Optics Communications 316 (2014) 211-216

Optics Communications

journal homepage: www.elsevier.com/locate/optcom

Contents lists available at ScienceDirect OPTICS
COMMUNICATIONS

Wavefront processor for liquid crystal adaptive optics system based

on Graphics Processing Unit

@ CrossMark

Dayu Li, Lifa Hu, Quanquan Mu, Zhaoliang Cao, Zenghui Peng, Yonggang Liu, Lishuang Yao,

Chengliang Yang, Xinghai Lu, Li Xuan*

State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun,

Jilin 130033, China

ARTICLE INFO ABSTRACT

Article history:

Received 16 August 2013
Received in revised form

30 October 2013

Accepted 24 November 2013
Available online 6 December 2013

Keywords:

Adaptive optics

Liquid crystal

Graphics processing unit

To process real-time wavefront signal in our liquid crystal adaptive optics system (LCAOS), a real-time
wavefront processor (RTWP) with graphics processing unit (GPU) accelerator is developed. A series of
parallel acceleration algorithm is implemented to reconstruct wavefront, compute gray map and process
lookup table (LUT). Especially, an algorithm by using symmetry of Zernike polynomial is designed to
compute gray map and it provides a speedup of 3.16. Finally, the total computing time in our RTWP is
109 ps and temporal bandwidth in our LCAOS is 45 Hz; it is shown that our RTWP has the ability to real
time process wavefront signal in our LCAOS.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Adaptive optics (AO) technology is widely used in large
aperture telescopes for optical astronomy. In recent years, liquid
crystal spatial wavefront correctors (LCWFC) have become increas-
ingly attractive as wavefront correctors in AO systems [1-7].
LCWFC has been investigated previously with promising results
because of its many merits such as its high density of pixels, low
cost, programmability, good repeatability, low power consump-
tion, light weight, and so on. In the AO system, a real-time
wavefront processor (RTWP) is used to detect the wavefront
sensor (WFS) signals and compute the driving voltage signals that
are to be sent to the corrector. This requires that all computing
tasks to be completed within one frame. Previous systems have
typically been using digital signal processors (DSP) and field
programmable gate arrays (FPGA). However, an LCWFC has a large
number of pixels so that wavefront reconstruction and gray map
that is to be sent to the LCWFC would require a relatively high
number of DSPs or FPGAs and extensive development time.
Therefore, it will be unsuitable and costly for the liquid crystal
adaptive optics system.

In recent years, graphics processing unit (GPU) has been used
in extremely large telescope (ELT) AO systems with thousands of
deformable mirror actuators [8]. The Palm-3000 AO system on the
5-m Hale telescope uses a 64 x 64 Shack-Hartmann WFS and a

* Corresponding author. Tel.: +86 4 318 617 6319.
E-mail address: xuanli1957@sina.com (L. Xuan).

0030-4018/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.0ptcom.2013.11.052

deformable mirror (DM) with about 3600 active elements, and is
specified to have a maximum frame rate of 2 kHz [9]. For real-time
wavefront processing, this system uses 16 Geforce 8800 GTX GPU,
which obtains a computing latency of 205 ps. The Durham real-
time controller (DARC) was initially developed to be used with the
CANARY on-sky multi-object AO (MOAO) technology demonstra-
tor [10]. It was tested that the performance of the DARC matched a
wide range of proposed ELT AO systems by using GPU. Our liquid
crystal AO system (LCAOS) on a 1.2 m telescope uses a 10 x 10
Shack-Hartmann WFS and a LCWFC with 65536 pixels, and is
specified to have a maximum frame rate of 1400 Hz. Its computa-
tional requirement is about 13 million multiply-add operations in
a frame. By contrast, the computational requirement of the Palm-
3000 AO system is about 29 million multiply-add operations in a
frame. In order to process wavefront in real time, our LCAOS also
uses GPU acceleration.

The current wavefront processor based on GPU, such as the
DARGC, is a highly configurable AO control platform designed for
the wavefront processing of current and as-yet-unknown AO
systems. But it is suitable to control DM rather than to control
the LCWFC. Moreover, our reconstruction and the control algo-
rithm are different from the current AO system. Then the current
wavefront processors based on GPU cannot be directly applied to
our LCAOS.

Therefore, in this paper we report a modern real-time wave-
front processor using GPU which would be used on our LCAOS. Our
wavefront processing acceleration is programmed with the Com-
pute Unified Device Architecture (CUDA) to reconstruct wavefront
and compute gray map that are to be sent to the LCWFC in real

www.sciencedirect.com/science/journal/00304018
www.elsevier.com/locate/optcom
http://dx.doi.org/10.1016/j.optcom.2013.11.052
http://dx.doi.org/10.1016/j.optcom.2013.11.052
http://dx.doi.org/10.1016/j.optcom.2013.11.052
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optcom.2013.11.052&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optcom.2013.11.052&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optcom.2013.11.052&domain=pdf
mailto:xuanli1957@sina.com
http://dx.doi.org/10.1016/j.optcom.2013.11.052

212 D. Li et al. / Optics Communications 316 (2014) 211-216

time [11]. Section 2 presents an overview for the transfer function
of our LCAOS. Section 3 presents an overview for the wavefront
processing. In Section 4 we designed a parallel computing method
for our computing algorithm, which is based on GPU to obtain the
optimum performance. Finally, the results and conclusions are
presented in Sections 5 and 6.

2. System transfer function overview

Our RTWP requirements are determined by the frame rate of
the WFS, the number of Zernike modes and pixels on the LCWFC.
The WES’s type is a Shack Hartmann and its CCD is the Andor
DU860 CCD with a sub-aperture number of 100, an effective pixel
number of 40 x 40 and a frame rate of about 1400 Hz. The first 209
Zernike polynomials on behalf of modal wavefront are used. The
LCWEFC is the BNS (Boulder Nonlinear Systems Corporation)
PFP256 parallelly aligned liquid crystal spatial light modulator
with 256 x 256 pixels, 90 ps data receiving time and approxi-
mately 714 ps voltage hold time of the digital analog converters
(DACs) in order to match the frame rate of the WES.

The phase transition of the LCWFC is approximated as

@(t) = po + (1 — o) (1 — e~ /aecar) 1

where ¢y is the initial phase, ¢, is the target phase and zgecqy is the
decay time. Fig. 1 shows the phase transition (the wavelength
A=785nm) of our LCWFC as a function of the time when the
maximum voltage 5 v was released instantaneously at 0 ms. The
blue cross points are the experimental phase transition values and
the green solid lines are the theoretical fitted curve given by Eq.
(1) when zg4ecqy=1 ms. It is obvious that the theoretical fitted curve
coincides with the experimental phase transition values. As shown
in Fig. 1, the decay time 7g4ecqy Of the LCWEC is equal to 1 ms.

Fig. 2 gives a block-diagram representation of our open loop
control algorithm. As shown, the uncompensated wavefront is
denoted by ¢y, The correction wavefront by the LCWFC is denoted
by @corr @res 1S the residual wavefront after correction, so that

Pres = Ptur — Pcorr (2)

The main temporal characteristic of the WFS is the integration
time T of the detector, so its transfer function is WFS(s) = 1‘T65’Ts,
where T = 714 ps. The main temporal characteristic of the RTWP is

a pure time delay and a controller. In our open loop, the controller

14

12}

1t
0.8}
0.6
0.4
02

——— experimental data

fitted curve

phase transition (1)

time(ms)

Fig. 1. Phase transition of our LCWFC as a function of the time when the maximum
voltage 5 v was released instantaneously at 0 ms.

¢mr + wres

WFS | RTWP |— DAC | LCWFC J%’”

Fig. 2. Block diagram representation of our open loop control algorithm.

contains only the proportional gain, so the transfer function of the
RTWP is RTWP(s) = K,e~ (o +7w +75 where K, =1 is the propor-
tional gain, z;, = 714 ps is the read out time, 74, = 90 ps is the time
for data sending to the DACs and z,, is the wavefront processing
time. In order to timely process each frame wavefront signals, the
wavefront processing time r,, cannot exceed the integration time
714 ps of the WFS. The DACs hold the control voltages of the
LCWFC until the next voltages are available from the RTWP. The
transfer function of the DACs called a zero-order holder is
DAC(s) =1=£". Because the DACs are synchronized by the WFS,
the time for voltage holding is the same as integration time of the
WES. The LCWEFC temporal behavior is given by Eq. (1) and its
transfer function is 1 Finally, the residual error transfer

R 1+ 7decays”
function, denoted by &(s) 1s

Pres(S) -1 7Kp(1 —E’TS)2e*(7ro +Twp + 74s)S

)= =
&) Peur(S) TZSZ(] + Tdecay$)

3

Once the wavefront processing time r,, is determined, we can
simulate the temporal bandwidth f 5,3 for our LCAOS according
to the residual error transfer function. Fig. 3 shows the simulated
temporal bandwidth of our LCAOS as a function of the wavefront
processing time. As shown, the wavefront processing time is as
short as possible in order to improve the temporal bandwidth of
our LCAOS.

3. Wavefront processing overview

In the most recent AO systems, wavefront construction is a
standard matrix-vector multiplication (MVM). The matrix in the
MVM is the pseudo-inverse of the response matrix. The response
matrix is generated by measuring the vector of WFS outputs
produced by driving each single actuator of the deformable mirror.
In our LCAOS, the response of any one pixel on the LCWFC cannot
be observed by the WFS because the size of a pixel on the LCWFC
is too small for a microlen on the WFS. Therefore the current
wavefront reconstruction method is not suitable for our LCAOS.

A Zernike mode wavefront produced by the LCWFC can be
observed by the WFS so we can first reconstruct the Zernike
coefficients by the slopes on the WFS, and then compute the gray
map by the Zernike coefficients. The process can be described by
two MVM. The matrix of first MVM is called the reconstruction
matrix, which is the pseudo-inverse of the response matrix. The
response matrix in our LCAOS is generated by measuring the
vector of WFS outputs produced by driving each Zernike mode
wavefront on the LCWFC. The matrix of second MVM is called the
Zernike matrix, which is calculated directly through Zernike
polynomials.

The real-time processing of our LCAOS is shown in Fig. 4. The
high speed camera sends the 100 x 4 x 4 pixel raw sub-aperture

48

46|

a4

a2t

st

temporal bandwidth(Hz)

381

36 I I I I I I n
0 100 200 300 400 500 600 700 800

wavefront processing time(us)

Fig. 3. Simulated temporal bandwidth of our LCAOS as a function of the wavefront
processing time.

D. Li et al. / Optics Communications 316 (2014) 211-216 213

Our RTWP
Reference Reconstruction | | 7 ke matrix LUT LCWEC
centroids matrix
Y
v k. v 4
WFS N Slopeg Wavefroqt N Computing gray N Processing with Ll DACs
calculation reconstruction map LUT

Fig. 4. Real-time processing for our LCAOS.

Thread 1

Thread 2 1 1 1

- Acquisition

|:| Compute gray map and write back

l:| Calcutalte slopes and construct wavefront
[[]Send data to LCWFC

Fig. 5. Schematic diagram of thread allocation for the main tasks.

images to the processor system. The computing slopes step
determines the slopes from centroids shifts in the x and y
directions of each sub-aperture, as compared to the reference
centroids. The wavefront reconstruction step consists of a
209 x 200 reconstruction matrix, which is multiplied with the x
and y slopes. The Zernike coefficient c is given as modal wavefront.
The computing gray map step consists of 65536 x 209 Zernike
matrix, which is multiplied with the Zernike coefficient. The gray
map has been computed and is then sent to the DACs after
applying look up table (LUT) processing.

The main tasks for our RTWP are the WFS’s acquisition,
wavefront processing and sending data to the LCWFC. In order to
reduce context switching and mutexes, these main tasks should be
assigned to a thread. But other tasks cannot be assigned to the
acquisition thread while the WES’s CCD starts continuous acquisi-
tion. So the acquisition task monopolized a thread, and wavefront
processing and sending data to the LCWFC occupied another
thread. As shown in Fig. 5, thread 1 was responsible for the WFS’s
acquisition task; thread 2 was responsible for processing wave-
front signal (including slopes calculation, wavefront reconstruc-
tion, computing gray map and data write back to the host) and
sending data to the DACs. Except the essential main tasks, some
necessary subtasks, such as parameter control, configuration and
sharing of the real-time system information and diagnostic
streams, also were assigned to different threads.

In our RTWP, a GPU card with GeForce GTX 590 from NVIDIA
Corporation is used to construct wavefront and calculate the gray
map so as to acquire powerful processing ability. Its technical
specifications include two GPUs, each GPU has 16 multiprocessors
and each multiprocessors has 32 stream processors with clock of
1215 MHz, so GTX 590 has 1024 stream processors, and a peak
theoretical computing power is 2488.3GFLOPS; the memory clock
is 1707 MHz and each GPU memory interface width is 384 bit, so
peak theoretical memory bandwidth is 327.7 GB/s. In our wave-
front processing, the performance is limited by GPU memory
bandwidth rather than computing power, since memory data is
read only once rather than repeatedly. Therefore, our work focuses
on how to improve GPU memory bandwidth.

Before CUDA was released, general purpose GPU programming
used graphics development kit. This requires programmers to

package the data into a texture, the computing tasks mapped to
the texture rendering process and use assembler or high-level
shader programming language, such as GLSL, Cg, and HLSL.
Programmers not only need to achieve the parallel algorithms,
but also need to understand graphics programming. After CUDA
was released, programmer can achieve parallel algorithms through
C-like language without the need for any graphics programming.
In CUDA, each stream processor can execute the same instruction
on different data making it similar to a Single Instruction Multiple
Thread (SIMT) processor. When a GPU program named as kernel
can be executed by multiple equally-sharp blocks, and a block may
contain up to 1024 threads, the total number of threads is equal to
the number of threads per block times the number of blocks. Each
block is a set of threads that can cooperate with one another by
sharing data though some shared memory, but two threads from
two different blocks cannot share data.

Kernel call on the GPU is a relatively expensive operation so the
GPU is not suitable for small amount of calculation, such as the
slopes calculation. We measured the time to call an empty kernel
on the GTX 590 and the overhead of the kernel call is 10 ps.
In contrast the slopes calculation on the CPU takes only 6 ps.
Therefore it is necessary to assign slopes calculation task to the
CPU. Since the number of Zernike model is 209 and the LCWFC has
256 x 256 pixels, the calculation of wavefront reconstruction and
the gray map on the CPU requires a longer time. Therefore, to
overcome the computation time problem, the wavefront recon-
struct task and computing the gray map task are assigned to the
GPU. The algorithm which can be executed on the GPU is described
in the following sections.

4. Parallel computing algorithm with GPU
4.1. Wavefront reconstruction

Wavefront reconstruction is used to calculate 209 Zernike
coefficients by a MVM operation. Only the threads in the same
block can share data, so a Zernike coefficient must be calculated in
the same block. Therefore the kernel for wavefront reconstruction
is assigned 209 blocks and each block is assigned 200 multiply-
add operation tasks. In order to execute the multiply-add opera-
tions on each block, the Mark Harris’ method of parallel reduction
is used [12].

Another method is to use a standard CUDA basic linear algebra
subroutines (CUBLAS) library by NVIDIA Corporation. CUBLAS is a
GPU-accelerated version of the complete standard basic linear
algebra subroutines (BLAS) library, its cublasSgemv function per-
form single precision float point matrix—vector multiplication.

We use two different methods to measure the wavefront
reconstruction on GTX 590. As shown in Table 1, the CUBLAS
method delay is 22 ps, while the reduction method delay is 27 ps.
Both methods are very low computing power for the GTX 590. This
is because the amount of the wavefront reconstruction is too
small, so that the computing power of the GTX 590 cannot be fully

214 D. Li et al. / Optics Communications 316 (2014) 211-216

utilized. Nevertheless, the two methods meet our requirements.
By contrast the CUBLAS method provides a speedup of 1.22, and is
selected for our RTWP.

4.2. Computing gray map

Computing gray map is used to calculate 65536 gray values on
the LCWFC. The MVM operation used for computing gray map is
the computational bottleneck. The performance for computing
gray map is limited by GPU memory bandwidth rather than
computing power. The CUBLAS can reach about 83.6% of peak
theoretical performance. Correspondingly we are able to reach
about 85.1% of peak theoretical performance by the Vasily Volkov’s
optimization method: more registers in each thread [13] and
unrolling parallel loops [14].

It is difficult to further improve performance for the standard
MVM. But in the gray map calculation, if the Zernike matrix can be
effectively simplified, we can reduce the data transmission time
and obtain a lower computing latency.

The Zernike matrix consists of 209 Zernike map column vector,
in other words, a vector consists of the driving voltage of
256 x 256 LCWFC in a unit corresponding Zernike polynomial.
The Zernike polynomials are a set of functions that are orthogonal
over the unit circle [15-17]. That is defined as

, NIMRIM(rycos(mg), m=0 4
ir.)= —NI'R™(r)sin(mg), m<0 4)
where
(n—|mj))/2 —1¥(n—
RI™(r) = (=1)y’n-s) n_2s 5)

sSo Sn+Imi/2=s](n—|ml)/2—s]"

where 0 <r <1, N} is the normalization factor and 0 <0 < 2z; n is
non-negative integer and m varies from -n to n with a step of 2;
and i is ith Zernike polynomial.

In order to analyze the symmetry of the Zernike polynomial,
we suppose that there is a point Pi(p,6) 0<p<1,0<9<z/2.
The points Py(p, #—6), P3(p, n+80), P4(p, 27—0) are the symme-
trical points of P1(p, 0). The values of the Zernike polynomial at the
symmetrical points can then be obtained by adding a negative sign
or not to the value of the Zernike polynomial at P;. Here, the
symmetrical relation is classified by the parameter m as shown in
Table 2.

region that is actually computed. The values of the Zernike
polynomial in the other regions are obtained by flipping the value
of that in the first quadrant. For example, in Fig. 6(a), the first
quadrant labeled S1 are the regions to be computed by the
definition of the Zernike polynomial. The values of the Zernike
polynomial in the other regions are obtained by flipping the value
of the Zernike polynomial in the gray regions with respect to the
y-axis and the x-axis. If there is a minus sign, the values will be
multiplied by —1 after they are flipped.

In summary, once a quadrant of the Zernike polynomial is
computed, the remaining regions of the unit circle can be simply
obtained by flipping them. According to this conclusion, a com-
plete Zernike map for the LCWFC can be obtained by flipping the
first quadrant Zernike map and some examples are shown in
Fig. 7. It is obvious that the Zernike map can be simplified to a
quarter as shown in Fig. 7. The Zernike matrix is composed of 209
Zernike maps, so it can be effectively simplified to a quarter.

In conventional methods, the complete Zernike matrix and the
Zernike coefficient vectors are read to GPU, and then the MVM
operation is executed in GPU. In our Zernike symmetry method,
first the simplified Zernike matrix and the Zernike coefficient
vector are read to GPU; then the complete Zernike matrix is
restored by flipping the simplified Zernike matrix in GPU; finally,
the MVM operation is executed in GPU. The size of the complete
Zernike matrix is 54.8 MB, and then the size of the simplified
Zernike matrix is reduced to 13.7 MB. Because the computational
bottleneck is the read bandwidth from GPU memory to GPU, the
computational time can be reduced to 1/4 by using our Zernike
symmetry method in theory. In fact, the actual result cannot reach

.
«

.
>

-S1 S1 S2

| 4
AN
4

“y

To make it easy to understand the symmetrical relation of c d
Zernike polynomial clearly, the symmetrical points are extended Ay h
to the symmetrical regions. As shown in Fig. 6, relationship
between the symmetrical regions is classified by parameter m.
Only the first quadrant colored gray in each circle of Fig. 6 is the S3 S3 -S4 S4
Table 1 0 ; 0 ;
Results of wavefront reconstruction for different methods. -S3 -S3 S4 -S4
Reduction method CUBLAS library
Computing latency 27 ps 22 ps
Computing power 3.1 GFLOPS 3.8 GFLOPS Fig. 6. Relationship between the symmetrical regions, (a) m >0 and m is odd, (b)
m >0 and m is even, (c) m<0 and m is odd, (d) m <0 and m is even.
Table 2
Relationship between the symmetrical points.
Symmetrical point Value at symmetric point m=>0 m<0
m is odd m is even m is odd m is even
Py Z; (1, 0) Z{r, 0) Z; (1, 0) Z; (1, 0) Zi(r, 0)
P, Z;i (r, n—0) —=Zi (r,0) Z;i (1, 0) Z;i (1, 0) —Zi (1, 0)
P3 Z; (r, n+0) —Z; (1, 0) Z; (1, 0) —Zi (1, 0) Z; (1, 0)
Py Zi (r,272—0) Z; (1, 0) Z;i (1, 0) —Z; (r, 0) —Z;i (1, 0)

D. Li et al. / Optics Communications 316 (2014) 211-216 215

| -
0
A

| \ W4
- -—
-
Qe

Fig. 7. Four types of Zernike maps obtained by flipping the Zernike map on the first
quadrant. (a) mode 1 and m=-1 (m<0 and m is odd), (b) mode 2 and m=1
(m>0and mis odd), (c) mode 3 and m= —2 (m < 0 and m is even), (d) mode 5 and
m=2(m> 0 and m is even).

the theoretically expectation, because transmission speed is not
fixed: the smaller the amount of data, the slower transmission
speed. Anyway, our Zernike symmetry method can effectively
reduce the computing latency and improve performance. The
results of computing gray map for different methods are shown
in Table 3.

As shown in Table 3, the computing latency is reduced from
196 us to 62 ps and our Zernike symmetry method provide a
speedup of 3.16, although the effective read memory bandwidth
is reduced from 279 GB/s to 221 GB/s.

By the way, as another common modal functions in AO,
Karhunen-Loéve (K-L) functions can replace Zernike polynomials
for our wavefront processing algorithm|[18]. Because K-L functions
and Zernike polynomials have the same symmetry, our symmetry
method on GPU also can be used while we used K-L functions as
our wavefront processing algorithm.

Table 3
Results of computing gray map for different methods.

CUBLAS Our original Our Zernike symmetry
library method method
Computing latency 200 ps 196 ps 62 ps
Computing power 137 GFLOPS 140 GFLOPS 442 GFLOPS
Read memory size 54.8 MB 54.8 MB 13.7 MB
Read memory 274 GB/s 279 GB/s 221 GB/s
bandwidth
Read bandwidth 83.6% 85.1% 67.4%
percentage
Integration(714p s) []

Readout (714p s)

Calculate slopes and construct wavefront(6p1 s+22p s)

Compute gray map and write back(62p s+19u s)
Send data to DACs(90p s)

DAC:s voltage hold (714 s)

Fig. 8. Latency of the total computing process.

4.3. Processing with LUT

The computed gray map is further processed by look-up
table (LUT) before sending to the LCWFC. To save time, the LUT
is also conducted in the GPU. The texture cache in CUDA is
optimized for LUT correction, so that we read the LUT through
texture cache. The LUT processing does not take up more time,
because its time is hidden in data transmission for computing gray
map. Finally, there is an additional latency for computing gray map
as data needs to be written-back from GPU memory to the host
pinned memory. The pinned memory is stored in the physical
memory, which enables a direct memory access (DMA) on the GPU
to request transfers to the host memory without the involvement
to the CPU.

4.4. Combining MVM

Wavefront reconstruction and computing gray map are both
MVM. In mathematics, they can be combined into a MVM and the
size of the combined matrix is 65536 x 200. The combined MVM
does not have symmetry, so its computing latency is measured to
be 190 us. By contrast, the computing latency of wavefront
reconstruction and computing gray map are only 22 ps and
62 ps. Therefore the combined MVM cannot provide a lower
computing latency in our LCAOS.

5. Results

Our RTWP consisted of an Intel Xeon x5687 4-core CPU clocked
at 3.60 GHz and a GeForce GTX 590 GPU card. We used CUDA
4.2 release for implementing on the GPU card. A real-time Linux
kernel (with the RT-preempt patch, 2.6.29.6-rt24, available from
CentOS archives) was used. The performance of our RTWP was
assessed by using the Linux real-time clock to measure computing
time. Fig. 8. shows the processing timing line on our RTWP. As
shown, the total wavefront processing time was measured to be
109 ps. The wavefront processing jitter of 5 us rms was measured,
averaged over 1 million consecutive frames.

216 D. Li et al. / Optics Communications 316 (2014) 211-216

9|)
/
Q 10t .
Py 45Hz
°
2
E _20 - 4
=)
<
=
-30 |
-40
10 20 30 40 50 60 70 80 90 100
Frequency (Hz)
Fig. 9. Magnitude of the residual error transfer function in our LCAOS.

A common Linux kernel (2.6.29.6) was also used. It provides a
nearly identical performance: the wavefront processing time of
109 ps and the wavefront processing jitter of 6 ps rms. Therefore, a
real-time Linux kernel is not necessary in our LCAOS.

Once the wavefront processing time is determined, the magni-
tude of the residual error transfer function e(s) can be simulated,
which is shown in Fig. 9. As shown, the temporal bandwidth f _5 45
of our LCAOS can be up to 45 Hz.

6. Conclusions

According to our previous study, the residual wavefront error is
mainly caused by temporal error [19]. The system temporal error
can be calculated by

fe

5/3
O'temp2 = 5 dB) (6)

where f is the Greenwood frequency, and f _; 45 is the temporal
bandwidth of our LCAOS. In our astronomical observation area, the
Greenwood frequency f is usually around 45 Hz. The temporal
bandwidth f _; 45 of our LCAOS is 45 Hz, so that the temporal error
is calculated to be 1rad? by Eq. (6). In order to improve the
temporal bandwidth, we need to improve the response speed of
the liquid crystal material to reduce decay time z4ecqy and choose a
higher frequency of the detector to reduce integration time T of
the WFS.

In summary, we present a cost-effective scalable real-time
wavefront processor. We have described some algorithms for
wavefront reconstruction, computing gray map and LUT process
based on GPU. Especially, the algorithm by using symmetry of

Zernike polynomial can effectively reduce the calculation latency
of gray map to less than half and provide a speedup of 3.16. Finally,
the wavefront processing time can be achieved in 109 ps. Corre-
spondingly, the system temporal bandwidth can be up to 45 Hz.

The hardware architecture of our RTWP is based on commercial
off-the-shelf CPU and GPU. It can easily get a performance upgrade
through the replacement of hardware at a low cost in future. The
compiled program can be easily ported to upgrade hardware. With
higher performance and additional GPUs, we expect that the
architecture will easily support our next generation LCAOS at
higher rates and lower latency.

Acknowledgments

This work is supported by the National Natural Science Foun-
dation of China with Grant numbers of 11174274, 11174279,
61205021, 11204299, 60736042, 60578035 and 50703039.

References

[1] G.D. Love, Appl. Opt. 36 (7) (1997) 1517.

[2] D. Dayton,]J. Gonglewski, S. Restaino, J. Martin,] Phillips, M. Hartmann,
P. Kervin, J. Snodgress, S. Browne, N. Heimann, M. Shilko, R. Pohle,
B. Carrion, C. Smith, D. Thiel, Opt. Express 10 (25) (2002) 1508.

[3] Q. Mu, Z. Cao, L. Hu, D. Li, L. Xuan, Opt Express 14 (18) (2006) 8013.

[4] Z. Cao, Q. Mu, L. Hu, D. Li, L. Xuan, Acta Photonica Sin. 37 (2008) 785.

[5] C. Liu, L. Hu, Q. Mu, Z. Cao, L. Xuan, Appl. Opt. 50 (1) (2011) 82.

[6] Z. Cao, Q. Mu, L. Hu, D. Li, Y. Liu, L. Jin, L Xuan, Opt. Express 16 (10) (2008)
7006.

[7] L. Hu, L. Xuan, D. Li, Z. Cao, Q. My, Y. Liu, Z. Peng, X. Lu, Opt. Express 17 (9)
(2009) 7259.

[8] J.G. Marichal-Hernandez, L.F. Rodriguez-Ramos, F. Rosa, J.M. Rodriguez-Ramos,
Appl. Opt. 44 (35) (2005) 7587.

[9] T.N. Truong, A.H. Bouchez, R.G. Dekany,]J.C. Shelton, M. Troy, J.R. Angione,
R.S. Burruss, J.L. Cromer, S.R. Guiwits, J.E. Roberts, SPIE 7015 (2008) 31.

[10] A.G. Basden, R.M. Myers, Mon. Not. R. Astron. Soc. 424 (2012) 1483.

[11] NVidia, CUDA C Programming Guide, (http://docs.nvidia.com/cuda/index.
html).

[12] M. Harris, Optimizing parallel reduction in cuda, ¢http://developer.download.
nvidia.com/asserts/cuda/files/reduction.pdf).

[13] Volkov, Unrolling parallel loops, tutorial talk at SC11. 2011.

[14] Volkov, Use registers and multiple outputs per thread on GPU, International
Workshop on Parallel Matrix Algorithms and Applications 2010 (PMAA'10),
2010.

[15] RJ Noll,]J. Opt. Soc. Am. 66 (3) (1976) 207.

[16] Z. Cao, Q. Mu, L. Hu, X. Lu, L. Xuan, Opt. Express 17 (20) (2009) 17715.

[17] Q. My, Z. Cao, Z. Peng, Y. Liu, L. Hu, X. Lu, L. Xuan, Opt. Express 17 (11) (2009)
9330.

[18] G. Dai, J. Opt. Soc. Am. 13 (6) (1996) 1218.

[19] Z. Cao, Q. My, L. Hu, Y. Liu, Z. Peng, Q. Yang, H. Meng, L. Yao, L. Xuan., Opt.
Express 20 (17) (2012) 19331.

http://refhub.elsevier.com/S0030-4018(13)01130-9/sbref1
http://refhub.elsevier.com/S0030-4018(13)01130-9/sbref2
http://refhub.elsevier.com/S0030-4018(13)01130-9/sbref2
http://refhub.elsevier.com/S0030-4018(13)01130-9/sbref2
http://refhub.elsevier.com/S0030-4018(13)01130-9/sbref3
http://refhub.elsevier.com/S0030-4018(13)01130-9/sbref4
http://refhub.elsevier.com/S0030-4018(13)01130-9/sbref5
http://refhub.elsevier.com/S0030-4018(13)01130-9/sbref6
http://refhub.elsevier.com/S0030-4018(13)01130-9/sbref6
http://refhub.elsevier.com/S0030-4018(13)01130-9/sbref7
http://refhub.elsevier.com/S0030-4018(13)01130-9/sbref7
http://refhub.elsevier.com/S0030-4018(13)01130-9/sbref8
http://refhub.elsevier.com/S0030-4018(13)01130-9/sbref8
http://refhub.elsevier.com/S0030-4018(13)01130-9/sbref9
http://refhub.elsevier.com/S0030-4018(13)01130-9/sbref9
http://refhub.elsevier.com/S0030-4018(13)01130-9/sbref10
http://docs.nvidia.com/cuda/index.html
http://docs.nvidia.com/cuda/index.html
http://developer.download.nvidia.com/asserts/cuda/files/reduction.pdf
http://developer.download.nvidia.com/asserts/cuda/files/reduction.pdf
http://refhub.elsevier.com/S0030-4018(13)01130-9/sbref11
http://refhub.elsevier.com/S0030-4018(13)01130-9/sbref12
http://refhub.elsevier.com/S0030-4018(13)01130-9/sbref13
http://refhub.elsevier.com/S0030-4018(13)01130-9/sbref13
http://refhub.elsevier.com/S0030-4018(13)01130-9/sbref14
http://refhub.elsevier.com/S0030-4018(13)01130-9/sbref15
http://refhub.elsevier.com/S0030-4018(13)01130-9/sbref15

	Wavefront processor for liquid crystal adaptive optics system based on Graphics Processing Unit
	Introduction
	System transfer function overview
	Wavefront processing overview
	Parallel computing algorithm with GPU
	Wavefront reconstruction
	Computing gray map
	Processing with LUT
	Combining MVM

	Results
	Conclusions
	Acknowledgments
	References

