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� Transforming the infrared image into its gradient domain to get the gradient histogram.
� The gradient field equalization with dual-threshold is obtained using the histogram equalization technique.
� Adopting the total variational model while constructing the objective function.
� Using the variational method, the enhanced image is reconstructed from the target gradient field.
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Infrared images are characterized by low signal to noise ratio (SNR) and fuzzy texture edges. This article
introduces the variational infrared image enhancement algorithm based on gradient field equalization
with adaptive dual thresholds. Firstly, we transform the image into gradient domain and get the gradient
histogram. Then, we do the gradient histogram equalization. By setting adaptive dual thresholds to qual-
ify the gradients, the image is prevented from over enhancement. The total variation (TV) model is
adopted in the reconstruction of the enhanced image to suppress noise. It is shown from experimental
results that the image edge details are significantly enhanced, and therefore the algorithm is qualified
for enhancement of infrared images in different applications.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Infrared images are widely applied in military, scientific, medi-
cal and other fields. However, infrared images have shortcomings
of noise, low contrast and blurred texture details due to the uneven
photosensitive response of infrared detector and non-ideal optics
system. These affect the application of infrared images. To give
qualified image information in applications, it is necessary to
enhance the faint edge details of infrared images [1–3].

The technique of histogram equalization (HE) is an important
method for enhancing image details [4–6]. It makes the image gray
level values to appear approximately equally distributed in the
corresponding histogram, which extends the dynamic range of
the image. However, it is easy to produce over-enhancement,
where the background noise with typical gray level values gets
amplified while the detailed information with typical gray level
values is constrained. To overcome the shortcomings of HE, many
improvements have been proposed such as platform histogram
equalization (PHE) [7] and double platform histogram equalization
(DPHE) [8]. They suppress background noise by setting one or two
platform thresholds. For infrared image enhancement, there are
some other methods, such as using multiscale new top-hat trans-
form [9], multi-scale decomposition [10] and human visual system
[11]. In recent years, the method of variational partial differential
equations (VPDE) [12–14] is applied to image enhancement by
many scholars. They design the adaptive diffusion coefficients by
judging whether smoothing or enhancing of different pixels to
achieve image enhancement.

Local changes of image often correspond to the edge details
information. In VPDE theory, the local variations of images can
be expressed using the corresponding gradients. If the gradient
value is large, image edge texture details will be clear. In this
paper, we enhance infrared image edge details by the transforma-
tion of gradient field. The histogram equalization technology is
applied to image gradient domain, increasing the small gradient
values to enhance image texture details while suppressing the
large gradient values to prevent over-enhancement. In order to
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improve the SNR of infrared images, we adopt the TV constraint in
constructing the objective function. Therefore, the proposed algo-
rithm effectively enhances infrared image edge details while sup-
pressing noise.

2. The proposed method

In this section, a novel enhancement algorithm of infrared
image texture details is proposed. The process of this algorithm
includes four steps. Fig. 1 shows the framework of this method.

The following subsections give a detailed description of each
part of the algorithm respectively.

2.1. Gradient field equalization with adaptive dual-threshold

To a point p(x, y) �X of the infrared image I(x, y((x, y) �
X = [0, N � 1] � [0, M � 1]), where X represents the size of the
image, and N and M are the length and width of the image, respec-
tively, the gradient rp(x, y), gradient magnitude value |rp(x, y)|
and gradient direction h are defined as:

rpðx; yÞ ¼ @pðx; yÞ
@x

;
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where r is the gradient operator, rp(x, y) reflects the changes of
adjacent gray level values of p(x, y), |rp(x, y)| indicates the size of
the changes and h indicates the direction of the maximum change
of gray level values. So, gradients of each point of the image form
a vector field, which is the gradient field. We calculate the histo-
gram of the image using the gradient values instead of the gray level
values. In the histogram, the horizontal axis represents the gradient
values and ordinate represents the frequency of the gradient values
(the number of pixels). Fig. 2 shows an example of gradient magni-
tude field and gradient histogram of the infrared image.

To infrared images, most of the gradient values are small. And in
the gradient histogram, the small gradient values have a high prob-
ability. However, the histogram equalization technology just tends
to enhance the high probability information, increasing the small
gradient values. Therefore, gradient histogram equalization can
enhance the faint edge details. Gradient histogram equalization is
defined as Eq. (4),

sg
k ¼

Xk

j¼0

Prðrg
j Þ ¼

Xk

j¼0

nj

n

k ¼ 0;1; . . . ; jru0jmax � 1

8><
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where sg
k means the transformed probability which corresponded to

the gradient value k, n is the total number of image pixels, |ru0|max

means the maximum gradient value, nj means the number of
Fig. 1. The framework of infrared image t
gradient value j and Prðrg
j Þ means the probability of the gradient

value j. Equalization image Eg[|ru0|] is expressed as Eq. (5):
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where ug
0ðx; yÞ represents gradient values of the image u0. Gradient

field of the image u0 after equalization is represented as:

E ¼ ru0

jru0j
� Eg ½jru0j� ð6Þ

where E is the gradient field after equalization, u0 is the original
image, |ru0| stands for the gradient value of u0, Eg[|ru0|] represents
the gradient histogram equalization and ru0

jru0 j
is to keep the direction

of image gradient field unchanged.
For gradient field equalization, the enhancement effect is obvi-

ous to the image whose gradient values are uniform distribution.
But for the infrared image with low contrast and fuzzy edge details,
the gradient histogram shape is a narrow single peak and the gra-
dient values are small. As shown in Fig. 2(c), the gradient values are
about 0–50. Because the gradient histogram equalization makes
the image gray level values to appear approximately equally dis-
tributed in the corresponding histogram, it excessively extends
the dynamic range of the gradient values. So the enhancement
image, reconstructed from the equalization gradient field, pro-
duces white spots due to the over-enhancement. Fig. 3 is an exam-
ple of image enhancement. Fig. 3(a) is the gradient magnitude after
equalization of the original image in Fig. 2(a), and Fig. 3(b) is the
correspondent gradient histogram. It can be seen that the gradient
values are extended to 0–200. So the reconstructed image is sharp-
ened and has white spots as shown in Fig. 3(c).

In order to overcome above problem of gradient field equalization,
we set two adaptive thresholds to increase small gradient values
while suppressing the large gradient values. In this way the revised
gradient values after histogram equalization are extended to 0–110
as shown in Fig. 3(e). Thus the reconstructed image has clear edge
details and the over-enhancement is avoided, as shown in Fig. 3(f).
This can also be seen from the gradient magnitude (Fig. 3(a) and
(d)), where the revised gradient magnitude is not excessively
enhanced. The revised gradient value is expressed as follows:

g0 ¼
g1 jru0j < g1

jru0j g1 6 jru0j 6 g2

g2 jru0j > g2

8><
>: ð7Þ

where g0 represents revised gradient value, and g1 and g2 represent
adaptive thresholds. To the selection of upper threshold g2, if g2 is
too large, it will not effectively limit the high gradient value, and
cannot prevent over-enhancement; if g2 is too small, it will restrict
the enhancement of image texture details. Therefore, this article
makes g2 less than the maximum gradient of image and greater
than the average value of the maximum gradient of each column.
The lower threshold g1 is to enhance small targets and weak edge
detail information. If g1 is too small, the targets and weak edge
exture details enhancement method.



Fig. 2. Example of gradient magnitude field and gradient histogram, (a) original infrared image, (b) gradient magnitude field and (c) gradient histogram.

Fig. 3. The example of image enhancement, (a) gradient magnitude after equalization, (b) gradient histogram after equalization, (c) reconstructed image of (a), (d) revised
gradient magnitude after equalization, (e) revised gradient histogram after equalization and (f) reconstructed image of (d).
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detail information will not be significantly enhanced; if g1 is too big,
the image texture edges will be sharpened excessively. Therefore,
based on the characteristics of infrared image, the calculation steps
of g1 and g2 are as follows:
� Step 1: calculating the gradient values fgði; jÞ 1 6 i 6 N;j

1 6 j 6 M:g of all pixels of the original image.
� Step 2: calculating the maximum gradient values
fgmaxðjÞ 1 6 j 6 Mj g of each column.
� Step 3: from fgmaxðiÞ 1 6 i 6 Mj g, calculating the minimum gra-

dient value gmin, the maximum gradient value gmax and the
average gradient value �g.
� Step 4: calculating the lower threshold g1 = gmin/2 and the upper

threshold g2 ¼ ðgmax þ 2 � �gÞ=3.

The revised gradient histogram equalization is expressed as
follows:

E0 ¼ ru0

jru0j
� Eg ½g0� ð8Þ
where E0 is gradient field of revised gradient histogram equaliza-
tion, and Eg[g

0
] represents the revised gradient histogram

equalization.

2.2. Rebuild the enhanced image from the gradient field E0

Now we have obtained the transform of gradient field E0. To find
an image f, whose gradient field is equal to E0, an intuitive idea is to
solve the equation rf = E0. However, usually it has no solution
because E0 constructed from (8) may not be integrable, and there
will not exist an infrared image who has the exact edge textures
information as E0. A common method for this problem is to find a
closest image u, whose gradients have the least-squared-error to
E0. Using mathematical formula, the following function can be
minimized:

min
Z Z

X
jru� E0j2dxdy ð9Þ
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Normally, the noise of infrared images is obvious. To enhance
image details while suppressing noise, we adopt the TV model
[15]. Rudin et al. think the total variation value of noisy images
is bigger than that of the noiseless images, and the minimization
of the total variation value of the image u can suppress noise.
The TV model is represented as follows:

min
Z Z

X
ruj jdxdy ð10Þ

Comprehensively considering the image edge details and noise
suppression, to reconstruct the enhanced image u from the gradi-
ent field E0, we can minimize the following functional:

EðuÞ ¼min v
Z Z

X
ruj jdxdyþ d

Z Z
X
ru� E0
�� ��2dxdy

� �
ð11Þ

where u is the enhanced image, E(u) is the objective function, and
parameters v and d adjust the proportion of the two parts above.
However, TV model is easy to make the enhanced image have stair-
case effect [16], and in order to reduce this effect, v should be smal-
ler than d. With the variational method, the Euler–Lagrange
equation of (11) is as:

vr � ru
jruj

� �
þ 2dðDu� divE0Þ ¼ 0 ð12Þ

where D is the Laplace operator, Du ¼ @2u
@x2 þ @2u

@y2 . Minimization of the
solution of (11) can be achieved by gradient descent method itera-
tions, such as (13):

unþ1 ¼ un � Dt vr � run

jrunj

� �
þ 2dðDun � divE0Þ

� �
ð13Þ

where n represents the number of iterations, and Dt represents the
time step, which should be a small positive number to ensure the
convergence of (13).
start

input the gradient field E' of revised 
gradient histogram equalization

add TV model and according to the 
principle of least squares, calculate 

the objective function  E(u)

use the variational method to calculate  
the Euler-Lagrange equation of

objective function E(u)

use the gradient descent method to 
convert Euler-Lagrange equations into 

the evolution with the time t

Fig. 4. The flowchart of im
The range of image values must sit between [0, 255] to be dis-
played on the computer. Therefore, each iteration should be re-
constrained as follows:

utemp ¼ un � Dt vr � run

jrun j

h i
þ 2dðDun � divE0Þ

n o
unþ1 ¼maxf0;minð255;utempÞg

8<
: ð14Þ

The process of image reconstruction is shown in Fig. 4.
3. Experiment results and discussion

E(u) of (11) may not be satisfied with convexity, so iterations of
(14) may not converge. If we take the input image u0 as the initial
iteration value u0, the optimum result u can be obtained. Fig. 5
shows the relationship between mean gradient [17] (MG) of
enhanced images and the number of iterations n.

In Fig. 5, MG gradually increases as n increases from zero, until
it reaches its maximum value of 16. When n = 80, MG decreases
gradually. This phenomenon indicates that we can find the opti-
mum result through limited iterations. In theory, image edge
details are clear if MG is large. Therefore, when n = 25, correspond-
ing to the maximum MG, we can find that the image edge details
are the most clear. However, with M increases, the computing time
of the algorithm will be longer. Comprehensively consider real-
time performance of the algorithm and visual effects of the image,
we take n = 6.

In order to intuitively show the influence of the number of iter-
ations on the reconstructed image, we give another comparative
experiment of the infrared face images [18] reconstructed by dif-
ferent n, as shown in Fig. 6.

Fig. 6(a) is an infrared face image with fuzzy edges. From
Fig. 6(b)–(d), the contrast of the reconstructed image increases as
n increases. When n = 6, the image edge details are clear; but when
n = 80, the image is over-enhanced.
use the finite difference method to 
convert the evolution into 

discrete iterative 

start iteration

the dynamic range constraint to the 
iteration result

reach the set number of 
iterations?

output the enhanced image

end

yes

no

age reconstruction.



Fig. 5. The relation curve of MG-n.
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If parameters v and d of (11) are with different values, there will
be different effects between image edge detail enhancement and
noise suppression. We take different parameter values for experi-
ment and the result is shown in Fig. 7.

Fig. 7(a) is an infrared original image with dark background and
big noise. From Fig. 7(b)–(d), with the increment of v and the
decrease of d, noise suppression capability of the algorithm is
improved while image edge detail enhancement capability is
Fig. 6. Comparison of the infrared face image reconstructed by different M

Fig. 7. Comparison of different values of v and d, (a) original infrared
weakened. Comprehensively considering image edge detail
enhancement and noise suppression of the algorithm, we take
v = 0.2, d = 0.8.

In addition, to illustrate the effectiveness of revised gradient
histogram equalization by adaptive dual thresholds, we compare
the gradient histogram equalization algorithm with the revised
gradient histogram equalization algorithm for infrared images.
The results are shown in Fig. 8.

Fig. 8(a) is an original infrared image with low contrast and dim
targets (stars) getting lost in the dark background. Gradient field
equalization enhances infrared image targets, but enhanced image
appears white spots due to the small gradient values excessively
increased. This makes little stars buried in white spots as shown
in Fig. 8(b). However, revised gradient histogram equalization by
adaptive dual thresholds prevents image from excessive enhance-
ment and dim targets are enhanced significantly as brighter stars
as shown in Fig. 8(c). From the gradient histograms we can see that
the gradient values of original image are mainly concentrated in
0–40. The revised gradient histogram equalization makes gradient
values mainly concentrated in 0–120. While gradient field equal-
ization makes the gradient values excessively increased to 0–255.

To further verify the effectiveness of the proposed algorithm,
we compare it with HE, PHE [7] and infrared image enhancement
based on wavelet diffusion (WD) [14]. Here are some experimental
results.
, (a) original infrared hand image, (b) n = 6, (c) n = 25 and (d) n = 80.

image, (b) v = 0, d = 1, (c) v = 0.2, d = 0.8 and (d) v = 0.4, d = 0.6.



Fig. 8. Experiment about revised gradient histogram equalization, (a) original image and its gradient histogram, (b) gradient histogram equalization and its gradient
histogram and (c) revised gradient histogram equalization and its gradient histogram.

Fig. 9. Comparison of image enhancement results by different algorithms, (a) original image, (b) HE, (c) PHE, (d) WD and (e) the proposed algorithm.
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Fig. 9(a) is an infrared original image with small signal-to-noise
ratio and fuzzy texture edges. In Fig. 9(b), HE effectively extends
the dynamic range of the image. However, it produces the over-
enhancement. Using PHE, the image contrast is improved, and does
not be over-enhanced as shown in Fig. 9(c). Fig. 9(d) is the result of
WD. The texture edges are enhanced while suppressing noise. The
result of the proposed algorithm is shown in Fig. 9(e). It can be seen
that the image texture edges are clear.

Fig. 10(a) is another infrared original image, and the texture
edges of the target ship are unclear. Using HE and PHE, the image
contrast is improved, but the texture edges of the ship are not
clear. The enhanced image by WD is shown in Fig. 10(d). The tex-
ture edges of the ship are clearer than Fig. 10(a). Fig. 10(e) is the
result of the proposed algorithm, and the edge details of the ship
are very clear.

Fig. 11(a) is a low dynamic range infrared image and the blood
vessels and outline of the hand are not clear. HE and PHE expand
the dynamic range, but the blood vessels and outline of the hand
are not enhanced effectively. WD sharpens the blood vessels while
suppressing noise. The image enhanced by the proposed algorithm
is shown in Fig. 11(e). The blood vessels and outline of the hand are
very clear.

In addition, the proposed algorithm can also be applied to
enhance other types of images. Figs. 12 and 13 show the
visible image and medical image enhanced by the proposed
algorithm.



Fig. 10. Enhancement results comparison of ships by different algorithms, (a) original image, (b) HE, (c) PHE, (d) WD and (e) the proposed algorithm.

Fig. 11. Enhancement results comparison of hands by different algorithms, (a) original image, (b) HE, (c) PHE, (d) WD and (e) the proposed algorithm.

Fig. 12. The comparison of visible images enhancement, (a) original image, (b) the proposed algorithm and (c) HE.
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Fig. 13. The comparison of medical CT images enhancement, (a) original image, (b) the proposed algorithm and (c) HE.
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Fig. 12(a) is a visible peacock image, and the texture edges of the
peacock are not clear. In Fig. 12(c), HE expands the dynamic range of
the image, but it produces the over-enhancement. After the proposed
algorithm, the texture edges of the peacock are well enhanced.

Fig. 13(a) is a medical CT image, and the details are not clear. In
Fig. 13(c), HE increases the brightness of the image, but the details
are not clear enough. After the proposed algorithm, image details
and edges are clear.

The infrared images and other types of images have been
applied in the experiment, and the edge details of the images are
well enhanced. This shows that our algorithm can work well for
various images.

4. Conclusions

We have demonstrated the infrared image enhancement by
means of the total variation and gradient field equalization with
adaptive dual-threshold. The gradient values of weak image details
are low relative to other region, and we can increase the gradient
values to enhance the weak detail information. Firstly, we intro-
duce the principle of gradient field equalization. In order to prevent
image from over-enhancement, considering the characteristics of
infrared image, we set two thresholds to adjust the image gradient
values. By adopting the TV model while reconstructing the
enhanced image, the noise is suppressed. Experimental results
show that the proposed algorithm effectively enhances infrared
image edge details, which is beneficial to various applications of
infrared images.

Conflicts of interest

There is no conflict of interest.

Acknowledgements

We thank the reviewers for helping us to improve this paper.
This work is supported by National Natural Science Foundation
of China (Grant No. 61137001).
References

[1] C.L. Lin, An approach to adaptive infrared image enhancement for longrange
surveillance, Infrared Phys. Technol. 54 (2) (2011) 84–91.

[2] J.J. Talghader, A.S. Gawarikar, R.P. Shea, Spectral selectivity in infrared thermal
detection, Light:Sci. Appl. 1 (24) (2012).

[3] V.M. Carlos, J.S.M. Francisco, E.G.S. Maria, Contrast enhancement of mid and far
infrared images of subcutaneous veins, Infrared Phys. Technol. 51 (3) (2008)
221–228.

[4] K.S. Sim, C.P. Tso, Y.Y. Ta, Recursive sub-image histogram equalization applied
to gray scale images, Patter Recognit. Lett. 28 (10) (2007) 1209–1221.

[5] H. Ibrahim, N.S.P. Kong, Brightness preserving dynamic histogram equalization
for image contrast enhancement, IEEE Trans. Consum. Electron. 53 (4) (2007)
1752–1758.

[6] Q. Chen, L.F. Bai, B.M. Zhang, Histogram double equalization in infrared image,
J. Infrared Millimeter Waves 22 (6) (2003) 428–430.

[7] R. Lai, Y.T. Yang, B.J. Wang, H.X. Zhou, A quantitative measure based infrared
image enhancement algorithm using plateau histogram, Opt. Commun. 283
(2010) 4283–4288.

[8] K. Liang, Y. Ma, Y. Xie, B. Zhou, R. Wang, A new adaptive contrast enhancement
algorithm for infrared images based on double plateaus histogram
equalization, Infrared Phys. Technol. 55 (2012) 309–315.

[9] X.Z. Bai, F.G. Zhou, B.D. Xue, Infrared image enhancement through contrast
enhancement by using multiscale new top-hat transform, Infrared Phys.
Technol. 54 (2011) 61–69.

[10] J.F. Zhao, Y.T. Chen, H.J. Feng, et al., Infrared image enhancement through
saliency feature analysis based on multi-scale decomposition, Infrared Phys.
Technol. 62 (2014) 86–93.

[11] T.H. Yu, Q.M. Li, J.M. Dai, New enhancement of infrared image based on human
visual system, Chin. Opt. Lett. 7 (2009) 206–209.

[12] P. Perona, J. Malik, Scale-space and edge detection using anisotropic diffusion,
IEEE Trans. Pattern Anal. Mach. Intell. 12 (7) (1990) 629–639.

[13] S.J. Fu, Q.Q. Ruan, W.Q. Wang, F.Z. Gao, H.D. Cheng, A feature-dependent fuzzy
bidirectional flow for adaptive image sharpening, Neurocomputing 70 (2007)
883–895.

[14] C. Ni, Q. Li, L.Z. Xia, A novel method of infrared image denoising and edge
enhancement, Signal Process. 88 (2008) 1606–1614.

[15] L. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal
algorithms, Physica D 60 (1992) 259–268.

[16] T.F. Chan, S. Esedoglu, F. Park, A fourth order dual method for staircase
reduction in texture extraction and image restoration problems, IEEE Int. Conf.
Image Process. (2010) 4137–4140.

[17] X.Z. Bai, F.G. Zhou, B.D. Xue, Image fusion through local feature extraction by
using multi-scale top-hat by reconstruction operators, Optik 124 (2013) 3198–
3204.

[18] B. Klare, A.K. Jain, Heterogeneous face recognition: matching NIR to visible
light images, IEEE Int. Conf. Pattern Recognit. (2010) 1513–1516.

http://refhub.elsevier.com/S1350-4495(14)00099-1/h0005
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0005
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0095
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0095
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0015
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0015
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0015
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0020
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0020
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0025
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0025
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0025
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0030
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0030
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0035
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0035
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0035
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0040
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0040
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0040
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0045
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0045
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0045
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0050
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0050
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0050
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0055
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0055
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0100
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0100
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0065
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0065
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0065
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0070
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0070
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0075
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0075
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0080
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0080
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0080
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0085
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0085
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0085
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0090
http://refhub.elsevier.com/S1350-4495(14)00099-1/h0090

	Variational infrared image enhancement based on adaptive dual-threshold gradient field equalization
	1 Introduction
	2 The proposed method
	2.1 Gradient field equalization with adaptive dual-threshold
	2.2 Rebuild the enhanced image from the gradient

	3 Experiment results and discussion
	4 Conclusions
	Conflicts of interest
	Acknowledgements
	References


