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Abstract: Most computer-aided alignment methods for optical systems are 
based on numerical algorithms at present, which omit aberration theory. 
This paper presents a novel alignment algorithm for three-mirror 
anastigmatic (TMA) telescopes using Nodal Aberration Theory (NAT). The 
aberration field decenter vectors and boresight error of misaligned TMA 
telescopes are derived. Two alignment models based on 3rd and 5th order 
NAT are established successively and compared in the same alignment 
example. It is found that the average and the maximum RMS wavefront 
errors in the whole field of view of 0.3° × 0.15° are 0.063 λ (λ = 1 μm) and 
0.068 λ respectively after the 4th alignment action with the 3rd order model, 
and 0.011 λ and 0.025 λ (nominal values) respectively after the 3rd 
alignment action with the 5th order model. Monte-Carlo alignment 
simulations are carried out with the 5th order model. It shows that the 5th 
order model still has good performance even when the misalignment 
variables are large (−1 mm≤linear misalignment≤1 mm, −0.1°≤angular 
misalignment≤0.1°), and multiple iterative alignments are needed when the 
misalignment variables increase. 
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1. Introduction 

With the development of astronomy, the need for the high resolution, depth and breadth of 
astronomical observations grow rapidly. People take the more and more high request to the 
image quality and field of view of space telescope. Reflecting systems are commonly used in 
the design of large aperture space telescopes (e.g. Hubble telescope and James Webb Space 
Telescope (JWST)) because they are completely free of chromatic aberration. 

More than 100 years ago, large two-mirror telescopes first appeared. Up to now, most 
large astronomical telescopes for professional use are two-mirror forms with either a 
parabolic (Cassegrain) or a hyperbolic (Ritchey-Chretien) primary mirror. For Cassegrain 
telescopes, the field of view is limited by coma aberration with a linear field dependence, and 
for the Ritchey-Chretien telescopes, the field of view is limited by uncorrected third-order 
astigmatism which increases quadratically with field of view. So two-mirror systems cannot 
meet the requirements of wide field and near diffraction-limit imaging quality. Compared 
with two-mirror systems, the TMA telescopes are corrected for four aberrations: spherical 
aberration, coma, astigmatism, and field curvature, so they have a wider field of view. They 
have occupied an important position in the design of space telescope in recent years. In 
general, TMA telescopes come in two forms: field bias and aperture offset. The next major 
space-borne observatory, the JWST, is a representative field-biased TMA telescope. 

A good alignment state is the precondition of the telescope with excellent observation 
performance. Compared with two-mirror systems, TMA systems have more alignment 
degrees of freedom which are more difficult to align. For space-based telescopes, the accurate 
alignment algorithm is the assurance of good performance of telescopes whether in the 
prelaunch alignment or the on-orbit alignment. It is urgent to provide an alignment algorithm 
for this class of telescopes. In this paper, our aim is to develop an alignment algorithm for the 
field-biased TMA telescopes which are similar to the JWST. 

At present, there are many alignment theories for imaging system. Figoski et al. [1] used 
sensitivity table method for alignment of a wide field, three-mirror system. The alignment 
optimization in commercial optical design software Code V also works with this method. 
Seonghui Kim et al. [2] pointed out the sensitivity table method can’t bring high accuracy to 
the estimation of the misalignment parameters if the misalignment values are large, as a result 
of the nonlinearity of the Zernike coefficient sensitivity to the alignment parameters. Then he 
presented a new merit function regression method, which utilizes the merit function consisting 
of Zernike coefficients representing the misaligned optical wavefronts, and attempts to 
minimize merit function using actively damped least square algorithm to estimate the 
misalignment states. Furthermore, Hanshin Lee et al. [3] introduced differential wavefront 
sampling method for the efficient alignment of centred optical systems. All the methods 
above are based on data reduction and numerical methods but without a tie to aberration 
theory. 

NAT is a powerful tool to study optical systems that contain misaligned, or intentionally 
tilted and/or decentered components. In 1976, Shack discovered binodal astigmatism in 
through-focus star plate taken with the 90” Bok telescope on Kitt Peak [4]. In 1980, 
Thompson [5] described the wavefront aberrations (expanded up to 5th order) that can occur 
in non-symmetric optical systems. Schmid et al. [6] demonstrated how nodal aberration 
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theory can be used to determine the aberration field dependencies for misaligned TMA 
telescopes. Their results show that two dominant 3rd order misalignment aberrations arise for 
any TMA telescope, field-constant coma and field-linear, field-asymmetric astigmatism. They 
also pointed out that the alignment of TMA telescopes cannot be accomplished using on-axis 
performance data alone. Similar conclusions can be found in [7]. Another important 
conclusion shown in [6] is that if a TMA telescope is aligned to remove axial coma and under 
this condition if astigmatism is measured on-axis this astigmatism is due to astigmatic mirror 
figure error and is not due to misalignment. Thompson et al. [8] proposed an alignment 
strategy based on aberration compensation for TMA telescopes. The application of NAT to 
understanding the optical design of an optical system with a chain of four TMA telescopes is 
discussed in [9]. These analysis and conclusions provide theoretic guidance for alignment of 
TMA systems. However, the quantitative calculation for misalignments has not been 
discussed in the previous researches. 

In this paper, we take a TMA telescope as an example and use NAT to study the 
calculation for misalignments. Section 2 describes the optical parameters of the TMA 
telescope. Section 3 derives aberration field decenter vectors and boresight error for a 
misaligned TMA system based on NAT. In Section 4, we establish the alignment model based 
on 3rd order NAT, and analyze its shortcomings by an alignment example. In Section 5, we 
propose another alignment model based on 5th order NAT, and give a comparison of it to the 
3rd order model. In section 6, we discuss the alignment capability of the 5th order model in 
different ranges of misalignments by Monte-Carlo simulations. We summarize our findings in 
Section 7. The Appendix supplies a compilation of the acronyms and mathematical symbols 
that are used throughout the paper. 

2. Optical parameters for the TMA telescope 

The TMA telescope (see Fig. 1) used for alignment simulation in our paper is similar to 
JWST. It is a 6.6 meter F/14 TMA telescope with a 0.3° × 0.15° field of view and a 0.18° 
field offset. The aperture stop located on the primary mirror (PM). The PM, the secondary 
mirror (SM) and the tertiary mirror (TM) have a common axis of rotational symmetry, which 
is slightly different from the JWST which has a decentered TM and a curved image surface. 
Table 1 shows the optical prescription of the example system. A right-handed coordinate 
system is defined in Fig. 1. The optical axis of the telescope (the common axis of rotational 
symmetry of the PM, the SM and the TM) is z-axis, and the light starts out from the object 
travels in the + z direction. 

 

Fig. 1. The optical layout of the TMA telescope. 
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Table 1. Optical Prescription of the Example System 

Surface Type Conic constant Radius (mm) Thickness (mm) 
PM (stop) Conic −0.9948 −16287.099 −7170 

SM Conic −1.8351 −2317.426 7965 
TM Conic −0.7202 −2702.327 −1845 

fold/steering mirror  Flat 3006.205 
image  Flat  

The fold/steering mirror is decentered 32.759 mm from the optical axis, towards the focal surface center. 

The nominal performance of the TMA over the field is shown in Figs. 2(a)-2(c). Fringe 
Zernike coefficients [10] C5/6 (related to astigmatism), C7/8 (related to coma) and RMS 
wavefront error are characterized and visualized through Full-Field-Displays (FFDs) in Figs. 
2(a)-2(c), respectively. For the telescope, note that only the portion of the field in the red 
dashed boxes is utilized, but a larger portion of the field is shown for the better understanding 
of the aberration fields. In Figs. 2(a) and 2(b), we can find coma and astigmatism is zero at the 
field center and at a ring-shaped zone in the field, where third, fifth and higher order 
aberrations balance each other. 

 

Fig. 2. FFDs for Fringe Zernike coefficients (a) C5/6, (b) C7/8, and (c) RMS wavefront error for 
the nominal TMA telescope. 

In our paper, we can choose the TM as a reference without loss of generality, and assume 
it is fixed. The PM and the SM are misaligned relative to the TM. Because the TMA is a 
symmetrical optical system about z-axis, the rotation of optical elements about z-axis (CDE) 
will not affect its optical properties, so this type of misalignments is invalid. The decenter of 
optical elements along z-axis (ZDE) only cause rotationally symmetric aberrations (such as 

#244275 Received 23 Jul 2015; revised 2 Sep 2015; accepted 2 Sep 2015; published 17 Sep 2015 
(C) 2015 OSA 21 Sep 2015 | Vol. 23, No. 19 | DOI:10.1364/OE.23.025182 | OPTICS EXPRESS 25185 



defocus or spherical aberration). This type of misalignments can be solved with the aberration 
theory for symmetrical optical system. This paper will not discuss them. We only focus on the 
misalignments that can break the axial symmetry of the optical system. This type of 
misalignments in telescope are the decenter of PM and SM along x-axis and y-axis (XDE and 
YDE), the tilts of PM and SM in y-z plane and x-z plane (ADE and BDE), respectively. Note 
that a positive XDE/YDE is the displacement in the + x/y direction, and a positive ADE/BDE 
is the rotation which is left-handed about the + x/y axis. 

3. Aberration field decenter vectors and boresight error 

It is well known that in the theory of 3rd order aberrations of rotationally symmetric optical 
systems the total aberrations can be described as the summation over all individual surface-
by-surface contributions. The field dependence of all of the 3rd order aberrations of an 
individual spherical optical surface is rotationally symmetric about a common axis for each 
surface. The common axis is called as the optical axis of the system. 

According to NAT, when an imaging optical system with a circular pupil is perturbed, no 
new aberrations will be created, but the centers of the aberration field contribution for each 
surface in the system no longer coincide, and the behavior of the aberration field at the image 
plane will be modified. 

The vector form of wave aberration expansion in misaligned optical systems are expressed 
by [5,11] 

 
( ) ( ) ( )( ) ( ) ( )( ), , , ,

, ,

2 , 2 ,

p mnsph asph sph asph sph asph sph asph
klm j Aj Aj Aj

j p n m

W W H H H

k p m l n m

ρ ρ ρ
∞ ∞ ∞

= ⋅ ⋅ ⋅

= + = +


    

 (1) 

where the subscript j is the surface number, Wklm,j is the wave aberration coefficient for 

surface j, AjH


 denotes the effective field height for surface j, and ρ  is the normalized vector 

describing the position in the pupil. AjH


 and ρ are visualized in Fig. 3. Note that a 

fundamental concept in NAT is the decomposition of the surface wave aberration 
contributions into two separate contributions each, one associated with the spherical base 
curve, the other determined by the aspheric departure (if any) from the spherical base curve. 
The superscript sph and asph are used to distinguish them. 

 

Fig. 3. Concepts of effective field height, aberration field decenter vectors and boresight error. 
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In a misaligned or generally nonsymmetric optical system made of otherwise rotationally 
symmetric optical surfaces, the optical axis ray (OAR) is defined as the ray that connects the 
center of the object with the center of the circular physical aperture stop within the optical 
system, which is typically called as chief ray for the on-axis field point. 

In Eq. (1), the effective field height vector ( ),sph asph
AjH


 is given by 

 ( ) ( ), , .sph asph sph asph
Aj jH H σ= −
  

 (2) 

The vector ( ),sph asph
jσ  was first introduced by Buchroeder [4,12], which represents the 

decentration of the center of the aberration field of surface with respect to the OAR intercept 
with the Gaussian image plane, as visualized in Fig. 3. It depends on the misalignments of 
optical elements, which is called aberration field decenter vector. 

For the spherical surface contribution to the aberration field, as detailed by Thompson 
[5,11], the location of the center of symmetry for the surface contribution is given by 

 
# # #*

0( ) ,
OAR OAR jj j j jsph

j
j j j j

u y ci

i u y c

β
σ

− + ⋅
= − = −

+

  


 (3) 

where *
ji


 denotes the incident angle of the OAR at surface j, ji  denotes the paraxial 

incident angle of the chief ray at surface j, #
OAR ju


 denotes the OAR paraxial angle prior to 

surface j referenced to the z-axis. #
OAR jy


 denotes the OAR intersection height at surface j 

referenced to the z-axis, cj denotes the curvature of surface j. ju  corresponds to paraxial chief 

ray angle incident at surface j, jy  corresponds to the paraxial chief ray height at surface j, and 

#
0 jβ


 corresponds to the equivalent tilt of surface j [11], is given by 

 #
0 .j j j

j
j j j

BDE XDE c

ADE YDE c
β

− + 
=  + 

   

  
 (4) 

The paraxial quantities ju  and jy can be derived by utilizing traditional paraxial equations 

for rotationally symmetric optical systems, which are given by 

 ,SM PMu u= −  (5) 

 
( )12

,PM SM
TM

SM

u d r
u

r

+
=  (6) 

 0,PMy =  (7) 

 1 ,SM PMd uy −=  (8) 

 ( )1 2
1 2

2
,PM

PM
SM

TM

d d u
u d d

r
y − −=  (9) 

where rj denotes the radius of surface j, dj denotes the thickness of surface j. 
The location of the aspheric contribution is located at 

 
*

( ) #1
= ,jjasph

j OAR j
jj j

XDEv
y

YDEy y

δ
σ

  
= −     




 (10) 
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where *
jvδ


 denotes the intersection height of the OAR with respect to the aspheric vertex of 

surface j . 

The OAR quantities #
OAR ju


and #
OAR jy


 can be computed using the LCS paraxial ray-trace 

equations for optical systems with tilted and decentered surfaces as developed by Buchroeder 
[11,12] or a real ray computed using Snell’s law as in any commercial optical design software 
package. In this paper, paraxial ray-trace method is used to obtain the analytical expressions 

for aberration field decenter vectors and boresight error. #
OAR ju


and #
OAR jy


 are given by 

 # 0
,

0OAR PMu
 

=  
 


 (11) 
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2
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BDE
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u

− 
=  
 


 (12) 
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 (16) 

The aberration field decenter vectors for PM, SM and TM can be obtained after 
substituting Eq. (4), the expressions for the OAR quantities (Eqs. (11)-(16)) and the paraxial 
quantities (Eqs. (5)-(9)) into Eqs. (3) and (10), which are given by 
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If the TMA is misaligned, not only will the behavior of the aberration field be modified, 
but also the image plane displacement (boresight error) will appear, as shown in Fig. 3. The 
intersection of the OAR with the image plane determines the boresight error relative to the z 
axis. It can also be derived by paraxial ray tracing of OAR, which is given by 
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4. Alignment model based on 3rd order NAT 

4.1 Coma 

There are two 3rd order aberrations in a misaligned TMA telescope. One is the 3rd order 
coma (W131), which is constant in magnitude and orientation over the field. The other is the 
3rd order astigmatism (W222), which is field-asymmetric in orientation and increases linearly 
with field [6,7]. The coma is given by 

 ( )
3 131 131[( ) ] ,COMAW W H A ρ ρ ρ= − ⋅ ⋅

   
 (24) 

where 131 131 j
j

W W= , 131 131 j j
j

A W σ=
 

. 

In optical testing, the wavefront at exit pupil is usually fitted to a Zernike polynomial as a 
representation of the measured wavefront. So Eq. (24) should be rewritten as a new form that 
contains the Zernike coefficients. Note that the exact correspondence between the Seidel 
coefficients and Zernike polynomials is generally an infinite sum [13]. But in the TMA 
system, the high order Zernike coefficients that are fitted against the wavefront are reasonably 
small, so they can be ignored. In our paper, only the first 16 items of Fringe Zernike 
coefficients are considered. 

According to vector multiplication [14] of NAT, Eq. (24) can be rewritten as 

 
3

3

131 131,

3
131 131,
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,
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COMA
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 
   (25) 

where 131,xA


 and 131, yA


 are the x-component and the y-component of 131A


, respectively. 

According to the relationship between Seidel coefficients and Zernike coefficients, we can 
find that 

 131, 131

131131,

,

,

3
,

3
COMA x

COy MA

x

y y

x CA W H

W HA C

   
=   
     

−
−

 
  (26) 

where , 7 10 14

, 8 11 15

4

4
COMA x

COMA y

C C C C

C C C C

− −
− −

   
=   
  

, and Ci is the ith Fringe Zernike coefficient. 
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W131 can be calculated by Seidel formula, which is given in Table 2. Only 131,xA


and 131, yA


 

need to be solved. For each wavefront measurement, two equations can be obtained, so one 
wavefront measurement is sufficient to fully characterize the coma aberration field. 

Table 2. Third Order Aberration Coefficients of the TMA Telescope 

 
131,
sph

jW  131,
asph

jW  222,
sph

jW  222,
asph

jW  

PM(stop) −447.721 0 6.768 0 
SM 214.671 218.448 −14.395 15.357 
TM 4.036 10.745 14.326 −21.921 
sum 0.179 0.135

The aberration coefficients are computed at a field angle of 0.18°, at a wavelength of 1 μm, which are in 
waves. 

4.2 Astigmatism 

Similar to 3rd order coma, the astigmatism is given by 

 
3

2 2 2
222 222 222

1
[ 2 ] ,

2AST j
j

W W H HA B ρ= − + ⋅
   

 (27) 

where 222 222 j
j

W W= , 222 222 j j
j

A W σ=
 

, 2 2
222 222 j j

j

B W σ=
 

. 

According to vector multiplication of NAT, Eq. (27) can be rewritten as 
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 (28) 

According to the relationship between Seidel coefficients and Zernike coefficients, we 
may find that 
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2 2222
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,y

1
0

2 ,
1

2
0

2

AST x

AS

x

x y
x yy

x
y x T x y

y

A
WH C

C

H H HA

B WH HH H
B

        −   =       −       

− −

−
 

−


   




   (29) 

where , 5 12

,y 6 13

3
=

3
AST x

AST

C C C

C C C

−   
   −  

. 

W222 is given in Table 2. Consequently, there are 4 unknowns: 222,xA


, 222, yA


, 2
222,xB


 

and 2
222, yB


. In order to fully characterize the astigmatic aberration field, wavefront 

measurements at a minimum of two field points are required. 
Utilizing Eqs. (17)-(23), (26) and (29), if the wavefronts are measured at multiple field 

points, an overdetermined system of nonlinear equations with 8 unknown misalignments can 
be established. In our paper, the medium-scale fminunc algorithm in the MATLAB 
Optimization Toolbox is used to solve the system of nonlinear equations. 

4.3 Alignment example 

In this section, we introduce a set of misalignments randomly, and conduct an alignment 
simulation of the TMA telescope. The misalignments are given in Table 3. 
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Table 3. Misalignments of the TMA Telescope 

XDEPM YDEPM ADEPM BDEPM XDESM YDESM ADESM BDESM 

0.03 −0.04 −0.011 0.009 0.025 0.3 −0.04 0.075 
XDE and YDE are in mm while ADE and BDE are in degree.

Each of these misalignments is introduced in the software Code V and the wavefront and 
boresight error can be obtained. To each wavefront a Fringe Zernike polynomial of 37 terms 
are adjusted. In the misaligned state, C5/6 and C7/8 of the TMA are characterized and 
visualized through the use of FFDs in Figs. 4(a) and 4(b). 

 

Fig. 4. FFDs for Fringe Zernike coefficients (a) C5/6 and (b) C7/8 for the misaligned TMA 
telescope. 

Now we use the 3rd order model to solve the misalignments. In the simulation calculation, 
9 measured field points are used, which are circled in red in Figs. 4(a) and 4(b). The 3rd order 
aberration coefficients used in the alignment corrections are given in Table 2. We make 5 
alignments on the misaligned TMA in a row. The absolute values of residual misalignments 
of TMA after each alignment action are shown in the Figs. 5(a) and 5(b). The change of RMS 
wavefront error is shown in Fig. 5(c). Note that 361(19 × 19) equally spaced field points in 
0.3° × 0.15° are used to calculate the average and maximum RMS wavefront error. 
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Fig. 5. The results after each alignment action. (a) The residual linear misalignments (b) The 
residual angular misalignments (c) The residual RMS wavefront error. 

It can be seen from Fig. 5 (a) that the residual linear misalignments exhibit alternating 
behaviors in the first two alignment actions and reach steady states basically after the 2nd 
alignment action. The Figs. 5(b) and 5(c) show that the residual angular misalignments and 
the wavefront error show declining trends in the first three alignment actions and reach steady 
states after the 3rd alignment action. After the 4th alignment action, the residual errors of 
ADEPM, BDEPM, ADESM and BDESM are −0.0002°, −0.0001°, −0.0041° and 0.0007°, 
respectively; and the residual errors of XDEPM, YDEPM, XDESM and YDESM are 0.0019 mm, 
0.1459 mm, −0.0116 mm and 0.0861 mm. It can be found that the calculation of angular 
misalignments is more accurate than the linear ones, and the calculation of angular 
misalignments of PM is more accurate than that of SM. In the whole field of view of 0.3° × 
0.15°, the average and maximum RMS wavefront error of the nominal system are 0.011 λ and 
0.025 λ (λ = 1 μm, similarly hereinafter). As seen in Fig. 5(c), after the 4th alignment action, 
the residual RMS wavefront error reaches the minimum: the average RMS wavefront error is 
0.063 λ, and the maximum RMS wavefront error is 0.068 λ. Compared with the nominal state, 
a great gap still exists. So the alignment is unsuccessful. 

After the 4th alignment action, C5/6 and C7/8 of the TMA are visualized through the use of 
FFDs in Figs. 6(a) and 6(b). Compared with the misaligned state before alignment corrections 
(Figs. 4(a) and 4(b)), it can be seen that, two dominant misalignment aberrations arise for the 
original misaligned TMA telescope, which are field-constant 3rd order coma and field-
asymmetric, field-linear, 3rd order astigmatism. The results are in accord with the conclusions 
in [6,7]. After the 4th alignment action, the 3rd order misalignment aberrations decrease a lot. 
The magnitude of astigmatism still has an approximate linear relationship with the field of 
view, but in the coma aberration field neither the magnitude nor the orientation is constant. 
The coma is small at a ring-shaped zone in the field. This is because the effects of higher 
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order aberrations begin to emerge. The 3rd order NAT cannot characterize the coma 
aberration field which is shown in Fig. 6(b) accurately. If the 3rd order model continues to be 
used for alignment, the wavefront error can’t converge any further. So the higher order 
aberrations (e.g. 5th order aberration) should be introduced in the alignment model. 

 

Fig. 6. FFDs for Fringe Zernike coefficients (a) C5/6 and (b) C7/8 for the TMA telescope after 
the 4th alignment action. 

From the analyses made above, we can conclude that the 3rd order model is effective 
when the field-constant 3rd order coma and the field-linear 3rd order astigmatism are 
dominant misalignment aberrations in the early phase of alignment correction. After the 3rd 
alignment action, most of the misalignment aberrations are corrected, and higher order 
aberrations should be considered to get better performance. In the next section, 5th order 
aberrations will be added in the alignment model. 

5. Alignment model based on 5th order NAT 

5.1 Coma 

The 5th order NAT has more complex forms compared with the 3rd order. Thompson [15–17] 
analyzed the nodal aberration characteristics of 5th order optical aberration fields of the 
misaligned optical system in detail. In the 5th order wave aberration expansions, the item 
which has the same aperture dependence as 3rd order coma is field-cubed coma (W331M). Its 
wave aberration expansion is 

 
( ) ( )

( )
( )

5

331 331 331

2 *
331 331 331

2 2
,

M M M

COMA

M M M

W H H H H A H B H
W

H H A B H C
ρ ρ ρ

 ⋅ − ⋅ +
 = ⋅ ⋅
 − ⋅ + − 

     
  

      (30) 

where 331 331M Mj
j

W W= , 331 331M Mj j
j

A W σ=
 

, ( )331 331M Mj j j
j

B W σ σ= ⋅  
, 

2 2
331 331M Mj j

j

B W σ=
 

, ( )331 331M Mj j j j
j

C W σ σ σ= ⋅
   

, *H


 is complex conjugate of H


. 

We can sum the 3rd order coma and the field-cubed coma together, and merge the items 
which have same field dependence. Then Eq. (30) can be expressed as Eq. (31), which 
contains the Fringe Zernike coefficients. 
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Equation (31) can be rewritten in a more compact matrix form: 

 ,COMA COMA COMAH P = Z  (32) 

where 
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As one can see, PCOMA is a matrix with 8 rows and 1 column. So in order to fully 
characterize the 5th order coma aberration field, there are 7 unknowns need to be solve except 

331MW . Wavefront measurements at a minimum of 4 field points are required. 

5.2 Astigmatism 

In the 5th order wave aberration expansions, the item which has the same aperture 
dependence as 3rd order astigmatism is quartic astigmatism (W422). Its wave aberration 
expansion is 
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. 

We can sum the 3rd order astigmatism and the quartic astigmatism together, and merge 
the items which have same field dependence. Then Eq. (33) can be expressed as Eq. (34), 
which contains the Fringe Zernike coefficients, 
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Equation (34) can be rewritten in a more compact matrix form: 

 ,AST AST ASTH P = Z  (35) 

where 
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As one can see, PAST is a matrix with 12 rows and 1 column. So in order to fully 
characterize the 5th aberration field, there are 11 unknowns need to be solved except 422W . 
Wavefront measurements at a minimum of 6 field points are required. 

Utilizing Eqs. (17)-(23), (32) and (35), if the wavefronts are measured at multiple field 
points, an overdetermined system of nonlinear equations with 8 unknown misalignments can 
be established. As it is done in the 3rd order model, the medium-scale fminunc algorithm in 
the MATLAB Optimization Toolbox is used to solve the system of nonlinear equations. 

5.3 Calculation of aberration coefficients 

Before solving the misalignments by 5th order NAT model, we should know the 3rd and 5th 
order aberration coefficients of each surface in the system: W131, W331M, W222 and W422. The 
3rd order aberration coefficients can be calculated with Seidel formulas, but the 5th aberration 
coefficients are more difficult to calculate than the 3rd order coefficients. They consist of 
intrinsic surface contributions and induced contributions. The intrinsic aberrations depend 
only on properties of an optical surface. The induced aberrations depend on the sum of 
combinations of 3rd order image and pupil aberrations preceding the surface of interest. José 
Sasián [18] discussed the calculation of 5th order aberration (6th order wave aberration) 
coefficients, but we don’t intend to use this method, either because the calculated process is 
complex, there may be calculation error, or because small higher than 3rd and 5th order 
aberrations exist in the system. Although the higher order aberrations are very small, their 
existence can still affect the accuracy of the calculation model. 

For the reasons above, another method will be used in this paper. We are going to simulate 
a mass of random misaligned systems by using optical design software Code V. The 
aberration coefficients can be calculated based on the wavefronts of the misaligned system. 
The advantage of this method is that the model can describe the mathematic relation between 
misalignments and Zernike coefficients more realistically and accurately. 

PCOMA/PAST can be further expressed as the product of two matrixes: 

 ,COMA COMA COMA=P S W  (36) 

 .AST AST AST=P S W  (37) 
SCOMA/SAST contains only the aberration field decenter vectors, and WCOMA/WAST is 

composed of the aberration coefficients. 
If the number of the misaligned systems is n, and the number of field points for testing is 

m, Eqs. (38) and (39) can be obtained, 
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where the bottom-left subscripts denote the different field points, while the top-right 
subscripts denote the different misaligned states. Equations (38) and (39) can be rewritten in 
more compact matrix forms as 

 ,COMA COMA COMA COMA
′ ′ ′=H S W Z  (40) 

 .AST AST AST AST
′ ′ ′=H S W Z  (41) 

The coma aberration coefficients W131,j and W331M,j and the astigmatism aberration 
coefficients W222,j and W422,j can be calculated by Eqs. (42) and (43), 

 ( ) ,COMA COMA COMA COMApinv ′ ′ ′=W H S Z  (42) 

 ( ) ,AST AST AST ASTpinv ′ ′ ′=W H S Z  (43) 

where pinv denotes the Moore-Penrose pseudoinverse. 
We simulate 1000 misaligned systems, and the number of field points for testing are 9, 

Table 4. gives the calculated aberration coefficients. 

Table 4. Calculated Aberration Coefficients 

 
131,
sph

jW  131,
asph

jW  331 ,
sph

M jW  331 ,
asph

M jW  222,
sph

jW  222,
asph

jW  422,
sph

jW  422,
asph

jW  

PM −424.944 −2.660 −2.198 1.444 6.088 0.263 0.064 −0.030 
SM 184.273 206.066 10.991 −0.278 −8.939 11.754 −0.289 −0.038 
TM −36.157 73.575 22.635 −32.691 19.442 −28.565 −0.520 0.779 
sum 0.152 −0.098 0.043 −0.033 
The aberration coefficients are computed at a field angle of 0.18°, at a wavelength of 1 μm, which are in waves. 

As one can see, in the calculated 5th order aberration coefficients, the value of W331M,j is 
large. It further illustrates the reason of inaccuracy of the 3rd order alignment model is that it 
ignores the influence of 5th order aberration. 

5.4 Alignment example 

In this section, we also use the misaligned system as shown in Table 3 to compare the 5th 
order model with the 3rd order model, and the same 9 field points for testing are used as 
before. We make 5 alignments on the misaligned TMA telescope in a row as well. The results 
are shown in Figs. 7(a)-7(c). 
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Fig. 7. The results after each alignment action. (a) The residual linear misalignments (b) The 
residual angular misalignments (c) The residual RMS wavefront error. 

In order to facilitate comparison, the residual misalignments and the RMS wavefront 
errors after alignment corrections by the 3rd and the 5th order model are shown in Table 5. 

Table 5. Alignment Results of the 3rd Order Model after the 4th Alignment Action and 
the 5th Order Model after the 3rd Alignment Action 

 Nominal system 
Original misaligned 

system 
3rd order model 

5th order 
model 

XDEPM (mm) - 0.03 0.0019 −0.0046 
YDEPM (mm) - −0.04 0.1459 0.1259 
ADEPM (deg) - −0.011 −0.0002 0.0001 
BDEPM(deg) - 0.009 −0.0001 0 
XDESM (mm) - 0.025 −0.0116 −0.0040 
YDESM (mm) - 0.3 0.0861 0.1098 
ADESM(deg) - −0.04 −0.0041 0.0001 
BDESM(deg) - 0.075 0.0007 0 

Average (waves) 0.011 1.504 0.063 0.011 
Maximum (waves) 0.025 1.719 0.068 0.025 

As a result, All the residual misalignments except YDESM after alignment corrections with 
the 5th order model are less than those with 3rd order model. The RMS wavefront error 
obviously decreases after only one alignment action. In the next 4 alignments, the change of 
the RMS wavefront error is not obvious. After the 3rd alignment action, the residual RMS 
wavefront error reaches the design level, and then the maximum and the average RMS 
wavefront error in the whole field of view are 0.025 λ and 0.011 λ, respectively. Overall, 
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compared with the 3rd order model, the maximum and the average RMS wavefront error of 
the 5th order model are 37% and 17% of those of 3rd order model. All the residual angular 
misalignments after the 3rd alignment acton are very small, which are less than 0.0001°, but 
the individual residual linear misalignments are relatively large, such as YDEPM and YDESM. 
The reason is that there is cross-coupling among the alignment parameters in the multiple 
mirrors system. Different types of misalignments can compensate each other. 

In conclusion, although the elements of the TMA system are misaligned after alignments, 
the misalignments don’t affect imaging performance. So this alignment is successful. Due to 
the influences of 5th order aberration is considered, the 5th order model has advantages over 
the 3rd order model, and its alignment capability for misaligned system is excellent. 

6. Monte-Carlo alignment simulations 

In engineering practice, the misalignments of optical elements are random variables, the size 
of which is closely related to the accuracy of coarse alignment. We discussed the performance 
of the two models in specific case in order to make a comparison before. The randomness of 
misalignments is ignored, and how the size of misalignments can affect the performance of 
the 5th order model is not discussed. 

In order to analyze alignment performance of the 5th order model more comprehensively 
and objectively, Monte-Carlo alignment simulations are conducted in this section. The ranges 
of simulation misalignments are indicated in Table 6. There are 3 cases: 

Table 6. Ranges of Misalignment Variables used for the Simulations 

 Linear misalignment (mm) Angular misalignment (deg)

Case 1 [-0.1,0.1] [-0.01,0.01]
Case 2 [-0.5,0.5] [-0.05,0.05]
Case 3 [-1,1] [-0.1,0.1]

We generate 100 pairs of pseudorandom misalignment values following a standard 
uniform distribution for each case. Each of these misalignment states is introduced in the 
simulation software Code V and the resulting wavefronts can be obtained. As a result, we 
have 300 pairs of misalignments for all cases. The 300 misaligned systems are aligned by use 
of the 5th order NAT model, and we make 4 alignment actions on each misaligned TMA in a 
row. The alignment results are shown in Figs. 8(a)-8(c). 
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Fig. 8. The results of Monte-Carlo alignment simulations in the (a) case 1 (b) case 2 (c) case 3. 

It can be seen from Figs. 8(a)-8(c) that the 5th order model has good performance in all 3 
cases. The maximum and the average RMS wavefront error in the whole field of view can 
both reach design level. As seen in Fig. 8(a), in the case 1, due to the misalignment variables 
are small, RMS wavefront error of the TMA system can reach design level by only one 
alignment action. 

As seen in Figs. 8(b) and 8(c), when the misalignment variables increase gradually, the 
difficulty in misalignments computation is obviously increased too. The system can’t be well 
aligned by only one alignment action, and multiple iterative alignments are needed. In the 
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alignment process, each alignment action is accompanied by the decrease of RMS wavefront 
error. In our simulations, we need two alignment actions in case 2, while three alignment 
actions are needed in case 3. 

In the alignment simulations, it is also found that serious vignetting will be introduced 
when misalignment variables continue to increase (e.g. ADEPM = 0.2°). Serious vignetting can 
change the shape of the pupil, which causes inaccurate Zernike coefficients or even the 
Zernike coefficients cannot be calculated by Code V. So the maximum values of 
misalignments allowed are limited by vignetting. 

7. Conclusion 

In this paper, a novel alignment model for TMA systems is established based on 5th order 
NAT. The analytical expressions for aberration field decenter vectors and boresight error of 
misaligned TMA telescopes are derived. Two alignment models based on 3rd and 5th order 
NAT are established successively. The alignment process is shown in Fig. (9). 

 

Fig. 9. The alignment process with 3rd/5th order NAT model. 

It is found that one wavefront measurement is required to fully characterize the coma 
aberration field and two for the astigmatism aberration field as 3rd order model is used; and 
four for the coma aberration field and six for the astigmatism aberration field as 5th order 
model is used respectively. We compare the performance of 3rd order model with the 5th 
order model in an alignment example. The results show that the average and the maximum 
RMS wavefront errors in the whole field of view of 0.3° × 0.15° are 0.063 λ and 0.068 λ 
respectively after the 4th alignment action with 3rd order model, and 0.011 λ and 0.025 λ 
(nominal values) respectively after the 3rd alignment action with 5th order model. All the 
residual angular misalignments after the 3rd alignment action with 5th order model are less 
than 0.0001°. Individual residual linear misalignments are larger than 0.1 mm, because there 
is cross-coupling among the alignment parameters in the multiple mirrors system. The 
computational accuracy of misalignments of 5th order model is of better quality than that of 
the 3rd order model. It is because the 5th order aberration can’t be ignored if we want to 
calculate misalignments accurately. For demonstration purposes Monte-Carlo alignment 
simulations are conducted. Simulation results show that the 5th order model still has good 
performance when the values of the misalignments are large (−1 mm ≤linear misalignment≤1 
mm, −0.1°≤angular misalignment≤0.1°), and multiple iterative alignments are needed when 
the misalignment variables increase. In conclusion, not only can the NAT describe the 
aberration field characteristics of misaligned system, but also it can calculate misalignments 
quantitatively. The 5th order model can provide a reference basis for alignment of the TMA 
telescopes. 
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8. Appendix 

Table 7 

Table 7. Acronyms and Parameter Definitions 

Acronyms

FFDs 
Full-Field-Displays: this type of display plots the magnitude and orientation of specific 
components of a Zernike coefficient decomposition of the wavefront created by tracing a grid 
of real rays over a grid of field points. 

NAT Nodal Aberration Theory

OAR 
optical axis ray: initiates from the center of the object and passes through the center of the 
aperture stop. 

PM primary mirror 
SM secondary mirror 
TM tertiary mirror 

TMA three-mirror anastigmatic
Paraxial/Constructional Quantities 

rj radius of surface j 
cj curvature of surface j (1/rj)
dj thickness of surface j

ju  paraxial chief ray angle incident at surface j 

jy  chief ray height at surface j 

ji  paraxial incident angle of the chief ray at surface j 

Parameters of Perturbed (Misaligned) System
#
0 jβ


 equivalent tilt of surface j 

*
jvδ


 intersection height of the OAR with respect to the aspheric vertex of surface j 

jσ  aberration field decenter vector of surface j 

IMGHΔ


 boresight error (image plane displacement) 

*
ji


 incident angle of the OAR at surface j 

OAR Quantities 
#
OAR ju


 OAR paraxial angle prior to surface j referenced to the z-axis 

#
OAR jy


 OAR intersection height at surface j referenced to the z-axis 

Perturbation Vectors and Scalars in NAT

jklm klm j
j

A W σ=
 

 ( )
jklm klm j j

j

B W σ σ= ⋅  
 

2 2

jklm klm j
j

B W σ=
 

 

( )
jklm klm j j j

j

C W σ σ σ= ⋅
   

 
3 3

jklm klm j
j

C W σ=
 

 ( )2 2

jklm klm j j j
j

D W σ σ σ= ⋅
   
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