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a b s t r a c t

The conformational, orientational and dynamical properties of single flexible ring polymers under simple
shear flow are studied by a hybrid multiparticle collision dynamics simulation method. We found that
contributing to the continuous stretching and constant alignment in the tank-treading motion, ring
polymers undergo weaker deformation and orientation in the gradient direction, and show similar be-
haviors in the vorticity direction compared with their linear analogues. We also present the mechanisms
of both tumbling and tank-treading motions based on the time trajectories of relative deformation and
orientation. Furthermore, the simulation results reveal that the special structures and unique dynamics
of ring polymers in simple shear flow have an obvious influence on rheological properties, which are
qualitatively different from the properties of linear polymers.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Ring polymers as one of the common forms have now been
discovered in bacteria, plants and animals, such as plasmid,
genome, actin, and polyose [1e5]. It is believed that the absence of
end groups results in all monomers in a ring polymer are identical
and the whole polymer prefers special conformations and dy-
namics [6]. This is not the case for linear polymers since the
translational invariance along the chain is suddenly interrupted
due to the terminal ends [1,7]. The rather extensive studies have
been devoted to investigate the conformational and dynamical
properties of linear polymers under shear flow [8,9], while the
flow-induced behaviors of ring chains are still poorly understood. A
deep insight into the basic conformational and dynamical proper-
ties of ring polymers in simple shear flow is highly needed in awide
range of biophysical fields, e.g. segregation of the cyclic genome
from bacteria [4], migration of a cyclic DNA in a nanochannel [10]
and ejection of viral DNA into the host [5].

The conformations as well as dynamics of individual linear
polymers have been comprehensively understood in theories
ciac.ac.cn (J. Chen).
[11e14], experiments [15e19] and simulations [20e24]. It is a well-
known fact dating back to 1974 that De Gennes described the coil-
stretch transition of linear polymer chains in shear flow [11]. The
theory predicted that when a certain critical value of the velocity
gradient is reached, the fluid viscous forces are greater than the
entropic elastic retraction forces and the chain is stretching.
Traditional experiments involving optical techniques such as bire-
fringence and light and neutron scattering have sought average
structural information of linear polymers in shear flow [25,26]. Chu
and his co-workers have shed light on the conformations and dy-
namics of an individual DNAvia fluorescencemicroscopy [17,27,28].
They observed directly that DNA molecules indeed substantially
stretch and continually undergo end-over-end tumbling motion as
reflected in large conformational fluctuations. More recently,
Steinberg groups studied the orientation angles of l-DNA relative
to the shear plane by particle image velocimetry measurements
[19]. They found that the strong deviation of the probability dis-
tribution functions of the orientation angles from Gaussian distri-
bution is in good accord with theory. Besides experiment and
theory, Larson et al. studied the deformations and tumbling dy-
namics of individual polymer chains in shear flow via Brownian
dynamics (BD) simulations [23,29]. They found that the decrease in
chain stretch ceases at sufficiently large flow shears. Furthermore,
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the knowledge of the flow-induced conformational information
can be used to calculate rheological properties such as shear vis-
cosity [30,31]. Doyle et al. used BD to simulate rheological prop-
erties by conformational properties such as shear viscosity and
normal stress differences [31].

The flow-induced behaviors of ring polymers are generally
related to separation required for identification, quantification,
purification, and fractionation [32e36]. Zheng and Yeung separated
circular fX174 RF DNA from lDNA, based on their radial migration
in capillary electrophoresis with applied hydrodynamic flow [36].
Cramail and his coworkers purified the synthesis macrocyclic
polystyrenes from the residual linear precursor and byproducts by
liquid chromatography [34]. Although the flow-induced behaviors
are very important in separation processes, the conformations as
well as dynamics of single flexible ring polymers in shear flow have
still remained elusive. Cifre et al. studied the stretching behaviors of
ring polymers in simple shear flow by BD simulation and demon-
strated that the shear dependence of the average extension of ring
polymers is analogous to that of linear polymers [37]. Recently, our
groups studied the dynamics of individual ring polymers in simple
shear flow by the multiparticle collision dynamics (MPCD) method
[38,39]. The results revealed that individual ring polymers exhibit
two primary types of motion, continually end-to-end tumbling like
linear polymers and tank-treading like fluid droplets and capsules.
Frey and his co-workers also found the two types of motion and
used the time evolution of the orientation angle to distinguish
thesemotions [40]. Though various novel behaviors of ring polymer
in shear flow have been revealed, qualitative and quantitative
studies on how the conformation and orientation of single flexible
polymer chains response to shear flow are still far from clear.

Computer simulation plays an important role in studying
instantaneous dynamics of a single polymer in shear flow since
simulation can provide a bridge between theory and experimental
observation [41,42]. In this work, we present the detailed simula-
tion results of the conformational, dynamical, and rheological
properties of single flexible ring polymers in steady shear flow. We
apply a hybrid simulation approach, combined MPCD method
describing the solvent with molecular dynamics simulation (MD)
for the polymers [43,44]. As has been shown, theMPCDmethod has
the virtue of taking into account hydrodynamic interactions and
thermal fluctuations, which is suited to study the non-equilibrium
properties of polymers under shear flow [45e50].

The outline of the paper is as follows: In Section 2, we describe
the model and simulation approach. In Section 3, the conforma-
tional and orientational properties of flexible ring polymers under
simple shear flow are presented. Then a deep research is given for
tumbling and tank-treading motions. We also discuss the contri-
bution of ring polymers to the rheological properties. In Section 3.3,
we generalize our studies and give a conclusion.
2. Model and simulation method

In our model system, flexible ring polymer chains consist of Nse

beads of mass M each [51,52], which are connected by the finitely
extensible nonlinear elastic (FENE) potential UFENE,
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where R0 is the maximum bond length and K is the spring constant.
The excluded-volume interactions between beads are taken into
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where r¼ jri� rjj denotes the spatial distance between beads i and j
located at ri and rj. The parameters ε and s are taken as the units of
energy and length, respectively. The short-range, purely repulsive
interactions are taken into account by choosing rcut ¼ 21/6s. The
velocity Verlet algorithm with time step hp is used to integrate
Newton's equations of motion of beads.

The explicit solvents are simulated by the MPCD method, which
consists of streaming and collision steps [43,44]. Solvents are
modeled as Nst point-like particles of massm. In the streaming step,
the solvent particles propagate ballistically and their positions are
updated according to [53].

riðt þ hÞ ¼ riðtÞ þ hviðtÞ (3)

where i ¼ 1, …, Nst and the collision time h is the time interval
between collisions. In the collision step, the particles are sorted into
cubic cells with length a, and their relative velocities, with respect
to the center-of-mass velocity of each cell vcm(t), are rotated by an
angle a around a random axis R(a) [43], i.e.

viðt þ hÞ ¼ vcmðtÞ þ RðaÞ½viðtÞ � vcmðtÞ� (4)

where vi(t) is the velocity of particle i at time t and the center-of-
mass velocity

vcmðtÞ ¼ 1
Nc
st

XNc
st

j¼1

vjðtÞ (5)

Nc
st is the total number of solvent particles within the collision

cell.
The solute-solvent coupling is achieved by taking the solute into

account in the collision step, and velocities of the center-of-mass
are [43,44].

vcm ¼
PNc

st
i¼1 mviðtÞ þ

PNc
se

j¼1 MvjðtÞ
mNc

st þMNc
se

(6)

where Nc
se denotes the number of monomers in the cell. Mass,

momentum, and energy are conserved in the collision step. In
addition, a random shift is performed to ensure Galilean invariance
at every collision step [54].

LeeseEdwards boundary conditions are applied for the solvent
particles and the solute beads in order to impose shear flow [55].
The velocity field is given by

vx ¼ _gy; vy ¼ 0; vz ¼ 0 (7)

The schematic representation of a flexible ring polymer in
simple shear flow is shown is illustrated in Fig. 1. A local Maxwel-
lian thermostat is used to maintain the temperature of the system
at the desired value [56].

All simulations are performed with the rotation angle a ¼ 130�,
s¼ 1.0, a¼ s, ε¼1.0, kBT/ε¼ 1, where T is the temperature and kB is
the Boltzmann constant. The collision time h ¼ 0.1tp, MD time step
hp ¼ 0.005tp, with tp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ma2=ðkBTÞ

p
: Small collision time h and

large rotation angle a are used to obtain large Schmidt numbers
required for fluid-like behaviors [53,57]. The average number of
solvent particles per collision cell r ¼ 10, and M ¼ rm. The
maximum bond length R0 ¼ 1.5s and the spring constant K ¼ 30ε/
s2. The viscosity of solvent fluid [58] is 8.7(εm)1/2/s2. The chain



Fig. 1. Sketch of a single ring polymer in simple shear flow. f is the angle between the
principal vector and its projection onto the flow-gradient plane and q is the angle
between this projection and the flow direction.

Fig. 2. (a) The flow component of the gyration tensor 〈Gxx〉, (b) the gradient compo-
nent 〈Gyy〉, and (c) the vorticity component 〈Gzz〉 as a function of the Weissenberg
number Wi for ring polymers with various chain lengths. R2g0 is the gyration tensor at
equilibrium.
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lengths range from 40 to 200, and accordingly system sizes from
40a � 20a � 20a to 150a � 40a � 40a.

3. Results and discussion

Now we will discuss the flow-induced properties of single ring
polymers in simple shear flow. The strength of the applied shear
flow is characterized by the dimensionless Weissenberg number
Wi ¼ _gt; where _g is shear rate and t is the longest equilibrium
relaxation time [59]. In the small shear regime (Wi < 1), the con-
formations of the polymer coils have no detectable changes respect
to the equilibrium conformation. However, in the strong shear
regime (Wi > 1), the ring chains have strong deformations and
orient with the flow direction. The characteristic valueWi¼ 1 plays
an essential role in characterizing the microscopic conformational
and orientational properties of individual chains in simple shear
flow [13,27].

3.1. Conformational properties

A convenient quantity to characterize the conformational
properties of polymer chains in shear flow is the gyration tensor
Gax[a,x 2 (x,y,z)] [52]. The average gyration tensor 〈Gax〉 is directly
accessible in light scattering and fluorescence microscopy experi-
ments [17,25,62]. The diagonal components 〈Gaa〉 are the squared
radius of gyration. In the absence of flow, the statistical confor-
mation of ring polymers is spherical, thus, hGxxi ¼ hGyyi ¼ hGzzi ¼
hR2g0i=3 (R2g0 is the mean-square radius of gyration at equilibrium
state). The three eigenvalues of Gax are denoted by the largest
eigenvalue G1, the middle G2 and the smallest G3, and their sum is
just R2g [55]. They can fully satisfy identifying the deformation of
ring polymers under shear flow.

Fig. 2 displays three diagonal elements of the gyration tensor
〈Gax〉 at steady state scaled with R2g0 as a function ofWiwith various
lengths. The mean polymer extensions in simple shear flow are
described by the flow component of the gyration tensor 〈Gxx〉. As
shown in Fig. 2(a), for Wi < 1, 〈Gxx〉 are only weakly perturbed. In
this regime, ring polymers have no obvious deformation and only
align along the flow direction. It is worth noticing that the relative
stretching 3hGxxi=R2

g0 is essentially independent of chain length
and the data of different lengths collapse onto a universal curve.
The deformation ratios 3hGxxi=R2

g0 � 1 exhibit a Wi2 power law
dependence [38], which is consistent with the theoretical and
numerical studies for single linear polymers in a dilute solution
[13,60]. With Wi increases, the values of 〈Gxx〉 increase rapidly,
implying that ringmolecules not only orient with the flow direction
but also assume a stretched conformation. At high Weissenberg
numbers (Wi > 20), a platform appears as a consequence of the
finite chain extensibility which yields an average extension smaller
than half of the contour length [13,61]. Furthermore, the stretching
of various polymer lengths achieves the different asymptotic
values. It reflects the fact that the maximum extension dependent
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on the finite size of ring polymers. Furthermore, we compared the
extension of ring polymers with linear polymers of the same mo-
lecular weigh. The results show that the ring polymers are obvi-
ously less deformed than the linear ones. A similar stretching
behavior was also observed by Cifre et al. using BD simulations [37].

The ensemble-averaged gradient component of the gyration
tensor 〈Gyy〉 is tightly linked with the mean thickness of polymers
that has direct influence on the polymer contribution to the shear
shinning of a dilute solution [27]. When shear rates are small
(Wi < 1), the value of 3hGyyi=R2

g0 is about 1, reflecting the fact that
the deformation is undetectable. With Wi increases, the extension
of ring polymers in the flow direction are accompanied by shrink-
ing in the gradient and vorticity directions. Different from the flow
component, the values of hGyyi=R2g0; for a given Wi, are practically
independent of chain length, and a universal power law
hGyyi=R2g0 � Wi�0:41 is obtained over the considered Wi range
(Wi > 20), as shown in Fig. 2(b). Interestingly, the scaling
exponent �0.41 obtained here is larger than �0.50 for the flexible
linear polymers in previous experiments and simulations [27,62].
The slow decays of 〈Gyy〉 is attributed to the continuous stretching
along the flow direction and constant compression in gradient di-
rection in tank-treading motion.

Fig. 2(c) presents the ensemble-averaged vorticity component of
the gyration tensor 3hGzzi=R2

g0: With increasing Wi, the values of
〈Gzz〉 drop significantly from a plateau value. The slopes of the
curves for ring polymers with different lengths predict a universal
dependence, hGzzi=R2g0 � Wi�0:32: The result is similar to the scaling
Wi�0.34 established previously for the flexible linear polymers
[27,62]. It implies that the tank-treading motion has no obvious
influence on the compression in vorticity direction.

The three eigenvalues of Gax give the principal axes of polymer
chains. The ratio G1/G3 denotes the asphericity of polymer chains
because if the value of G1/G3 does not equal to unity means that the
distribution is nonspherical, while it diverges in the limit of a long
rod [55]. In order to gain a deeper understanding of the deforma-
tion of ring polymers under simple shear flow, the ratio G1/G3�1 as
a function of Wi for various chain lengths is shown in Fig. 3. The
changes of shape are independent of the chain length for all of the
simulation points almost falling on the same straight line. At small
Weissenberg numbers (Wi < 1), we find that G1/G3 � 1 is inde-
pendent of Wi, implying that the chains are close to their equilib-
rium structure and only align along the flow direction. With
increasing Wi, single ring polymers have obvious deformations
corresponding to the increasing of the ratios. At large Weissenberg
Fig. 3. Ratio of the largest (G1) and smallest (G3) eigenvalues of the average gyration
tensor as a function of the Weissenberg number Wi with various chain lengths.
numbers (Wi[ 1), a chain-length dependence appears associated
with the finite size of ring polymers.
3.2. Orientational properties

The flow-induced alignment of flexible ring polymers is quan-
tified by the angle q, which is the angle between the eigenvector of
the gyration tensor with the largest eigenvalue and the flow di-
rection [see Fig. 1], straightforwardly obtained from the compo-
nents of the radius of gyration tensor via [13,39].

〈tanð2qÞ〉 ¼ 2
�
Gxy

	
hGxxi �

�
Gyy

	 (8)

It is noticed that the average deformation and orientation can be
directly accessed in light scattering [25], neutron scattering [63]
and birefringence [64e66] experiments. Recently, fluorescence
microscopy allows for direct observation of DNAmolecules in single
molecule experiments [17].

A universal curve is obtained for the average orientation angle
〈tan(2q)〉 with various lengths as a function of Wi. At small shear
(Wi < 1), Gxy is proportional to Wi and Gxx � Gyy is proportional to
Wi2. Hence, 〈tan(2q)〉 decreases linearly as the shear rate increases,
as shown in Fig. 4. With increasing Wi, the ring chains become not
only stretched but also more closely aligned with the flow direc-
tion. In the strong flow regime (Wi > 20), the orientation angle
decays and a new scaling regime appears, where
〈tan(2q)〉 ~ Wi�0.40. This scaling is larger than the exponent found
for linear polymers exhibiting only tumbling motion �0.46 [27].
Clearly, the special dynamics make the scaling behavior of the
orientation of ring polymers different from linear chains. This can
be attributed to the fact that a single ring adopts a continuous
elliptical shape and maintains a constant orientation angle in the
flow-gradient plane for tank-treading motion [38].

In order to give a further insight into the orientational behavior
of ring polymers, the probability distribution functions (PDFs) P(q)
are calculated. At equilibrium, no angle is preferred and P(q) is
uniform PDF, whereas an increasingWi leads to the appearance of a
peak and the PDFmaximum is located at positive value, as shown in
Fig. 5(a). As shear rate increases, the peak shifts to the smaller
values, at the same time, the width of P(q) decreases. An apparent
shift of the data is explained that ring polymers are strongly
deformed and alignedwith the shear flow. Furthermore, P(q) can be
described by a power law P(q) ~ (sinq)�2 in the limit of sufficiently
large shear, which is in accord with the depiction for linear
Fig. 4. Orientation angle 〈tan(2q)〉 as a function of the Weissenberg number for ring
polymers with several lengths. The dashed lines represent the dependences
〈tan(2q)〉 ~ Wi�1.0 for (Wi < 1) and 〈tan(2q)〉 ~ Wi�0.40 for (Wi > 1).



Fig. 5. (a) Probability distribution functions P(q) in log coordinates with chain length
N ¼ 60. The solid line presents the theoretical prediction (sinq)�2. (b) The widths at half
height Dq as a function of Weissenberg number. The solid line indicates the power law
Dq ~ Wi�0.40.

Fig. 6. (a) Probability distribution functions P(f) with chain length N ¼ 60. The dashed
line presents the theoretical prediction f�2. (b) The widths at half height Df as a
function of Weissenberg number. The solid line indicates the power law Df ~ Wi�0.41.

Fig. 7. Time trajectories of the relative deformation Gxx/〈Gxx〉 � 1 and orientation
tan(2q) for a single flexible ring with chain length N ¼ 40 at Wi ¼ 510 in simple shear
flow, where 〈Gxx〉 is the mean extension. A tank-treading motion in regime I, a tum-
bling motion in regime III, and a crossover from tank-treading motion to tumbling
motion in regime II.
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polymers [67,68]. Fig. 5(b) displays the half-height width of P(q) as a
function of Weissenberg number with different chain lengths. P(q)
follows power-law decays according to Dq ~ Wi�0.40, different from
theoretical and experimental predictions for linear polymers
Dq ~ Wi�0.51 [13]. This can be explained by the fact that ring poly-
mers adopt the constant positive orientation in tank-treading
motion [38].

To fully characterize the orientational properties relative to the
shear flow, the probability distribution functions P(f) are
measured, where f is the angle between the principal vector and its
projection onto the flow-gradient plane, as shown in Fig. 1. Fig. 6(a)
displays P(f) of flexible ring polymers as a function of Wi with
various chain lengths. With increasingWi, P(f) undergo a crossover
from a Gaussian shape of the distribution function to a power-law
decay, which is also observed for linear polymers [67,68]. The PDF
tails for all values of Wi decay algebraically with the exponent
rather close to the theoretical f�2 for linear polymers. For flexible
ring polymers, we obtain a universal exponent for Wi [ 1. As
shown in Fig. 6(b), the half-height width Df decreases as Wi�0.41,
slightly less thanWi�0.38 for linear polymers [13]. It implies that the
tank-treading motion have weak influences on the off-plane
orientation.

3.3. Tumbling and tank-treading motions

In this sectionwe present the mechanisms of both tumbling and
tank-treading motions for ring polymers. The geometrical
constraint of ring polymers leads to the unique dynamics as well as
the intricate conformational properties in simple shear flow
[38,39]. In order to directly observe the dynamics of single rings, we
show trajectories of polymer extension and orientation angle. The
time traces of the orientation angle q and the associated distortions
of polymer coils from equilibrium Gxx/〈Gxx〉 � 1 are shown in Fig. 7.
When rings undergo tank-treading motion in regime I, polymer
assumes a constant inclination angle with small fluctuations and
the continuous extension Gxx is much larger than the statistic
values under shear 〈Gxx〉 [38]. When ring polymers tumble in
regime III, ring chains continually undergo stretching, aligning,
flipping, and collapsing phases of end-over-end tumbling motion.
Besides these two regions, there is a mixture region, regime II,
having characters of both tank-treading and tumbling regions.

We propose the following general description of the tank-
treading and tumbling mechanisms in strong shear flow (Wi > 1)
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based on the time sequence of images of the dynamical behaviors
for single ring polymers. In tumbling motion, the ring chain col-
lapses rapidly and tumbles with large deformations, which is well-
known for linear polymers under shear [17]. As shown in Fig. 8(a),
the shear gradient across the single ring leads to polymer stretching
and the orientation angle is positive (q > 0). After stretching, a ring
polymer generally aligns with the flow direction (q z 0) with
Gxx > 〈Gxx〉, leading to the small velocity differences across the
chain, and, the thermal disturbance leads orientation angle to
become negative (q < 0). Then, the ring polymers collapse with
highly negative values (q ≪ 0). Finally, the polymer tumbles to
avoid large shear gradient, and the orientation angle changes sign
from negative to positive.

In tank-treading motion, the chain adopts an elliptical shape in
the flow-gradient plane due to the strong excluded volume in-
teractions between the two strands of flexible ring polymers. The
monomers move around the center of mass of a single chainwithin
the xy-plane, which is similar to red blood cells [69,70]. During this
progress, the individual ring polymer adopts a constant extension
and orients with a positive orientation angle.When the plane of the
stretched rings coincides with the shear plane, a substantial ve-
locity gradient along the contour causes the ring chains to perform
a tank-treading motion, and the torque balance leads to a non-
vanishing angular velocity [see Fig. 8(b)]. Since the force due to
the shear flow lacks a component to change the orientation of the
ring plane, a ring prefers a constant inclination angle with small
fluctuations [40]. For highly inherent deformability of the flexible
ring polymers, the stability of pure tank-treading motion is rela-
tively poor. The strong thermal fluctuation causes instability of the
elliptical shape in the flow-gradient plane and results in the
termination of tank-treading motion and the initiation of tumbling
motion.
3.4. Rheological properties

The shear viscosity and the first normal stress difference as two
major properties of dilute polymer solutions have been identified in
experiment, theory and simulation. In the dilute solutions, the
macroscopic rheological properties can be calculated though the
microscopic conformational information on polymer chains. The
effect of the dissolved polymers on the solution viscosity is resolved
by studying the intrinsic stress tensor [37,71].

ta;b ¼
XN
i¼1

D
Ri;a$f i;b

E
(9)
Fig. 8. Description the tumbling (a) and tank-treading (b) mechanisms of individual
flexible ring polymers in simple shear flow.
where Ri is the position vector of the bead i respect to the center of
mass of the polymer chain and fi is the total force on bead i. The
dimensionless shear viscosity is defined as

h ¼ txy

Wi
(10)

Fig. 9 shows the shear evolution of the intrinsic viscosity relative
to zero shear viscosity h0. There is a Newtonian plateau at low shear
rate (Wi � 1). Then, with increasing Wi, the polymer solutions
display nonlinear rheological behavior, where the flexible ring
polymers begin to stretch and orient along the flow direction. The
shear thinning behavior yields the scaling law h ~ Wi�0.40 over the
Wi range from 20 to 300. In addition, the polymer contribution to
the shear viscosity h also scales linearly with Gyy in Giesekus
expression for the stress tensor, so the scale �0.40 is nearly the
same power law decay as exhibited by Gyy

�0.41, which is larger than
the scale �0.5 of linear polymers [62].

The dimensionless first normal stress coefficient is calculated as

J1 ¼ txx � tyy

Wi2
(11)

In Fig.10, the ring polymer contribution to the first normal stress
coefficient J1 is shown as a function of Wi. The first normal stress
coefficient J1 yields a power law J1 ~ Wi�0.90, while the linear
polymers have a slightly stronger shear rate dependence
J1 ~Wi�1.23 [62]. The different scalings are expected according to a
continuous stretching of the flexible ring chains in tank-treading
motion.
4. Conclusions

In this work, the flow-induced behaviors of single flexible ring
polymers in simple shear flow are studied by the multiparticle
collision dynamics combined with molecular dynamics simula-
tions. The conformational, orientational, dynamical and rheological
properties of single flexible ring polymers with different chain
lengths are analyzed in detail. Our results reveal that, consistent
with linear polymers, the stretching of ring polymers in flow di-
rection is accompanied by the compression in gradient and
vorticity direction. The scaling behaviors show that ring polymers
undergo weaker deformation and orientation than their linear
analogues in the gradient direction, which is attributed to the
continuous stretching and constant alignment in the tank-treading
motion, while the tank-treading motion has no obvious influence
on the flow-induced behaviors in the vorticity direction. Corre-
spondingly, the rheological behaviors have a weak dependence on
shear rate. In addition, we propose a general description model of
Fig. 9. Polymer contribution to shear viscosity h.



Fig. 10. Polymer contribution to the first normal stress coefficient J1.
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tumbling and tank-treading mechanisms in strong shear flow on
the basis of the time trajectories of the relative deformation and
orientation. When the plane of the stretched ring coincides with
the shear plane, the velocity gradient causes the flexible ring
polymers to perform a tank-treading motion, while rings undergo
stretching and collapsing in the tumbling motion to avoid large
shear gradient. The effects of two types of motions on the align-
ment of ring polymers are reflected in the scaling behavior of the
orientational angle tan(2q) and the half-height width of the prob-
ability distribution functions.

Our simulations reveal the effect of the strong constraints
without ends for ring polymers on conformational, orientational,
dynamical and rheological properties and present the similarities
and differences in the non-equilibrium behavior of ring and linear
polymers. It has been well-known that these flow-induced behav-
iors play an important role in separation process and polymer
physics, and the findings may therefore shed some light on cyclic
DNA manufacturing and provide help for experiments.
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