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phase difference method and the selection of the sampling points and the sampling frequency of the Shack-
Hartmann wavefront sensor( S-H WFS) have been studied. Firstly the principle of the phase difference meth—
od and the noise elimination algorithm are given. Secondly the effects of the sampling points of S-H WFS and
the statistical times of Greenwood frequency on the measurement accuracy are investigated. The experimental
results show that while both the sampling points and the statistical times are more than 400 the Greenwood
frequency can be measured accurately. Thirdly the influence of the measurement noise is considered and the
result shows that the deviation error of the measured value is reduced from 30% to 0. 6% with the noise re—
moved. Fourthly the repeatability of the phase difference method is measured. It is shown that the deviation
RMS error is 1.9 Hz which is 3% of the ideal value. Therefore the Greenwood frequency can be measured
accurately with the phase difference method. Based on the above results the Greenwood frequency of the at—
mospheric turbulence is measured and analyzed with the range of 8 — 108 Hz. It indicates that the measured
value is almost the same as theoretical value without consideration of the disturbance of the air in the Lab. At
last the relation between the sampling frequency of S-H WFS and the Greenwood frequency is investigated. It
can be seen that the sampling frequency of the S-H WFS should be increased if the measured Greenwood fre—
quency is enlarged. Furthermore an empirical formula is achieved to calculate the needed sampling frequency
of the S-H WEFS. In a word all the results show that when it meets the demand of sampling points sampling
frequency and statistical times the phase difference method can be used to measure the Greenwood frequency
of atmospheric turbulence accurately.
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