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This Letter proposes an extended disturbance observer (EDO) based
adaptive robust control method for motion control of DC motors. An
adaptive part for structured uncertainties, an EDO for unstructured
uncertainties and a feedback robust law for global robustness are
designed in this method. The theoretical analysis guarantees a pre-
scribed tracking performance under various uncertainties and compara-
tive numerical simulation shows the excellent high-precision
performance of proposed method on DC motor motion control.
Introduction: High-accuracy motion control of DC motors has attracted
much attention for its wide application both in manufacturing and indus-
try [1, 2]. However, the complex actual working conditions make design
of the high-accuracy motion system quite difficult. Disturbance and
modelling uncertainties [1, 3–5] will lead to a poor system accuracy
or even system instability.

The adaptive robust control (ARC) guarantees prescribed output
tracking transient performance and final tracking accuracy in general
while achieving asymptotic output tracking in the absence of unstruc-
tured uncertainties [5]. However, demand of high-gain feedback for
high accuracy may limit its wide practical implementation.

Combining control law with uncertainties and disturbances estimates
is an novel attractive proposition, which can deal with larger unstruc-
tured uncertainties. Extended disturbance observer (EDO) proposed
by Ginoya [6], which is used for sliding mode control (SMC), shows
more excellent performance than conventional disturbance observer
case. While, its chattering problem from SMC is still hard to solved
thoroughly.

This Letter, we borrow the ideas of EDO [6] and ARC approach [1],
and combine them via the robust control action with some assumptions,
a new ARC with EDO is proposed for high-accuracy dc motor motion
control. The proposed design appears an outstanding tracking perform-
ance in the presence of both structured and unstructured uncertainties
from comparative numerical results.

Problem formulation and dynamic models: The motor investigated in
this Letter is a current-controlled permanent-magnet dc motor with a
servo electrical driver directly driving an inertia load. The control
goal is to make the inertia load track any specified smooth motion tra-
jectory x1d with a high precision. In the derivation of the model, the
current dynamics is neglected in comparison with our interest frequency
range due to the much faster electric response. The dynamics of the
inertia load is:

Mq̈ = Kiu− Bq̇− f (q, q̇, t) (1)

where q andM represents the angular displacement and inertia load. Ki is
the torque constant, u is the control input, B is the viscous friction coef-
ficient, and f represents the composite un-modelled disturbances, such as
nonlinear frictions, external disturbances and un-modelled dynamics.
Rewrite (1) in a state-space form as follows:

ẋ1 = x2 (2)

ẋ2 = u1u− u2x2 + d(x, t) (3)

where x = [x1, x2]
T = [q, q̇]T represents the state vector of the position

and velocity, parameter set θ = [θ1, θ2]
T in which θ1 =Ki/M and θ2 = B/

M, and d(x, t) = f (x, t)/M represents the lumped disturbance.
In general, the system is subjected to structured uncertainties due to

large variations in system parameters M, Ki and B. In addition, d(x, t)
is clearly the system unmodelled unstructured uncertainty.

Extend disturbance observer: Let û and ũ denote the estimate of θ and
estimation error (i.e. ũ = û − u). By defining de(x, t) = −ũ1u+ ũ2x2+
d(x, t) as the equivalent effect of estimation error and disturbance,
rewrite system (2)–(3) with estimate of θ1 and θ2, we have:

ẋ1 = x2

ẋ2 = û 1u− û 2x2 + de(x, t)
(4)
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The second order EDO for system (4) is expressed as follows:

d̂e = p1 + l1x2 (5)

ṗ1 = −l1 û 1u− û 2x2 + d̂e
( )+ ˆ̇de (6)

ˆ̇de = p2 + l2x2 (7)

ṗ2 = −l2 û 1u− û 2x2 + d̂e
( )

(8)

where d̂e and
ˆ̇de are estimates of de(t) and ḋe(t) respectively, p1 and p2

are auxiliary variables, and l1 and l2 are design constants. Define esti-
mation error as

ẽ = d̃e
˜̇de

[ ]T
, d̃e = de − d̂e

˜̇de = ḋe − ˆ̇de (9)

where d̃e,
˜̇de are the estimate errors of de(t) and ḋe(t).

Assumption 1: The extent of the parametric uncertainties are known, the
equivalent disturbance de is continuous and satisfies i.e.,

u [ Vu W u :umin , u , umax{ } (10)

djde t( )
dt j

∣∣∣∣
∣∣∣∣ ≤ m for j = 1, 2 (11)

where θmin = [θ1min, θ2min]
T, θmax = [θ1max, θ2max]

T, and μ is a positive
number, but unnecessary known.

Theorem 1: If Assumption 1 holds, the EDO (5)–(8) for system (4) is
stable and after a finite time Ts, its estimate error of equivalent disturb-
ance can be bounded as γ, where γ is involved with μ.

Proof: The proof process is similar to [6]. □
Adaptive robust control law: In the view of Assumption 1, the follow-
ing parameter adaptation law with projection is used to guarantee that
the parameter estimates remain in the known bounded region all the
time.

˙̂u = Projû Gwe
( )

(12)

where Γ is a positive definite diagonal matrix of adaptation rates and w is
a regressor for parameter adaptation (i.e. w = [u,− x2]

T), e is the relevant
tracking error of desired state (i.e. e = z2).

Projû †i( ) =
0 if û i = û imax and †i . 0
0 if û i = û imin and †i , 0
†i otherwise

⎧⎨
⎩ (13)

where i = 1,2, and †i represents the ith component of the vector †. Such
a parameter adaptation law with projection can guarantee [7]:

Term 1:û [ Vû W û :umin ≤ û ≤ umax

{ }
(14)

Term 2 :ũ
T
G−1Projû Gt( ) − t
[ ] ≤ 0 (15)

The ARC law can be expressed as:

u = ua + us( )/û 1

ua = ȧ+ û 2x2

us = us1 + us2, us1 = −k2z2

(16)

where ua is adaptive control part, us is determined robust control part, û1,
û2 are updated by (12), a = ẋ1d − k1z1 is a virtual input, z2 = x2− α, k1,
k2 are the feedback gains. Noting Assumption 1 and Term 1 in (14), if
there exist us2 satisfy the following two conditions [7]:

z2us2 ≤ 0 (17)

z2 us2 − uTw− d(x, t)
[ ] ≤ 1 (18)

where ɛ is a positive tunable parameter.
An example is given as follows (refer to [7]): Let g be any smooth

function satisfying

g ≥ |uM| ||||w|| + dd (19)
1 No. 22 pp. 1761–1763



where θM = θmax− θmin and δd is the upper bound of d(x, t) (ARC
demands δd is known). Then, one smooth example of us2 satisfying
(17)–(18) is given by

us2 = −g2z2/(41) (20)

Adaptive robust control with extended disturbance observer: To domi-
nate the disturbance from various uncertainties without high-gain feed-
back, we propose an ARC with EDO control scheme as following:

u = ua + us( )/û 1

ua = ȧ1 + û 2x2 − d̂e

us = us1 + us2, us1 = −k2z2

(21)

where de is observed by (5)–(8) based on system (4).
By applying the resulting control law (21) into (4), we have

ż2 = −k2z2 + us2 + d̃e (22)

From Theorem 1, there exist a positive constant γ and a finite time Ts > 0:

d̃e
∣∣ ∣∣ ≤ g, t . Ts (23)

Due to the exact bound of γ is unknown, the level of accuracy such as (18)
cannot be prespecified and thus we can choose the robust control function
us2 satisfying a more relaxed condition as

z2 us2 + d̃e
[ ] ≤ 1g2 (24)

As an example, we can choose g in (19) as g = γ, we get us2 as

us2 = −z2/(41) (25)

Theorem 2: With adaptation law (12), us2 in (25) and d̂e in (5)–(8), the
control law in (21) guarantees that all signals are bounded. Furthermore,
after a finite time Ts, the positive definite function Vs is bounded by

Vs t( ) ≤ exp −lT( )Vs Ts( ) + 1g2

l
1− exp −lT( )[ ]

, ∀t ≥ Ts (26)

where T = t − Ts.

Proof: For t < Ts, from (22) and (25), we have

ż2 = − k2 + 1

41

( )
z2 + d̃e (27)

Noting Theorem 1, the equivalent disturbance estimation error is always
bounded. Thus, z2 is bounded before Ts. For t > Ts, (23) and (25) make
(24) be true. Thus, the derivative of Vs with (21) satisfies

V̇ s + lVs ≤ 1g2 (28)

Integrating (28) from Ts to t,

Vs(t) e
lt − Vs(Ts) e

lTs ≤ 1g2

l
elt − elTs
( )

(29)

Moreover, it is easy to ensure that the control input u is bounded. □
Comparative numerical results: The parameters for simulation are
showed in Table 1.

Table 1: Parameters setting
k1, k2
 240, 300
 Γ
 diag{1500, 1000}
l1, l2
 1000, 300
 θmin
 [250, 1]T
θmax
 [700, 900]T
 û (0)
 [600, 6]T
The controllers are tested for motion trajectory x1d as (30).

x1d = p

18
1− cos (3.14t)
[ ]

1− exp (−t)
[ ]

(30)

We set disturbance as d(t) = 0.2sin (200/πt). In Fig. 1, ARC-EDO has
better performance than ARC in terms of both transient performance
and final tracking errors. Combination with equivalent disturbance com-
pensation, ARC can deal with more unstructured uncertainty. The track-
ing error of ARCEDO is reduced to almost about 1.5 × 10−6 rad, while
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ARC’s error is about 6 × 10−6 rad. Parameters adaption and disturbance
estimation show that ARCEDO has a learning process to attenuate struc-
tured uncertainty. Besides, it can estimate the equivalent disturbance of
remained structured and unstructured uncertainty.
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Fig. 1 Performances of two controllers

a Tracking errors of two controllers.
b Parameter adaption and disturbance estimation of designed method.

Conclusion: In this Letter, an ARC with EDO was proposed for a high-
accuracy motion system driven by a dc motor. The stabilities and esti-
mation accuracy is analysed via a Lyapunov method. Numerical
results show that excellent tracking accuracy can be achieved by the pro-
posed ARC-EDO controller. Besides, the proposed combination, in
which δd can be unknown, can allow more relax demand of unstructured
uncertainties part such as d than ARC. For further study, saturation
problem will be considered for ARC-EDO, and the influence between
parameters adaptation and equivalent disturbance estimate on θ esti-
mation can also be considered.

© The Institution of Engineering and Technology 2015
Submitted: 21 April 2015 E-first: 8 October 2015
doi: 10.1049/el.2015.1009
One or more of the Figures in this Letter are available in colour online.

Yanyu Yang and Yong Wang (University of Science and Technology of
China, People’s Republic of China)
✉ E-mail: yongwang@ustc.edu.cn

Ping Jia (Chang chun Institute of Optics, Fine Mechanics and Physics,
Chinese Academy of Sciences, Changchun, People’s Republic of China)

References

1 Hu, C.X., Yao, B., and Wang, Q.F.: ‘Adaptive robust precision motion
control of systems with unknown input dead-zones: a case study with
comparative experiments’, IEEE Trans. Ind. Electron., 2011, 58, (6),
pp. 2454–2464

2 Iwasaki, M., Seki, K., and Maeda, Y.: ‘High-precision motion control
techniques: a promising approach to improving motion performance’,
IEEE Ind. Electron. Mag., 2012, 6, (1), pp. 32–40

3 Yang, Z.J., Hiroshi, T., K.S., W.K., et al.: ‘A novel robust nonlinear
motion controller with disturbance observer, control systems technol-
ogy’, IEEE Trans. Control System Technol., 2008, 16, (1), pp. 137–147

4 Sun, W.C., Zhao, Z.L., and Gao, H.J.: ‘Saturated adaptive robust control
for active suspension systems’, IEEE Trans. Ind. Electron., 2013, 60, (9),
pp. 3889–3896

5 Lu, L., Yao, B., Wang, Q.F., et al.: ‘Adaptive robust control of linear
motors with dynamic friction compensation using modified LuGre
model’, Automatica, 2009, 45, (12), pp. 2890–2896

6 Ginoya, D., Shendge, P.D., and Phadke, S.B.: ‘Sliding mode control for
mismatched uncertain systems using an extended disturbance observer’,
IEEE Trans. Ind. Electron., 2014, 61, (4), pp. 1983–1992

7 Yao, B., and Tomizuka, M.: ‘Adaptive robust control of SISO nonlinear
systems in a semi-strict feedback form’, Automatica, 1997, 33, (5),
pp. 893–900
d October 2015 Vol. 51 No. 22 pp. 1761–1763


