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The thermo-optic effect has been utilized to modulate the refractive index dynamically within a whispering gallery
mode resonator. Modulation with a large tuning range is mostly performed for mode locking and dynamic control
of the optical path at a modulation frequency as low as several hertz, while high-frequency modulation up to
megahertz is mainly exploited in optical switching devices with small tuning range. Here, we introduce the re-
sponse functions theoretically to describe the dynamic response of temperature changes in the mode volume and
the resonator body, respectively. This result is verified experimentally in silica microspherical resonators. The
dependence of the tuning range on the modulation frequency is achieved. This knowledge could pave the
way toward more practical control of refractive index in microresonators. © 2015 Optical Society of America

OCIS codes: (140.4780) Optical resonators; (170.4090) Modulation techniques; (190.4870) Photothermal effects; (230.0230) Optical

devices.
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1. INTRODUCTION

The combined ultrahigh quality factor �Q� and ultrasmall
mode volume �V � of a whispering gallery mode (WGM)
resonator make it a practical optical element to investigate
light–matter interaction [1–5]. Thermo-optic effect induced
refractive index (RI) change, which shifts the resonance of a
resonator, universally exists due to the high rate of Q∕V even
at a low power level [6–8]. This effect offers a practical
approach to modulate the RI of a WGM resonator. When
studying nonlinear frequency conversion and tunable optical
functional elements [9–12], a large tuning range is preferable,
which can only be completed at modulation frequency as low as
several hertz. Furthermore, thermo-optic effect-based all-opti-
cal devices, like optical switching and optical diode, have also
been intensively exploited due to their fast response, where a
small resonance shift is sufficient and high speed is required
[13–16]. Recently, this effect has been used to modulate the
RI both in the mode volume and the resonator body of a
WGM resonator. By simply scanning the pump wavelength
back and forth on the blue side of a resonance [17,18], the
RI of the resonator as well as its resonance frequency will track
this scan. It is the scan-induced dynamic temperature response
in the resonator that tunes the RI.

For a typical WGM resonator, mode volume is a small frac-
tion inside the resonator body, and the thermal relaxation time
is several orders of magnitude smaller in the mode volume.
Thus, the two parts experience different temperature changes
during scanning [7]. And their dynamic temperature responses
rely on the modulation frequency [18]. To achieve more prac-
tical modulation of the RI, quantitative analysis about the
dynamic response of temperature change is required. Here,
we introduced the response functions to describe theoretically
the dynamic responses of temperature changes in the mode vol-
ume and the resonator body, respectively. The dependence of
tuning range on the modulation frequency was achieved. The
theoretical results were verified experimentally in silica micro-
spherical resonators. This knowledge could pave the way to-
ward more practical control of RI in WGM microresonators
and present instructions for thermo-optic effect-based optical
switching devices.

2. MODEL AND DISCUSSION

Thermo-optic effect-based RI modulation is related to the ther-
mal dissipation process in the microresonators. As the thermal
conductivity of the resonator body is far larger than that of
the surroundings (usually air), heat generated by photon
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absorption dissipates to the resonator body, and then to the
surroundings. To investigate the dynamic responses of temper-
ature changes in the mode volume and the resonator body theo-
retically, we introduced the models in [7,19]:

_α �
�
iΔ0−ig th�ΔT 1 � ΔT 2� −

κ

2

�
α� ffiffiffiffiffiffi

κex
p

s: (1)

Δ _T 1 � −
k1
Cp1

ΔT 1 � jαj2 Γabs

Cp1
: (2)

Δ _T 2 �
k1
Cp2

ΔT 1 −
k2
Cp2

ΔT 2: (3)

Equations (1)–(3) describe the amplitude of the intracavity
field and temperature changes in the mode volume and reso-
nator body, respectively. α is the normalized amplitude of the
optical field in the microresonator, jsj2 is the input field power,
and Δ0 � ωl − ω0 is the laser frequency �ωl � detuning from
the cavity resonance �ω0�. κ �κex� is the loaded (external) cavity
optical energy decay rate, g th � �−dn∕dT � × �ω0∕n� is the
thermo-optic tuning coefficient. ΔT 1�ΔT 2� is the temperature
difference between the mode volume and the resonator body
(the body and the surroundings), k1�k2� is the thermal conduc-
tivity between the mode volume and the body (between the
body and the surroundings), and Cp1�Cp2� is the thermal
capacity of the mode volume (the body). Γabs is the component
of optical energy dissipation due to material absorption.

Solving Eqs. (1)–(3) can give a typical thermal bistability
curve, which includes a stable warm equilibrium and an unsta-
ble warm equilibrium between the absorbed and dissipated heat
[7]. The stable warm equilibrium is self-stable, i.e., the reso-
nance trends to shift toward such a direction that the frequency
shift induced by the fluctuations of the pump frequency or in-
tensity is compensated. In our experiment, RI modulation is
enabled by artificially modulating the pump frequency around
a stable equilibrium position. When the pump light frequency
shift is small, the above equations were solved using a pertur-
bation approach [19]. The RI change can be quantified by the
resonance frequency shift. To relate the RI change to the fre-
quency shift of pump light, we built up the response function.
It is defined as the ratio of the resonance frequency shift to the
pump light frequency shift (see Appendix A for more details):

K 1�Ω� �
�
1� k1∕Cp2

k2∕Cp2 � iΩ

�

·
β · Pin

iΩ� k1
Cp1

� β · Pin � β · P in
k1
Cp2

∕
�

k2
Cp2

� iΩ
� : (4)

K 2�Ω� �
k1∕Cp2

k2∕Cp2 � iΩ

·
β · Pin

iΩ� k1
Cp1

� β · Pin � β · P in
k1
Cp2

∕
�

k2
Cp2

� iΩ
� : (5)

In Eqs. (4) and (5), K 1�Ω� and K 2�Ω� denote resonance
frequency shift response functions of the mode volume and
the resonator body, respectively. Ω denotes the modulation

frequency, Pin, equaled to jsj2, is the input power, and param-
eter β mirrors the dependence on the Q-factor and frequency
detuning between the pump light wavelength and the cavity
resonance:

β � g th
Γabs

Cp1

2κex�Δ0 − g thΔT 0��
�Δ0 − g thΔT 0�2 � κ2

4

�
2
: (6)

In addition, we introduced the laser-microresonator relative
frequency response function to reflect their relative frequency
detuning, Ri�Ω� � 1 − K i�Ω��i � 1; 2�. A smaller R�Ω�
means that the resonance frequency can track the pump light
shift more tightly.

The dependence of K �Ω� and R�Ω� on the modulation
frequency is presented in Fig. 1(a). From this figure we can
see that the dynamic tuning range decreases as the modulation
frequency increases. Because the response of temperature
change depends upon the progress of the thermal dissipation
during each modulation period, the increase of modulation fre-
quency leads to the decrease of heat generated, as well as the
time left for the heat to dissipate in each period. This feature
can be figured out through R�Ω�. As thermal dissipation
progress can be quantified by the thermal relaxation rate
(shown as the two dotted lines in Fig. 1), when the modulation
frequency draws close to the thermal relaxation rate, the incom-
plete dissipation leads to an increase in R�Ω�, i.e., the resonance
frequency cannot track the pump light wavelength shift tightly
any longer. Thus, the amplitude of K �Ω� decreases as the
modulation frequency increases.

Meanwhile, the mode volume and the resonator body re-
spond differently to the increase of modulation frequency.
The amplitude of the ratio of K 1�Ω� to K 2�Ω� reflects the
difference of temperature changes between the two parts:				K 1�Ω�

K 2�Ω�

				 �
				 k1 � k2 � iΩCp2

k1

				: (7)

For the thermal conductivity of the mode volume k1 is far
larger than that of the resonator body k2, at low modulation
frequency, the ratio is close to unity. It means that heat gen-
erated in the mode volume has sufficient time to dissipate
to the body and the environments, i.e., the two parts experience
the same temperature change. As the modulation frequency in-
creases, the amplitude of K 2�Ω� decreases in a large scale, while
that of K 1�Ω� only experiences slight decrease. As a conse-
quence, at high modulation frequencies only the mode volume
can be effectively tuned, while at low modulation frequencies
the entire microresonator can be tuned simultaneously.

Moreover, we find that the modulation bandwidth of the
two parts react differently to the input power, as shown in
Fig. 1(b). The modulation bandwidth of the mode volume
is extended at high input power, while that of the body is
insensitive to the power. Because at higher input power the
temperature in the mode volume experiences larger change, the
resonance frequency can track the pump wavelength more
tightly. Parameter β behaves similarly as Pin in determining
the bandwidth. Locating the pump wavelength near the bot-
tom of the resonance or exciting a high Q-factor resonance
can enhance parameter β as well as the bandwidth.
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Finally, the entire microresonator can be tuned in a large
tuning range at low modulation frequency. High input power
and high-Q resonance selected can enhance the tuning range to
be as large as a free spectrum range [20]. Because the tuning
system responds linearly to the shift of the pump wavelength
[18], we can infer that the tuning range will decrease when
the modulation frequency draws close to the slow thermal
relaxation rate.

3. EXPERIMENT RESULTS AND DISCUSSION

To illustrate the conclusions experimentally, we used the exper-
imental setup in Fig. 2(a). Microspherical WGM resonators
were fabricated by fusing the end of a half-tapered fiber with
a fiber fusion splicer, obtained by heating and stretching a stan-
dard telecom fiber (radius 125 μm). Using different numbers of
arc discharges, spheres with radii ranging from 30 to 103 μm
were produced. The pump light from a tunable laser evanes-
cently excited the WGMs in a silica microsphere through a
tapered fiber. The output energy was evaluated using a photo-
detector (125 MHz) connected to an oscilloscope. Precise
control of the scanning range enables locking of the pump
wavelength on the blue side of a resonance when it is thermally
broadened. By scanning the pump light wavelength using a

digital function generator at varied velocities, i.e., modulating
at different frequencies, the dynamic response of the transmis-
sion was obtained. The modulation frequency used in this
method is limited to 1 kHz by the tunable laser. By performing
Fourier transform of the transmission waveform as shown in
Fig. 2(c), the modulation amplitude corresponding to each
modulation frequency was derived. And it was related to
the theoretical result by the response function defined as
S�Ω� [19],

S�Ω� � P in · h�Ω� · R�Ω�; (8)

where h�Ω� is the cavity response function [10]:

h�Ω� � 2iκeΔ0�−κ � κe � iΩ�

Δ2

0 �
�
κ
2

�
2


Δ2

0 �
�
κ−2iΩ

2

�
2
 : (9)

Figure 3 presents the experimental and theoretical results of
R�Ω� at two different input powers. The theoretical predictions
at high modulation frequencies can be verified by the experi-
mental data in [19,21]. The good agreement confirms the
aforementioned first three conclusions. This knowledge lays
the foundation for tunable optical switching devices, which
can be performed by locating the probe light in the mode vol-
ume of the pump light. Enhancing the input power can extend
the modulation bandwidth and tuning the primary frequency
detuning between the laser and resonance can adjust the

Fig. 1. (a) Resonance frequency shift response functions K �Ω� and
the laser-microresonator relative frequency response functions R�Ω�,
respectively. The two dotted lines denote the slow thermal relaxation
rate (left) and the fast thermal relaxation rate (right). The input power
is 0.1 mW. (b) Dependence of the response functions on the
input power. The parameters used here are K 2∕Cp2 � 35 Hz,
K 1∕Cp1 � 366 kHz, β � 5 MHz∕mW.

Fig. 2. (a) Experimental setup, the inset is an optical picture of a
microsphere with 50 μm radius. (b) Schematic mechanism of RI
modulation demonstrated in the experiment. Modulation is per-
formed by scanning the pump light (red peak, linewidth is 200 kHz)
within a thermally broadened resonance (blue line) and the blue peak
denotes the resonance (linewidth is several megahertz) at each mo-
ment. CR, cold resonance; BR, broadened resonance. (c) Experimental
transmission waveform achieved via the oscilloscope at modulation fre-
quency of 1000 Hz. The red line and blue dotted line denote the
pump light wavelength and detected voltage in the photodetector,
i.e., transmission waveform, respectively. The scanning range of the
pump wavelength is set to be 1.05 pm, small enough to be considered
as perturbation. Normally, the pump wavelength and the transmission
waveform are in opposite phase; the mismatch in this plot is attributed
to the phase delay that results from the tunable laser.
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working wavelength. Furthermore, different modes have di-
verse mode patterns and mode volumes. Qualitatively, high-
order azimuthal mode has extended nonlocalized mode
distribution and larger mode volume than the fundamental
mode, which results in a faster thermal dissipation process,
i.e., higher relaxation rate. A high-order mode is thus believed
to broaden the modulation bandwidth.

The parameters used in the fittings are listed in Table 1. It is
not easy to exactly estimate the thermal constants of the mode
volume. In general, its thermal relaxation rate is estimated by
γ1 � D∕�δR�2, where D is the temperature conductivity and
δR is the effective thickness of the mode near the microsphere
surface [6], and can be estimated using the finite element
method. Furthermore, the relaxation rate of the resonator body
is calculated by γ2 � K 2∕C2 [20]. Here, K 2 � 4πRκ2 is
thermal conductivity of the resonator body, and C2 �
4∕3πR3ρC sp is its thermal capacity, where R is the radius of
the sphere, κ2 is the thermal conductivity between the resona-
tor and air, ρ and C sp are density and specific heat capacity (per
mass) of silica, respectively. As for the coupling parameters, it is
noted that κex and Δ0 − g thΔT 0 are both typically of the same
order as κ, about 107 for a mode with Q�106–107� around
1550 nm. And material absorption-induced dissipation rate
Γabs � ω∕Qabs � c × α∕neff , where the absorption rate α for
a standard telecom fiber is 4.6 × 10−5 m−1, neff is the effective
RI, and c is the light speed in vacuum. According to Eq. (6),
parameter β is thus of the order of 109 �Hz∕W�. The fittings
were achieved by adjusting these parameters in reasonable
ranges to ensure the best agreement with the experimental data.

To illustrate experimentally the response characteristic of
modulation in a large range, we produced microspheres with
different radii and selected two resonances of each microsphere.
Under constant input power, we attained the maximum tuning
range for each resonance at lowmodulation frequency. Then we

increased the frequency gradually to the slow thermal relaxation
rate. The tuning range, i.e., the thermal broadening, was found
to decrease by a half, as presented in Fig. 4(a). The experimen-
tal corner frequency where the broadening range halves for each
sphere is well around the theoretical slow thermal relaxation
rate, as shown in Fig. 4(b). This means that below this modu-
lation frequency, we can achieve the maximum tuning range of
RI modulation in the entire microresonator. This presents in-
structions for WGM microresonator experiments and tunable
optical elements.

Moreover, the thermal relaxation rates are well estimated by
fitting the experimental data to the function R�Ω�. These
parameters are difficult to evaluate in theory because they are
interfered with many factors, e.g., geometry of the microreso-
nator and the excited mode [6]. This knowledge is practical for
WGM microresonators applied in integrated optical devices.

4. CONCLUSIONS

To summarize, the dynamic response characteristics of temper-
ature change in the mode volume and the microresonator body
are illustrated theoretically when performing thermo-optical
effect-based RI modulation. The tuning range starts to decrease
as the modulation draws close to the thermal relaxation rate.
Moreover, the bandwidth of high-frequency modulation in
the mode volume is proved to be power-related, and that of
low-frequency modulation in the entire microresonator body
turns out to be limited by the slow thermal relaxation rate.
These results are verified experimentally in silica microspherical
resonators. Such knowledge could facilitate RI control within
WGM microresonators in applications of all-optical devices,
e.g., nonlinear frequency conversion processes and tunable
optical switching devices. In addition, the response function

Fig. 3. Theoretical and experimental results of laser-microresonator
relative frequency response function R1�Ω� (theory in solid line, ex-
periment in triangle) and resonance frequency shift response function
K 1�Ω� (dotted line) at two different input powers. The radius of mi-
crosphere used here is 37 μm. The fitting parameters in this plot are
K 2∕Cp2 � 35 Hz and K 1∕Cp1 � 360 kHz.

Table 1. Parameters Used in the Fittings

g th [Hz/K] Γabs [Hz] C sp [J/(Kg K)] κ2 [W/(m K)] ρ [Kg∕m3]
−1.6 × 109 9.5 × 103 740 0.026 2200
δR [μm] D [m2 s−1] K 2 [W/K] C2 [J/K] β [MHz/mW]
1.4 8 × 10−7 1.21 × 10−5 3.45 × 10−7 5

Fig. 4. (a) The dependence of maximum tuning range on the
modulation frequency. The radius of the sphere is 50 μm, and its slow
thermal relaxation rate is estimated to be 19 Hz. The dip in the trans-
mission spectrum during the down-scan process is the cold resonance
corresponding to the broadened resonance in the up-scan process.
(b) Experimental corner frequency and theoretical thermal relaxation
rate [20]. Error bars are standard deviations from the measurements of
two different resonance modes.
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figure indicates new methods to estimate thermal constants of a
microresonator.

APPENDIX A: SOLVING THE COUPLED
EQUATIONS IN PERTURBATION APPROACH

In this section, we detail the process to determine the resonance
frequency shift response functions K �Ω� and laser-microreso-
nator relative frequency response function R�Ω� by solving the
coupled Eqs. (1)–(3) using a perturbation approach.

When the pump wavelength scans in a small range, small
signal quantities are introduced as Eqs. (A1)–(A4):

α � α0 � α1�t�: (A1)

ΔT 1 � ΔT 0
1 � ΔT 1

1�t�: (A2)

ΔT 2 � ΔT 0
2 � ΔT 1

2�t�: (A3)

Δ � Δ0 � Δ1�t�: (A4)

Here, α0, Δ0, ΔT 0
1, and ΔT 0

2 denote the steady-state intracav-
ity field amplitude, laser-microresonator frequency detuning,
and temperature differences between the mode volume
(resonator body) and resonator body (the surroundings), re-
spectively. For the modulation frequency of interest is much
slower than the resonance bandwidth, the frequency detuning
variable is time-dependent in Eq. (A4). By substituting
Eqs. (A1)–(A4) into Eqs. (1)–(3), the solutions for steady-state
operation are derived:

α0 �
ffiffiffiffiffiffi
κex

p
s

κ∕2 − i�Δ − ig thΔT 0
1�1� k2∕k1��

: (A5)

ΔT 0
1 �

Γabs

k1
jα0j2: (A6)

ΔT 0
2 �

Γabs

k2
jα0j2: (A7)

And the time-dependent coupled equations describing the
perturbation terms are achieved as

_α1�t� � �iΔ1�t� − ig th�ΔT 1
1�t� � ΔT 1

2�t��� · α0
� �iΔ0 − ig th�ΔT 0

1 � ΔT 0
2� − κ∕2� · α1�t�: (A8)

_ΔT 1
1�t� � −

k1
Cp1

ΔT 1
1�t� �

Γabs

Cp1
�α0α�1�t� � α�0α1�t��: (A9)

_ΔT 1
2�t� �

k1
Cp2

ΔT 1
1�t� −

k2
Cp2

ΔT 1
2�t�: (A10)

Because the cavity field damping rate is typically much faster
than the thermal relaxation rate of the cavity, the steady-state
solution of Eq. (A8) is used throughout the analysis:

α1 �
i�Δ1�t� − g th�ΔT 1

1�t� � ΔT 1
2�t��� · α0

κ∕2 − i�Δ0 − g th�ΔT 0
1 � ΔT 1

2��
: (A11)

By substituting Eq. (A11) into Eqs. (A9) and (A10) and
performing Fourier transform of the results, the temperature

changes both in the mode volume and the resonator body
are related to the pump light wavelength detuning Δ1:

ΔT̃ 1
1�Ω� � K �Ω� · Δ̃1�Ω�: (A12)

ΔT̃ 1
2�Ω� �

k1∕Cp2

k2∕Cp2 � iΩ
K �Ω� · Δ̃1�Ω�: (A13)

Here, Ω denotes the modulation frequency:

K �Ω� � β · P in∕g th
iΩ� k1

Cp1
� β · P in � β · P in

k1
Cp2

∕
�

k2
Cp2

� iΩ
� :

(A14)

β � g th
Γabs

Cp1

2κex�Δ0 − g thΔT 0�h
�Δ0 − g thΔT 0�2 � κ2

4

i
2
: (A15)

Thus, we get the resonance frequency shift response function of
the mode volume, K 1�Ω�, and that of the microresonator body,
K 2�Ω�, as following:

K 1�Ω� �
�
1� k1∕Cp2

k2∕Cp2 � iΩ

�
· g thK �Ω�: (A16)

K 2�Ω� �
k1∕Cp2

k2∕Cp2 � iΩ
· g thK �Ω�: (A17)

And the laser-microresonator relative frequency change for the
mode volume is

Δ̃l r
1 �Ω� � Δ̃1�Ω� − g th�ΔT̃ 1

1�Ω� � ΔT̃ 1
2�Ω��

� �1 − K 1�Ω�� · Δ̃1�Ω�: (A18)

For the resonator body, it is

Δ̃l r
2 �Ω� � Δ̃1�Ω� − g th · ΔT̃ 1

2�Ω� � �1 − K 2�Ω�� · Δ̃1�Ω�:
(A19)

Then the laser-microresonator relative frequency change re-
sponse function Ri�Ω� takes the form of 1 − K i�Ω��i � 1; 2�.
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