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Computer-generated holograms (CGHs) are commonly used to test aspheric surfaces. In order to eliminate the
influence of spurious diffraction orders, adequate carrier frequency is applied to CGHs to separate the overlap-
ping orders. This paper describes a paraxial parametric model for separating the parasitic diffraction orders of a
tilt carrier frequency CGH placed outside the interferometer focus. The approximate analytical expression for the
disturbing field on the filter plane is derived using the paraxial model. This expression provides a recipe for
determining the amount of tilt carrier frequency needed to eliminate the disturbing orders, and is applicable
to concave weak aspheric surfaces with large f-numbers of the best-fit spheres, where paraxial approximation
is valid. CGH design examples are provided. © 2015 Optical Society of America

OCIS codes: (090.1760) Computer holography; (120.4630) Optical inspection; (220.1250) Aspherics.
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1. INTRODUCTION

Computer-generated holograms (CGHs) used for aspheric
surface testing have evolved into standard practice in high-
precision metrology [1–4]. The spurious diffraction orders of
the CGH along with the desired order result in overall inter-
ferograms of low quality, and sometimes make the measure-
ment impossible [5].

Power or tilt carrier frequency is employed to separate the
diffraction orders [6–8]. Enough carrier frequency must be ap-
plied to the CGH to spatially isolate the wanted order, followed
by a pinhole placed at the focal plane to block the unwanted
ones. However, superfluous carrier frequency merely decreases
the line spacing of the CGH, thus driving the cost up and the
accuracy down [9,10]. Searching for an admissible carrier fre-
quency within the fabrication limits is one of the designers’
destinies.

The characterization of separating the parasitic diffraction
orders varies with the CGH position (Fig. 1) [11]. The CGH
placed outside the interferometer focus averts the restriction
of the interferometer aperture and the unknown working state
of the inner filter of a commercial interferometer. However, in
this case, all the diffraction orders during the first passage of the
CGH pass through the CGH again and are divided into differ-
ent diffraction-order combinations [Fig. 1(b)], while when the
CGH is placed inside the focus, only the desired order (�1
order) during the first passage passes the CGH a second time

[Fig. 1(a)]. Hence, the CGH placed outside the interferometer
focus has a more complicated diffraction property than the
CGH placed inside the focus and needs auxiliary analysis with
optical software. The amount of carrier frequency is usually
gained with the method of trial and error.

CGHs with tilt carriers surmount the well-known obstacles
that CGHs with power carriers suffer from the disturbing in-
terferences on axis, hence the central parts of the test surfaces
are measured inaccurately. Thus, tilt carrier frequency is often
applied to CGHs when aspherics with no central obscuration
are under test. The diffraction orders must be fanned out, en-
abling the isolation of a pure test or reference beam. Lindlein
[12] analyzed the disturbing effects of the CGH placed outside
the focus and achieved an approximate expression for the spa-
tial frequencies of the unwanted diffraction orders. But the
expression was only adaptive to the case when the CGH is close
to the aspheric surface. Garbusi and Osten [13] obtained an
analytical expression for the stray field on the detector. But
the double-pass undesired orders were not considered. Zhou
et al. [14] proposed a paraxial solution for the amount of
the needed power carrier frequency, but the CGH with tilt car-
riers was not discussed.

When a concave aspheric surface is under test, the CGH is
usually placed near the focal point of the interferometer to
achieve a small size and hence a low cost, under the trade-off
among the cost, the line spacing and the mapping error. For
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optical testing of a concave weak aspheric surface (e.g., −0.5 ≤
K ≤ 0, where K is the conic constant) with a large F∕#�F∕
# ≥ 2�, the purpose of this paper is to establish a recipe for
determining the amount of tilt carrier frequency needed to
eliminate the unwanted waves for the CGH placed outside the
interferometer focus. We consider the influence of the CGH
position and the double-pass undesired orders, and derive an
analytical expression for the disturbing field on the filter plane
using a parametric geometric model under the paraxial optics
approximation. In Section 2, the phase function of the tilt
carrier frequency CGH used for testing a concave weak conic
surface with a large F∕# is achieved, and a paraxial solution for
the amount of the needed tilt carrier frequency is obtained. In
Section 3, the necessary condition for separating the spurious
diffraction orders is discussed, and the theory is extended to
concave weak aspherics and off-axis aspherics with large F∕#.
In Section 4, a detailed comparison between the paraxial sol-
ution and the Zemax-based ray trace is done, and finally, CGH
design examples are exhibited.

2. PARAMETRIC MODEL AND THEORETICAL
DERIVATION

A. Phase Function of the Tilt Carrier Frequency CGH
For optical testing of concave conic surfaces, assuming that the
conic constant K is small and the F∕#, defined as R∕2D, is
large such that paraxial optics are satisfied, a parametric geomet-
ric model is constructed by ignoring the thickness of the CGH
glass plate to derive the phase function of the CGH with tilt
carriers (Fig. 2). The CGH is placed outside the interferometer
focus, distance h away from the paraxial focus C of the test

conic surface to avoid the caustic area. Rays that are perpendi-
cular to the test mirror are traced, since CGHs are employed to
convert standard spherical wavefronts from interferometers to
aspheric wavefronts that match the test mirrors. The CGH
phase function is gained by computing the optical path differ-
ence between the propagating rays.

The phase function of the CGH without tilt carriers in the
cylindrical coordinate is achieved by Zhou et al. [15] as

Φ�rm� � OD� DF − AB − BF

� �−h2 � hp�
2pR2 r2m � r4m

8p3R4
�h4 − 4h2p2 − 4h2K p2

�3hp3 � 4hK p3 � 4hK p2R − 3K p3R�; (1)

where R is the radius of curvature, K is the conic constant,
rm � �ξ2 � η2�1∕2 is the radial position on the conic surface,
and p is the distance from the CGH to the filter.

We derive Eq. (1) up to the sixth order and represent it with
respect to the CGH coordinate �x; y� for convenience in the
following discussion. When h, p ≪ R, which is true in most
cases, and when the approximation r6m∕R6 ≈ r6∕h6 is adopted,
the phase function of the CGH without tilt carriers is further
simplified as

Φ�r� � 1

2

�
1

h
−
1

p

�
r2 � K R

8h4
r4 � K 2R2

8h7
r6; (2)

where r � �x2 � y2�1∕2 is the radial position on the CGH.
When the tilt carrier frequency is loaded to the CGH, the

focus of the rays is shifted from the point F to E. Assuming that
the ratio t∕p is small such that any term with t2∕p2 is incon-
sequential, the CGH phase function is written as

Φ�x; y� � OD� DE − AB − BE

� t
p
y � 1

2

�
1

h
−
1

p

�
�x2 � y2� − t

2p3
�x2 � y2�y

� K R
8h4

�x2 � y2�2 � 3t
8p5

�x2 � y2�2y

� K 2R2

8h7
�x2 � y2�3: (3)

Fig. 1. Schematic of test configurations. (a) The CGH is placed in-
side the interferometer focus. Disturbing diffraction orders are blocked
by the filter and the inner filter of the commercial interferometer.
(b) The CGH is placed outside the focus. All the diffraction orders
are reflected by the test mirror and diffracted again by the CGH.
The filter alone selects the desired measurement order.

Fig. 2. Schematic of the parametric geometric model. A conic sur-
face with a radius of curvature R and an apertureD is under test using a
CGH with tilt carriers. The point C is the paraxial focus of the test
surface. The parameters d , h, p, and t are defined as shown. The value
of t∕p denotes the amount of tilt carrier frequency.
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In Eq. (3) the first four terms have the form of tilt, defocus,
coma, and the third-order spherical aberration, respectively. It
reveals that the CGH has a certain power unless p � h, and
coma aberration is brought in along with tilt carriers.

B. Separated Distances of the Undesired Diffraction
Orders
The propagation of the diffraction orders of the CGH placed
outside the interferometer focus is shown in Fig. 3. Paraxial
optics are considered. The included angle β between the propa-
gating direction of the undesired wavefront and that of the
desired wavefront is described by Lindlein [12] as

βx � �m�m 0 − 2�∂Φ
∂x

� 2�m 0 − 1�
�
Δx

∂2Φ
∂x2

�Δy
∂2Φ
∂x∂y

�
;

βy � �m�m 0 − 2�∂Φ
∂y

� 2�m 0 − 1�
�
Δy

∂2Φ
∂y2

�Δx
∂2Φ
∂x∂y

�
; (4)

with

Δx � �m − 1�d�x; y� ∂Φ
∂x

;

Δy � �m − 1�d�x; y� ∂Φ
∂y

; (5)

where Φ � Φ�x; y� is the phase function of the CGH, d �x; y�
is the length of the ray from the CGH to the test mirror, and
the subscripts x and y denote the corresponding components.
Only the diffraction-order combination �m;m 0� � �1; 1� is the
desired order for testing.

In fact, Eq. (5), given by Lindlein, is an approximation
which is valid only when the CGH is placed close to the test
mirror. When the distance between the CGH and the test mir-
ror is not ignorable, we propose an approximate expression that
includes the influence of the CGH position:

Δx � �m − 1� hd
R
∂Φ
∂x

;

Δy � �m − 1� hd
R
∂Φ
∂y

: (6)

The derivation of Eq. (6) is shown in Appendix A.
The separated distance Δl between the diffraction order

(1, 1) and �m;m 0� on the filter plane is depicted by EE 0, which
is calculated under paraxial optics consideration and presented as

Δl x � pβx ;

Δl y � pβy : (7)

The component Δl y is emphasized since the tilt carrier fre-
quency is applied along the y direction. Rays on the meridional
plane are analyzed first, where the coordinate �x; y� and �ξ; η�
are simplified to �0; y� and �0; η�. Thus, Δl x � 0, and Δl y is
described as

Δl y ��m�m 0 −2�p∂Φ
∂y

�2�m−1��m 0 −1�phd
R

∂Φ
∂y

∂2Φ
∂y2

: (8)

Equation (8) indicates that the rays with order m� m 0 � 2
are stubbornly hard to eliminate since in this case the first term
vanishes, which has been shown in Lindlein’s work.

The stubborn rays with order m� m 0 � 2 are studied first.
By normalizing the variable y with the semi-aperture of the
CGH, i.e., rCGH, and with the help of the phase function
of Eq. (3), the detached distance Δl y of the stubborn rays is
expanded and simplified as

Δl y�y� � 2�m − 1��m 0 − 1� �p − h�d
pR

ft � a1rCGHy

� a2r2CGHy
2t � a3r3CGHy

3 � a4r4CGHy
4tg; (9)

with

a1 �
p − h
h

; a2 �
3K Rp

2�p − h�h3 ;

a3 �
2K Rp
h4

; a4 �
15K 2R2p
4�p − h�h6 ;

rCGH � hD
2R

−
KD3

16R2 −
3K �K � 1�D5

256R4
; (10)

where D is the aperture of the test conic surface. Here p ≠ h is
forwardly presumed, otherwise Δl y�0� � 0, causing the dis-
turbing interferences on axis. In addition, the terms with
t2∕p2 are neglected owing to the supposition that t ≪ p.
The terms with order higher than y4 are ignored too on the
basis of the paraxial optics assumption and the fact that
∂2Φ∕∂y2 is approximated to the fourth order.

C. Amount of the Needed Tilt Carrier Frequency
In terms of geometrical optics, a stray ray is able to be elimi-
nated by an ideal pinhole, as long as the distance Δl along the x
or y direction on the filter plane is nonzero. Owing to the con-
tinuity of the function Δl y�y� and the presumption that t > 0,
the disturbing diffraction orders are separable only when the
value of the grouping of quantities in the brace of Eq. (9) is
constantly greater than zero. Thus, the following inequalities
are obtained:

t � a1rCGH � a2r2CGHt � a3r3CGH � a4r4CGHt > 0;

t − a1rCGH � a2r2CGHt − a3r
3
CGH � a4r4CGHt > 0: (11)

By solving inequalities (11), the necessary condition for
separating the diffraction orders is gained:

1� a2r2CGH � a4r4CGH > 0: (12)

The amount of the needed tilt carrier frequency is
described as

Fig. 3. Propagation of the diffraction orders. A ray is divided into
the orders �1 and m at the point P�x; y�, reflected by the aspheric
mirror at the point A�ξ; η� and B�ξ� Δξ; η� Δη� separately, then
diffracted again by the CGH at the point P�x; y� and
Pm�x � 2Δx; y � 2Δy�. N is the local surface normal vector. BN is
parallel to AP. θ, α, and β are the included angles as shown.
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t
p
>

rCGH
p

ja1 � a3r2CGHj
1� a2r2CGH � a4r4CGH

: (13)

In fact, Δl must be larger than a nonzero constant L0 on
account of the diffraction properties of light and the practical
precision of fabrication and alignment of the pinhole. Hence,
the minimum t is

t ≥
ja1� a3r2CGHjrCGH

1�a2r2CGH� a4r4CGH
� pRL0
2jp−hjd �1� a2r2CGH� a4r4CGH�

:

(14)

Equation (14) uses the fact that the minimum value of
j�m − 1��m 0 − 1�j with the condition m� m 0 � 2 is achieved
and equal to 1 when �m;m 0� � �0; 2� or (2, 0).

3. DISCUSSION

A. In-Depth Discussion on the Necessary Condition
The necessary condition of Eq. (12) is worth further discussion,
since if it is not satisfied, the disturbing rays with the order
m� m 0 � 2 would be nonremovable no matter how large tilt
carrier frequency is adopted.

By approximating rCGH as hD∕2R for simplicity, the in-
equality Eq. (12) is written as the following:

1� 3R
32�F #�2h

K p
p − h

�
1� 5K R

32�F #�2h

�
> 0: (15)

Paraxial optics are examined. The parameter h is circum-
scribed by three elements: the permissible maximum aperture
of the CGH, the upper limit of imaging distortion, and the
forbidden field of the caustic area. Hence, j5K R∕32�F #�2hj <
1 is the usual case. If K < 0 and p < h, the inequality Eq. (15)
is held automatically.

If K < 0 and p > h, the value of the left grouping of
quantities of inequality Eq. (15) decreases by neutralization,
contrary to the target to abate the amount of the needed tilt
carrier frequency according to Eqs. (13) and (14), e.g.,
K � −0.5, F∕# � 2, R � 8000 mm, and h � 500 mm, if
p > h, p > 574.0 mm is demanded by inequality Eq. (15).
If p � 600 mm, t∕p ≥ 0.1 is hence required, resulting in a
huge tilt carrier frequency. If p � 650 mm, tilt carrier fre-
quency is acceptable, while power carrier frequency, shown as
the defocus term in Eq. (3), is conspicuous, in which case the
additional tilt carrier frequency is not indispensable.

In summary, when K < 0, settling the filter before the
paraxial focus, i.e., p < h, is a more reasonable choice for the
CGH with tilt carriers than setting p > h.

B. Extended to a Concave Weak Aspheric Surface
with a Large F∕#
When a surface with aspheric coefficients is under test, the par-
axial solution for the needed t is derived similarly. It has the
same form with Eq. (14), except that

a1 �
p − h
h

; a2 �
3�K � a�Rp
2�p − h�h3 ;

a3 �
2�K � a�Rp

h4
; a4 �

15�K 2 � a2�R2p
4�p − h�h6 ;

rCGH � hD
2R

−
�K � a�D3

16R2 −
3��K � 1�K − a� b�D5

256R4
; (16)

with

a � 8AR3; b � 16BR5; (17)

where A is the fourth-order coefficient, and B is the sixth-order
coefficient.

Admittedly, for an aspheric surface, the fourth-order coef-
ficient A is coupled with the conic constant K . Thus, the con-
currence of A and K is forbidden, and the parameter a � 8AR3

can be treated equivalently as the conic constant K .

C. Extended to a Concave Off-Axis Aspheric Surface
with a Weak Aspherical Deformation and a Large F∕#
The approximate expression of Eq. (9) is applicable to concave
off-axis aspheric surfaces with a weak aspherical deformation
and a large F∕#, which is defined as the f-number of the
mother mirror, as long as the value ranges of y are reset on
the basis of the lateral displacements.

Granted a concave off-axis aspheric surface with a lateral dis-
placement equal to its semi-aperture is under test, by redefining
rCGH as the maximum value of y in the CGH plane, the
value range of y changes to 0 ≤ y ≤ 1. The symmetry of the
parameter t is broken, thus t is no longer limited to a positive
number. The condition for separating the diffraction orders is
changed to

t · �t�a1rCGHy�a2r2CGHy
2t�a3r3CGHy

3�a4r4CGHy
4t�>0;

(18)

where a1, a2, a3, and a4 are defined by Eq. (10).
Apparently, if p < h and K < 0, an arbitrary negative t

makes the inequality Eq. (18) hold unless the F∕# is suffi-
ciently small such that the sign of the grouping of quantities
in the parentheses is determined by the term of y4t , which
is beyond the scope of this article. When p < h, t < 0 and
paraxial optics are granted, Δl y�0� is exactly the minimum sep-
arated distance. The minimum absolute value of t is obtained as

−t ≥
pRL0

2jp − hjd : (19)

4. SIMULATION AND CGH DESIGN EXAMPLES

A. Valuing the Accuracy of the Approximate
Expressions
The approximate expressions of the CGH phase function, the
shift Δy, and the separated distance Δl y are derived based on
the paraxial system assumption, i.e., F∕# is large and K is
small. Here, CGHs for four 2 m diameter F∕2 conic surfaces
with K � −0.25, −0.5, −0.75, and −1 are simulated with
Zemax to evaluate the accuracy of the approximate expressions.

The phase function completely describes the diversity of the
diffractive wavefront propagation and hence demands high cal-
culation precision. The difference between the phase functions
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calculated with Eq. (3) and the ray trace in Zemax is tiny,
shown in Fig. 4. The error function is approximately axisym-
metric, implying that the error is caused by the approximation
made in Eq. (2) and the high-order spherical aberration. The
error increases along with the increasing of the absolute value of
y as expected. The maximum error, 0.02 mm at the boundary
of the CGH when K � −1, is only 2.8% of the real value.

The approximate expression of shifts Δy proposed in this
paper and the one obtained by Lindlein are compared with
the ray-tracing simulation in Zemax, shown in Fig. 5(a).
The former matches the practicalities better than the latter,
evincing that the influence of the CGH position needs consid-
eration. The effect of the conic constant K on the accuracy of
the approximate expression of Eq. (6) is presented in Fig. 5.
The error is positively correlated to the absolute value of K .
The error mushrooms along the −y direction, since the paraxial
optics are considered and the tilt carrier frequency is along �y
direction, resulting in obvious error in the approximation
sin θ ≈ θ adopted to analyze the propagation directions of
the diffractive wavefronts of the CGH when y < 0. The differ-
ence between the curves of the diffraction orders (0, 2) and
(2, 0) is also mainly caused by the approximation sin θ ≈ θ.

In order to determine the amount of the needed tilt carrier
frequency, the precision of the approximate expression ofΔl y is
examined, shown in Fig. 6. It demonstrates that the precision
of the approximate expression of Δl y is satisfactory, especially
when −0.5 ≤ K ≤ 0 or y is small, which is consistent with the
paraxial hypothesis. Although the accuracy decreases when
y < 0, similar to the expression of shifts Δy, only the accuracy
when y > 0 is worth concentrating on, since it determines
whether the parasitic diffraction orders are separated. The man-
ifested difference between the curves of the separated distances
Δl y of the orders (0, 2) and (2, 0) is caused by the accumulation

and magnification of the diversity of shifts Δy through twice
diffraction, the nonlinear property of the CGH phase function
shown in Fig. 4 and the fact that the shift 2Δy is comparable
with y shown in Fig. 5. The samplings for the diffraction order
(0, 2) do not spread all over the aperture, because the rays close
to the CGH edge are blocked by the apertures of the CGH and
the test mirror.

B. CGH Design Examples for Conic Surfaces
The paraxial model is applicable to both the Ronchi phase
CGH and the chrome-on-glass amplitude CGH. Although
the orders �−1; 3� and �3; −1� are the most disturbing diffrac-
tion-order combinations, because of the high diffraction effi-
ciency [12], we concentrate on the disturbing orders (0, 2) and
(2, 0) for two reasons. First, the separated distance Δl of the
orders (0, 2) and (2, 0) is directly proportional to that of the
orders �−1; 3� and �3; −1� according to Eq. (9). Second, be-
cause of fabrication errors in the grating depth and the duty
cycle, the orders (0, 2) and (2, 0) will be different from zero,
especially when an amplitude CGH is adopted, in which case it
will significantly reduce the quality of the interferogram.

For a practical CGH, the spherical aberration brought in by
the CGH glass substrate shifts the paraxial focus of the conic
mirror. Assuming that the F∕2 ellipsoid with K � −0.25 is
under test, and the CGH is placed 7500 mm away, i.e.,
h � 500 mm, and fabricated on a 16.0 mm thick BK7 glass,
the paraxial focus shifts 5.44 mm. Setting the filter plane
455.44 �� 450� 5.44� mm away from the CGH plane,
while still treating p � 450 mm, and assuming the required
minimum separated distance L0 � 0.5 mm, the needed t is
9.5 mm according to Eq. (14). Actually, t � 9.5 mm is
chosen. The CGH is designed with Zemax, shown in Fig. 7(a),
and the parasitic waves are separated, shown in Fig. 7(b).

Fig. 4. Error in CGH phase function on the meridional plane versus F∕#. The error, defined as the approximate phase calculated with Eq. (3)
minus the actual one gained by ray trace, shown as the blue dotted line, is drawn with respect to the ordinate on the right. The test optics are four 2 m
F∕2 conic surfaces with K � −0.25, −0.5, −0.75, and −1. CGHs are placed at the same position and loaded with the same tilt carrier frequency:
h � 500 mm, p � 450 mm, and t � 10 mm.
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The CGHs for the F∕2 conic surfaces with K � −0.5,
−0.75, and −1 are designed with the same method. The key
parameters are exhibited in Table 1. In order to exclude the

effect of the CGH glass plate, all the CGHs are designed on
the 16 mm thick BK7 glass. These four CGHs are able to fab-
ricate with high precision, since the sizes are less than 150 mm

Fig. 5. Charts of the shifts 2Δy gained with Eqs. (5) and (6) and ray-tracing simulation. For brevity, the value 2Δy for the diff-order (0, 2) is
shown after multiplying with −1. The curve calculated with Eq. (5) is only displayed in (a). But it sufficiently indicates that Eq. (5) is far away from
the actual value. The approximate error is positively correlated to the absolute value of K , and grows rapidly along the −y direction.

Fig. 6. Separated distances Δl y of the rays with the diffraction order (0, 2) and (2, 0) on the meridian plane calculated with Eq. (9) and the ray
trace show good agreement. The precision of Eq. (9) is acceptable when −0.5 ≤ K ≤ 0 or y is small. The samplings for the order (0, 2) do not spread
all over the aperture, because the double-pass rays close to the edge are blocked. The semi-apertures of CGHs: (a) 64.8 mm, (b) 66.7 mm,
(c) 68.5 mm, and (d) 70.3 mm.
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and the minimum line spacing is larger than 10 μm [4,16].
The paraxial solution of Eq. (14) matches the practicalities
well when F∕# � 2 and −0.5 ≤ K ≤ 0, with an error less than
5.1%, while the approximate error starts booming when
K ≤ −0.75. It manifests that the approach can be applied
for weak conic surfaces �−0.5 ≤ K ≤ 0� and the error decreases
with the decreasing of the absolute value of K .

Notice that the actual t is nearly linear with the conic con-
stant K , shown in Table 1, for the F∕2 concave conic surfaces
with −1 ≤ K < −0.5, the demanded t may be estimated
through linear fitting with the data of the calculated t when
−0.5 ≤ K ≤ 0. This method is illustrated in Fig. 8. The fitted
curve, shown as the blue dotted line, matches the actual t well.
The maximum error is about 0.4 mm. Certainly, the reason for
the quasi-linearity between the actual t and conic constant K
needs further investigation.

For the purpose of examining the error of Eq. (14) versus
F∕# of the test mirror and the thickness of the CGH, six CGHs

are designed for the conic surfaces with K � −0.5 and
F∕# � 1.75, 2, 2.25, and 2.5, displayed in Table 2. The maxi-
mum error is 12.1% when F∕# � 1.75, while the minimum
error is 0.0% when F∕# � 2.5. Results suggest that the
paraxial solution of Eq. (14) possesses high precision when
K � −0.5 and F∕# ≥ 2, with an error less than 5.1%. The
error decreases as F∕# increases, which is caused by paraxial
optics treatment. It addresses that the approach can be applied
for the conic surfaces with large F∕#�F∕# ≥ 2�.

The two CGHs for the F∕1.75 ellipsoid with thicknesses of
16.0 and 19.0 mm have the same approximate errors of 12.1%.
Similarly, the errors of the CGHs for the F∕2.5 ellipsoid with
thickness distributions of 16.00 and 12.00 mm are both equal
to 0.0%. The results imply that it is reasonable to ignore the
influence of the CGH glass plate when determining the
amount of the needed tilt carrier frequency.

The separated distance of the most disturbing diffraction-
order combinations �−1; 3� and �3; −1� are examined and listed
in Tables 1 and 2. The separated distance of order �−1; 3� is
nearly four times that of the order (0, 2). This result is con-
sistent with Eq. (9), indicating the feasibility of focusing on
the orders (0, 2) and (2, 0). Parts of the rays with the orders
�3; −1� and (2, 0) are blocked by the aperture of the test mirror,
destroying the proportional relationship between them.

C. CGH Design Example for a Concave Weak
Aspheric Surface with a Large F∕#
The paraxial solution for the amount of the needed tilt carrier
frequency is applicable to a concave weak aspheric surface
with a large F∕#. Given a 2 m diameter F∕2 aspheric surface
with the fourth-order coefficient A � −1.220 × 10−13 mm−3,
B � −1.691 × 10−20 mm−5 is under test, setting h � 500 mm,
p � 450 mm, and L0 � 0.5 mm, the needed t is 11.9 mm
according to Eqs. (14), (16), and (17). Actually, t � 11.7 mm
(approximate error ∼1.7%) is chosen to design the CGH with
Zemax. The CGH pattern is fabricated on the right plane of
the 16.0 mm thick BK7 glass substrate. The size of the CGH is
134.7 mm. The minimum line spacing is 13.1 μm. All the dis-
turbing waves are separated: 0.5 mm for the order (0, 2),
0.6 mm for the order (2, 0), 0.8 mm for the order (0, 1),

Fig. 7. (a) Design of a CGH used to test the 2 m diameter F∕2
ellipse with K � −0.25. The CGH is fabricated on the right plane of
the 16.0 mm thick BK7 glass substrate. h � 500 mm, p � 450 mm,
and t � 9.5 mm. (b) Parasitic diffraction orders are separated on the
filter plane, and typical orders are shown here. The separated distance:
0.5 mm for the order (0, 2) (red), 0.6 mm for the order (2, 0) (green),
1.2 mm for the order (0, 1) (purple), and 1.2 mm for the order (1, 0)
(brown).

Table 1. Parameters of the Designed CGHs for the F∕2
Conic Surfaces with R � 8000 mm (h � 500 mm,
p � 450 mm)

Conic Constant
K �
−0.25

K �
−0.5

K �
−0.75

K �
−1

Approximate
t (mm)

9.5 11.7 15.9 26.1

Actual t (mm) 9.5 11.1 12.8 14.6
Error (%)a 0.0 5.1 19.5 44.1
Separated
Distanceb (mm)

(0, 2) 0.5 0.5 0.5 0.5
(2, 0) 0.6 0.7 0.8 1.0
(0, 1) 1.2 0.9 0.7 0.5
(1, 0) 1.2 0.9 0.7 0.5
(−1,3) 1.9 2.0 2.0 2.0
(3,−1) 3.2 4.8 7.3 11.4

CGH Thickness
(BK7) (mm)

16.0 16.0 16.0 16.0

CGH Sizec (mm) 129.7 133.4 137.0 140.6
Minimum Line
Spacing (μm)

16.6 13.9 11.9 10.3

aError�%� � j�Actual t − Approximate t�∕Approximate tj × 100%.
bIncludes the effect of apertures.
cMain CGH section.

Fig. 8. Curves of the calculated t and the actual t versus K . The
blue dotted line, obtained by linear fitting with the data of the calcu-
lated t when −0.5 ≤ K < 0 (the black solid sampling points), matches
well to the actual t when −1 ≤ K < 0.5. The error between the fitted t
and the actual t is among 0.3–0.4 mm when −1 ≤ K < −0.5.
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and 0.8 mm for the order (1, 0). The design sketch for this
CGH is not shown here, since it is similar to Fig. 7.

The approximate error of the amount of the needed tilt car-
rier frequency is only 1.7%, since the equivalent conic constant
K � a � −0.5 and F∕# � 2 such that the paraxial optics are
satisfied. The results are consistent with the data of the CGH
for the F∕2 conic surface with K � −0.5 shown in Table 1.
The difference between the errors of 1.7% and 5.1% is caused
by the effect of the sixth-order coefficient B and the intrinsic
diversity of the conic constant K and the fourth-order coeffi-
cient A.

D. CGH Design Example for a Concave Off-Axis
Aspheric Surface with a Weak Aspherical
Deformation and a Large F∕#
Given a 1 m diameter concave off-axis aspheric surface with
0.5 m later displacement, R � 8000 mm, A � −1.220×
10−13 mm−3, and B � −1.691 × 10−20 mm−5 is under test, still
setting h � 500 mm, p � 450 mm, and L0 � 0.5 mm, the
needed t is −2.4 mm according to Eq. (19). The CGH is
designed by choosing t � −2.4 mm, shown in Fig. 9(a).
The CGH is fabricated on the 16 mm thick BK7 glass plate

and placed perpendicular to the optical axis. The size of the
CGH is 67.4 mm. The minimum line spacing is 22.1 μm. All
the parasitic waves are separated, shown in Fig. 9(b): 0.5 mm
for the order (0, 2) (red), 0.6 mm for the order (2, 0) (green),
2.4 mm for the order (0, 1) (purple), and 2.4 mm for the order
(1, 0) (brown).

The spots of the diffractive waves on the filter plane are
spawn-liked [Fig. 9(b)], different from the circle ones of the
on-axis aspherics [Fig. 7(b)]. This phenomenon is attributed to
the off-axis aperture of the test mirror.

The approximate error for this off-axis aspheric surface is
0.0%. The reason is that only the rays coming from the CGH
with position y � 0 contribute to determine the amount of the
needed tilt carrier frequency, hence paraxial optics is naturally
satisfied.

5. CONCLUSION

CGHs with tilt carriers placed outside the interferometer
focuses are investigated in this paper. We have inherited and
ameliorated Leidlein’s work by containing the influence of the
CGH position, and constructed a parametric geometric model
to derive the phase function and the paraxial analytical solution
for the amount of tilt carrier frequency needed to eliminate the
unwanted waves. The paraxial analytical solution is applicable
to concave weak aspheric surfaces (−0.5 ≤ K ≤ 0, where K in-
cludes the equivalent conic constant K � a � 8AR3) with
large f-numbers �F∕# ≥ 2�.

Simulations for several typical kinds of aspherics testing
were conducted to compare the approximate expressions with
the exact ray trace. Simulation results indicate that the approxi-
mate expressions are of high precision when K is small and F∕#
is large. For practical purposes, a study of the relationships
among the approximate error of the amount of the needed tilt
carrier frequency, the conic constant K , the F∕# and the thick-
ness of the CGH has been done. The approximate error is less
than 5.1% when −0.5 ≤ K ≤ 0 and F∕# ≥ 2, and vanishes
when K � −0.25, F∕# � 2 or K � −0.5, F∕# � 2.5. The

Table 2. Parameters of the Designed CGHs for the Conic Surfaces with K � −0.5, R � 8000 mm (h � 500 mm,
p � 450 mm)

F∕# F∕1.75 F∕2 F∕2.25 F∕2.5

Approximate t (mm) 15.7 11.7 9.5 8.2
Actual t (mm) 13.8 13.8 11.1 9.4 8.2 8.2
Error (%)a 12.1 12.1 5.1 1.1 0.0 0.0
Separated Distanceb (mm) (0, 2) 0.5 0.5 0.5 0.5 0.5 0.5

(2, 0) 0.8 0.8 0.7 0.7 0.7 0.7
(0, 1) 0.7 0.7 0.9 1.1 1.2 1.2
(1, 0) 0.7 0.7 0.9 1.1 1.2 1.2
(−1,3) 2.0 2.0 2.0 2.1 2.0 2.0
(3,−1) 5.4 5.4 4.8 4.2 3.7 4.1

CGH Thickness (mm) 16.0 19.0 16.0 16.0 16.0 12.0
CGH Sizec (mm) 155.3 133.4 117.0 104.3
Minimum Line Spacing (μm) 11.1 11.1 13.9 16.5 19.2 19.2
aError�%� � j�Actual t − Approximate t�∕Approximate tj × 100%.
bIncludes the effect of apertures.
cMain CGH section.

Fig. 9. (a) Design of a CGH used for the 1 m diameter off-axis
aspheric surface with 0.5 m later displacement, R � 8000 mm, A �
−1.220 × 10−13 mm−3, and B � −1.691 × 10−20 mm−5. The CGH is
fabricated on the right plane of the 16.0 mm thick BK7 glass substrate.
h � 500 mm, p � 450 mm, and t � −2.4 mm. (b) Parasitic diffrac-
tion orders are separated: 0.5 mm for the order (0, 2) (red), 0.6 mm
for the order (2, 0) (green), 2.4 mm for the order (0, 1) (purple), and
2.4 mm for the order (1, 0) (brown).
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effect of the CGH glass plate on the amount of the needed tilt
carrier frequency is insignificant.

The results of this research show that the paraxial solution
for the parameter t offers a reasonable recipe for separating the
parasitic waves in the case that concave weak aspheric surfaces
(−0.5 ≤ K ≤ 0, where K includes the equivalent conic con-
stant K � a � 8AR3) with large F∕#�F∕# ≥ 2� are under
test, with an approximate error less than 5.1%. The linear fit-
ting method can be applied when K and F∕# are beyond the
field of high accuracy. Besides, the necessary condition for sepa-
rating the spurious diffraction orders provides a design guid-
ance for selecting the proper position parameters h and p.

APPENDIX A

Equation (6) is derived as follows:

(a) The testing system is treated as paraxial optics, thus the
shifts Δξ and Δη on the aspheric surface are approximated as

Δξ ≈ APx · �m − 1�θx ≈ �m − 1�d ∂Φ
∂x

;

Δη ≈ APy · �m − 1�θy ≈ �m − 1�d ∂Φ
∂y

: (A1)

(b) The shift of the local surface normal vectors from the
point A to B, i.e., the included angle α, is obtained by the
first-order approximation

αx ≈ −Δξ
∂Nx

∂ξ
− Δη

∂Nx

∂η
;

αy ≈ −Δη
∂Ny

∂η
− Δξ

∂Ny

∂ξ
: (A2)

(c) The length of PmP is approximately twice the length of
MP based on the angle bisector theorem, hence the shifts Δx
and Δy are given by

Δx ≈ MPx ≈ d �m − 1�θx − dαx ;
Δy ≈ MPy ≈ d �m − 1�θy − dαy : (A3)

(d) Paraxial optics are considered, hence ξ, η ≪ R. The
partial differentials of the surface normal vector N�ξ; η� �
�Nx; N y; 1� have the approximate expressions

∂Nx

∂ξ
≈ −

1

R
−
�K � 1��3ξ2 � η2�

2R3 ≈ −
1

R
;

∂Nx

∂η
≈ 0;

∂Ny

∂η
≈ −

1

R
−
�K � 1��3η2 � ξ2�

2R3 ≈ −
1

R
;

∂Ny

∂ξ
≈ 0: (A4)

(e) Finally, the expressions of Δx and Δy are achieved by ap-
plying Eqs. (A1), (A2), and (A4) into Eq. (A3), shown as Eq. (6).
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