Utilize the Armijo inexact line search, given by Eq. (10),
to determine the search stepsize λk,

f �xk � λkd k� ≤ f �xk� � σλkgTk d k; (10)

where xk is the coefficient set of the kth iteration, f �•� is the
cost function, σ is a positive constant, and T denotes the trans-
position of the matrix.

4. Make sk � λkd k, then xk�1 ≔ xk � sk.
5. If ‖gk�1‖ < ε, terminate the algorithm.
6. Calculate yk according to Eq. (11):

yk � �gk�1 − gk� � μ��gk�1 � gk�T sk
− 2�f �xk�1� − f �xk���sk∕‖sk‖2: (11)

The second term on the right side is the amendment term,
where μ is a positive correction parameter.

7. Modify Bk according to the following correction
principle:

if yTk sk∕‖sk‖2 ≥ c‖gk�1‖α,

Bk�1 � Bk − BksTk Bk∕�sTk Bksk� � yky
T
k ∕�yTk sk�; (12)

else Bk�1 � Bk; where c and α are both correction parameters.
8. Let k ≔ k � 1, go to step 2 until the number of iter-

ations k reaches the set value.

In this paper, the relevant parameters used in the modified
BFGS method are : σ � 0.8; if yTk sk > 0, c � 10−6, else c � 1;
if ‖gk�1‖ ≥ 1, α � 0.01, else α � 2; μ � 3; the accuracy
threshold ε � 10−6, and the maximum number of iterations
is set to 500.

C. Estimate Strategy of the Regularization
Parameter
In order to improve the realism of the simulations, the modified
algorithm is verified under different noise levels. However, the
noise amplification problem must be overcome to remove its
influence on the accuracy of the algorithm. One of the most
effective techniques used to overcome this problem is the regu-
larization technique.

Many strategies have been developed for the selection of the
regularization parameter, such as the cone filter method [14],
the constrained least squares (CLS) approach [15], the marginal
estimator method [16], the joint maximum a posteriori metric,
and Wiener filter regularization [17]. The cone filter method
needs to choose the cutoff frequency that is related to the
signal-to-noise ratio (SNR) of the detected images. The CLS
approach needs to know the detector noise level, and the other
three of the regularized metrics require a priori knowledge of
both the object and the noise power spectra. However, both the
object and the detector noise level cannot be known in the PD
algorithm. Thus, how to accurately estimate these two param-
eters has become a key issue to overcome noise amplification
effects. Some researchers assume the ratio of these two param-
eters is a constant, even though the power spectrum typically
varies from low to high spatial frequencies by orders of mag-
nitude; some researchers estimate the object and noise power
spectra by constructing other cost functions [16], which is
much overhead. We propose a more feasible and efficient way
to estimate the object and noise power spectra based on the
Wiener filter regularization method, which makes full use of
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the information of these two parameters to overcome the noise
amplification problem.

The Wiener filter regularization method defines the kth
frame of a multiframe Wiener filter as

W k�f u; f v� �
S�k �f u; f v�

c ΨN
Ψo�f u;f v� �

PK
m�1 jSm�f u; f v�j2

; (13)

where ΨN and Ψo�f u; f v� are the noise and object power spec-
tra, respectively, c is a constant that can be used to “tune” the
filter to emphasize either image sharpening or noise suppres-
sion. Thus, the regularized object estimate function and cost
function can be rewritten as Eqs. (14) and (15):

O �
PK

k�1 Dk�f u; f v�S�k �f u; f v�
c ΨN
Ψo�f u;f v� �

PK
m�1 jSm�f u; f v�j2

; (14)

L �
X

f u;f v∈χ

XK
k�1

jDk�f u; f v�j2

−
X

f u;f v∈χ

����PK
j�1 Dj�f u; f v�S�j �f u; f v�

����
2

PK
l�1 jSl �f u; f v�j2 � c ΨN

Ψo�f u;f v�
: (15)

We first take the ratio of the noise power spectrum and the
object power spectrum as a constant set by prior experience as
the regularization parameter. Then, an approximate estimate of
the power spectrum of the object can be gained through min-
imizing the regularized cost function. Meanwhile, the noise
power spectrum can also be estimated based on the estimated
object power spectrum through Eq. (16),

σ̂2nk �
1

MN

X
u;v

�dk�u; v� − ô�u; v� � sk�u; v��2; (16)

where σ̂2nk is the estimated noise variance of the kth detected
image, ô is the estimated object, and M and N are the number
of rows and columns in the array. Thus, a more accurate regu-
larized matrix can be estimated by the ratio of the noise and
object power spectra, which are ultimately substituted in
Eq. (15) to reconstruct the coefficients of the co-phase errors
and restore the object. This method takes full advantage of the
knowledge of noise and object power spectra and the only ex-
pense is to estimate the power spectrum of the object, which
can be realized by minimizing the existing Eq. (8) instead of
constructing other cost functions and solving the minimum op-
tima of them, so it is more feasible and efficient.

3. NUMERICAL SIMULATION

In this section, a number of vast numerical simulations are
processed to verify the effectiveness and accuracy of the modi-
fied algorithm by measuring the co-phase errors of the seg-
mented primary mirror and recovering the unknown object
under different noise levels. Contrast experiments with the con-
ventional BFGS method are also processed.

First, the relevant parameters of the segmented active optics
simulation system are as follows: the primary mirror consists of
6 hexagon submirrors; the effective apertures of the primary
mirror D and submirror d are 4 m and 1.46 m, respectively;
the focal length is 40 m, thus the F # of the optical system is 10.

The monochromatic wavelength is 570 nm and the defocused
length is set to 600λ. The construction of the segmented pri-
mary mirror is shown in Fig. 2; the mark number is the index of
subapertures.

In order to test the provided methods, 10 different images
are used as observed objects in the vast number of experiments.
Only five typical objects are listed in Fig. 3, for brevity.
Figure 3(a) stands for point source objects, such as stars, to
be observed; Figs. 3(b) and 3(c) represent objects only occupy-
ing part of the CCD target surface; specifically, the object is
located in the middle of the target surface and is distinct
from the background; Figs. 3(e) and 3(f ) are on behalf of
the panoramic images. The size of all of the tested images
is 256 pixels × 256 pixels.

In order to verify the algorithm under different noise levels,
we set the image peak pixel to values between 150 e− and
3000 e− to get five different peak pixel SNRs excluding the
noise-free situation. Intensity-dependent Poisson-distributed
photon noise was then added along with zero-mean, additive
Gaussian CCD readout noise with a standard deviation of
15 e−. A dark current of 0.1 e−∕s was assumed over a 1 s in-
tegration time. The peak pixel SNR is defined as

SNR � 20 log10
P�u; v�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2read � δ2dark

q ; (17)

Fig. 2. Construction of the primary mirror and dimensions of the
segmented subaperture.

Fig. 3. Five typical objects to be observed: (a) point source,
(b) marine satellite, (c) resolution test panel, (d) camera man, and
(e) satellite map of an urban scene.
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where P�u; v� is the peak pixel value of the noise-free image,
δ2read and δ2dark are the variances associated with the readout
noise and the dark current noise, respectively. Table 1 shows
the peak pixel photon count and the corresponding SNRs.

We first use the urban scene in Fig. 3(e) to illustrate the
simulation process, then give the statistics results of all ex-
periments.

A distorted segmented active optics system with aberration
is generated by a set of random piston and tip-tilt errors, shown
in Fig. 4. The corresponding degraded infocus and out-of-focus
images after this optical system under a noise level of 40 peak
pixel SNR are shown in Fig. 5.

According to the presented algorithm, the regularization
parameter is set to 10−5 and substituted to Eq. (8) first. This
constant is set empirically and validated by comparing the val-
ues of the cost function without and with noise with respect to
one term of the aberration coefficients shown in Fig. 6. It shows
that the shape of the cost function and the global minimum
basically have no changes for both conditions, which proves
the effectiveness of this constant during the optimization proc-
ess. Then, minimizing the regularized cost function by the
modified BFGS method, an approximate estimation of the

object is obtained and shown in Fig. 7. The noise power spec-
trum is estimated by Eq. (16) at the same time. Substitution of
the ratio matrix of the noise power spectrum and object power
spectrum back into Eq. (15) and setting the constant c � 1, the
coefficients of the co-phase aberrations of the segmented pri-
mary mirror are reconstructed and the object is restored by
solving the minimum optima of the cost function through
the modified BFGS method.

Table 2 gives the reconstructed coefficients of the co-phase
errors and corresponding residual errors. Figure 8 shows the
reconstructed phase distribution and residual phase distribu-
tion. Figure 9 gives the recovered object.

In order to evaluate the experimental results, the root mean
square error (RMSE) on the phase and on the object are defined
as Eqs. (18) and (19), respectively. A smaller RMSE value
indicates a higher wavefront detection accuracy and a better
image quality,

RMSEϕ �
�PK

k�1 �êk − ek�2 � �t̂ xk − txk�2 � �t̂ yk − tyk�2
3 × K

�1∕2
;

(18)

RMSEo �
�PM

i�1

PN
j�1 �ô�i; j� − o�i; j��2PM

i�1

PN
j�1 o�i; j�2

�1∕2

; (19)

where êk, t̂ xk, and t̂ yk are the reconstructed coefficients of the
co-phase errors of the kth submirror, respectively, K is total
number of submirrors, ô is the recovered object, and M and
N are the number of rows and columns in the array.

Table 1. Number of Photons in Peak Pixel and
Corresponding SNRs

Noise added: photon noise, readout noise, and dark current
noise

Peak pixel photons (e−) 150 300 750 1500 3,000
Peak pixel SNR 19 24 32 40 47

Fig. 4. Phase distribution of the original distorted wavefront.

Fig. 5. Degraded (a) infocus and (b) out-of-focus images under a 40
peak pixel SNR noise level.
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Fig. 6. Plots of the cost function with respect to one term of aber-
ration coefficients (a) without and (b) with noise when γ � 10−5.

Fig. 7. Restored object using the regularization parameter 10−5.
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From Table 2, the RMSE on the phase estimates is
1.7e − 3λ. The RMSE on the objects of Figs. 7 and 9 are
64.42% and 23.96%, respectively. It can be seen that the

presented algorithm can measure the co-phasing errors with
a high accuracy and the residual errors are totally within the
acceptable range for the co-phasing of the segmented mirrors.
A comparison of Figs. 7 and 9 indicates that the quality of
the restored image obtained by using our proposed estimated
regularization parameter is far better than that by using the
regularization parameter as a constant.

As in the example above, this paper processed simulation
experiments for the 10 objects under the five different noise
levels listed in Table 1 and in a noise-free situation. For each
object under one certain noise level, 50 sets of random co-phase
errors restricted to within	0.5λ, and a corresponding distorted
phase limited to 2π rad, are tested to detect the co-phase errors
and restore the object by using the modified BFGS method.
The statistics results of the 3000 experiments are summarized
below.

Table 3 exhibits the effectiveness and accuracy of the pro-
posed methods in measuring the co-phase errors of the seg-
mented primary mirror. The content of the table gives the
ratio of the effective reconstructions of the co-phase error co-
efficients, where the RMSE on the phase of ≤0.01λ are con-
sidered as effective reconstructions.

Table 3 shows that the effective reconstructions of the co-
phase error coefficients are maintained more than 80% when
the noise level reaches a 32 peak pixel SNR. However, the
effective reconstructions ratio drops rapidly when the noise
level reaches a 19 peak pixel SNR.

Figure 10 shows the effectiveness and accuracy of the pre-
sented methods in recovering the image for the system when
using the marine satellite in Fig. 3(b) as the observed object. It

Table 2. Reconstructed Coefficients of the Co-phase Errors and Residual Errors

Pupil 1 Pupil 2 Pupil 3 Pupil 4 Pupil 5 Pupil 6

Actual coefficients of co-phase errors (λ)

Piston 0 −0.19 0.13 0.25 0.29 0.33
Tip 0 0.25 −0.3 0.14 0 0
Tilt 0 −0.23 0.28 −0.17 −0.27 0
Reconstructed coefficients of the co-phase errors (λ), 40 SNR noise

Piston 0 −0.1902 0.1283 0.2527 0.2936 0.3285
Tip 0 0.2502 −0.2997 0.1376 1.3350e − 4 −0.0011
Tilt 0 −0.2314 0.2815 −0.1690 −0.2677 8.9277e − 4
Corresponding residual errors (λ)

Piston 0 0.0002 0.0017 −0.0027 −0.0036 0.0015
Tip 0 −0.0002 −0.0003 0.0024 −0.0001 0.0011
Tilt 0 0.0014 −0.0015 −0.0010 −0.0023 −0.0009

Fig. 8. (a) Reconstructed phase distribution and (b) residual phase
distribution.

Fig. 9. Final recovered object image.

Table 3. Statistics Results of the Reconstruction Coefficients of the Co-phase Errors

maxfje1j;jtx1j;jty1j;…jekj;jtxkj;jtykj;…je6j;jtx6j;jty6jg
Effective Reconstructions Ratio ≤0.3λ ≤0.35λ ≤0.4λ ≤0.45λ ≤0.5λ

Peak pixel SNR Noise-free 100% 100% 100% 100% 100%
47 100% 100% 100% 100% 100%
40 100% 100% 99% 97% 96%
32 91% 89% 86% 85% 83%
24 79% 77% 74% 72% 69%
19 66% 61% 57% 53% 51%
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exhibits the recovered images of the marine satellite object under
6 different noise levels. The RMSE values on the six objects are
5.21%, 9.03%, 15.66%, 26.46%, 37.09%, and 49.78%, re-
spectively. For the visual effect, it can be seen that as the noise
level increases, the restored images have a lower contrast and
more blurred edges, but the details of the restored images can
still be distinguished even under a very high noise level.

In order to contrast the modified BFGS algorithm and the
conventional BFGS method, we rerun the 3000 experiments
using the conventional BFGS method to minimize the PD cost
function under the exact same conditions. The contrast statis-
tics results are summarized as below.

Figure 11 gives the statistics results of a set of 2500 RMSE
values on the phase estimates by using a modified BFGS
method and a corresponding set of 2500 RMSE values using
the conventional BFGSmethod under five different noise levels
in the form of error bars. The extra-large RMSE values on the
phase estimates under different noise levels when using conven-
tional BFGS method are caused by nonconvex conditions. It
can be seen that the modified BFGS effectively promoted
the nonconvex PD cost function out of local optima and con-
verged to the global optimum even under very high noise level.

Figure 12 represents the scatterplots of a set of 500 RMSE
values on the phase estimates by using the modified BFGS
method and a corresponding set of 500 RMSE values using
the conventional BFGS method under a totally noise-free
situation with respect to the PV values of the co-phase error
coefficients. It exhibits the accuracy of the modified algorithm
aimed at nonconvex conditions more purely since it excluded
the noise influence. The RMSE value of the residual co-phase
errors using the modified BFGS method is around 10−4 orders
of magnitude under the noise-free situation while that using the
conventional BFGS method almost approaches 0.1λ for non-
convex conditions.

Figure 13 presents the convergence curves of the PD cost
function using the modified BFGS and conventional BFGS
for a nonconvex situation. It can be seen that, for a nonconvex
situation, the conventional BFGS is stuck at a local optimum
while the modified BFGS converges to the global optimum,
corresponding to the true coefficients of the co-phase errors.

4. CONCLUSION

In this paper, we presented a modified BFGS method aimed at
the nonconvex cost functions. It has fine global convergences
for both convex and nonconvex functions and guarantees that

Fig. 10. Recovered images of the marine satellite object under dif-
ferent noise levels: (a) noise free, (b) 47 SNR, (c) 40 SNR, (d) 32 SNR,
(e) 24 SNR, and (f ) 19 SNR.
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Fig. 11. Contrast error bars of the set of 2500 RMSE values on the
phase estimates using the modified BFGS and the corresponding 2500
set using conventional BFGS under five noise levels.

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

PV value of the coefficients of the co-phase error ( )

ph
as

e 
es

tim
at

es
 e

rr
or

: R
M

S
E

 v
al

ue
 (

)

conventional BFGS

modified BFGS

Fig. 12. Contrast scatterplots of the set of 500 RMSE values on
phase estimates using the modified BFGS and the corresponding
500 set using conventional BFGS under a noise-free situation.

0 50 100 150 200 250

2.24

2.26

2.28

2.3

2.32

2.34

2.36

2.38

2.4

number of  iterations

th
e 

va
lu

e 
of

 P
D

 c
os

t f
un

ct
io

n

conventional BFGS
modified BFGS

Fig. 13. Contrast plots of the convergence curves of the PD cost
function using the modified BFGS and conventional BFGS for a non-
convex situation under a 32 peak pixel SNR noise level.
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the solutions will converge to the global minimum, correspond-
ing to the actual coefficients of the co-phase errors. We applied
it to minimize the PD cost functions for co-phasing the
segmented active optics system and recovering the unknown
object, where different noise levels were included to improve
the realism of the simulations. In order to overcome the noise
amplification effect on the accuracy of the modified algorithm,
we also provided an efficient estimate strategy of the regulari-
zation parameter for the PD problem. Large numbers of con-
trast experiments about different objects degraded by different
optical aberrations under different noise levels were processed
using the modified BFGS method and conventional BFGS
method. The statistics results show that the modified BFGS
method can effectively promote the nonconvex PD cost func-
tions out of the local optima and converge to the global opti-
mum even under a very high noise level, and thus has a much
higher accuracy than the conventional BFGS method for non-
convex situations. For different objects under different system
aberrations, when the peak pixel SNR is more than or equal
to 32, the accuracy of the reconstruction of the aberration co-
efficients can reach 1% of the wavelength in more than 80%
probability using the modified algorithm for both convex and
nonconvex conditions. The future work will be concentrated
on establishing an optical platform in the lab to verify the work
presented in this paper.

Funding. National Natural Science Foundation of China
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