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1. Introduction

Photonic crystals have generated a surge of interest in the last
decades because they offer the possibility to control the propaga-
tion of light to an unprecedented level [1-4]. In its simplest form, a
photonic crystal is an engineered inhomogeneous periodic structure
made up of two or more materials with very different dielectric
constants. When an electromagnetic wave (EM) propagates in such
a structure whose period is comparable to the wavelength of the
wave, unexpected behaviors occur. Among the most interesting
ones are the possibility of forming a complete photonic band gap
(CPBG) [5,6], which forbids the radiation propagation in a specific
range of frequencies. The existence of PBGs will lead to many
interesting phenomena. In the past ten years has been developed an
intensive effort to study and micro-fabricate PBG materials in one,
two or three dimensions, e.g., modification of spontaneous emission
[7,8] and photon localization [9-12].

The existence of PBGs will lead to many interesting phenomena,
e.g., modification of spontaneous emission [13,14] and photon
localization [15-17]. Thus numerous applications of photonic crys-
tals have been proposed in improving the performance of optoelec-
tronic and microwave devices such as high-efficiency
semiconductor lasers, right emitting diodes, wave guides, optical
filters, high-Q resonators, antennas, frequency-selective surface,
optical limiters and amplifiers [18,19]. Other applications of PCs
have been proposed and designed in the SLED to realize high power
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[20-22]. These applications would be significantly enhanced if the
band structure of the photonic crystal could be tuned.

The theory calculations of PCs have many numerical methods,
such as the plane-wave expansion method (PWE) [23], the finite-
difference time-domain method (FDTD) [24], the transfer matrix
method (TMM) [25], the finite element method (FE) [26], the
scattering matrix method [27], the Green's function method [28],
etc. These methods are classical electromagnetism theory.
Obviously, the full quantum theory of PCs is necessary. In Refs.
[29,30], the authors give the quantum wave equation of single
photon. In Ref. [31], we give the quantum wave equations of free
and non-free photon. In this paper, we have studied the 1D PCs by
the quantum wave equations of photon [31], and given quantum
dispersion relation, quantum transmissivity, reflectivity and
absorptivity, and compare them with the classical dispersion
relation, transmissivity, reflectivity and absorptivity. By the calcu-
lation, we find that the classical and quantum dispersion relation,
transmissivity reflectivity and absorptivity are identical. With the
new approach, we can study two-dimensional and three-
dimensional photonic crystals.

2. The quantum wave equation and probability current density
of photon

The quantum wave equations of free and non-free photon have
been obtained in Ref. [31], they are

ih%ﬁ(?, ty=chv x W (T.t), 1)
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and
ih%ﬁ(?,t) =chV x Y (T,.H+Vy (T .0, )

where ?/)(_r), t) is the vector wave function of photon, and V is the
potential energy of photon in medium. In the medium of refractive
index n, the photon's potential energy V is [31]

V = hao(1-n). 3)
The conjugate of Eq. (2) is

—in%W*(?,t) —chV x Y (F.H+VE (7.0, 4)

Multiplying Eq. (2) by W* Eq. (4) by W and taking the difference,
we get

ih%(?/)* V)=ch(W -VxW - -Vxy )=chV

TR (5)

%
ie.

ap _

E_'_ V-J]=0, (6)
where

p=y" V. 7)
and

J=icy <y, ®)

are the probability density and probability current density,
respectively.
By the method of separation variable

v (T, 0=y (T, G)
the time-dependent equation (2) becomes the time-independent
equation

chV x W (T)+V (T)=Ey(T), (10)

where E is the energy of photon in medium.
By taking curl in (10), when oV /ox;=0,(i=1,2,3), Eq. (10)
becomes

(RO (V(V - W (T )= V2 (T) = (E-V)*y (7). (11
Choosing transverse gange
V.- W (T)=0, (12)
Eq. (11) becomes

2
VI (F)+ (%) W(T)=0. (13)

With Eqgs. (12) and (13), we should study one-dimensional PCs by
the quantum theory approach.

3. The quantum theory of one-dimensional photonic crystals

For one-dimensional photonic crystals, we should define and
calculate its quantum dispersion relation and quantum transmis-
sivity. The one-dimensional PCs structure is shown in Fig. 1.

In Fig. 1, ¥, W W are the wave functions of incident,
reflection and transmission photon, respectively, and they can be
written as

T = — — —
YT 0=p T =y Ty, oy, k, (14)
By transverse gange V - W(?) =0, we get

ke + Ky, + ke, = 0. (15)

Fig. 1. The structure of one-dimensional photonic crystals.

In Fig. 1, the photon travels along with the x-axis, the wave vector
k, =k, =0 and ky # 0. By Eq. (15), we have

Wx:()’ (16)

so the total wave function of photon is

V=W,]+v.k, (17)

Eq. (13) becomes two component equations

V2, + (%)2% =0, (18)

and

Vi, + (ﬂy% =0. (19)
nc

In Fig. 1, the wave functions of incident, reflection and transmis-
sion photon can be written as

— —

VI) =Fyei( k .7—(»[)7 +eri( k «?—(ut)?’ (20)
— —

WR) :F;/ei( k .?—w[)7+F/Zei( k «?—mt)?’ (21)
T = T —

W :Dyez( k.r —wt)7+Dzez( k.17 -wb k, (22)

where F), F,, F/y, F,, Dy, and D, are their amplitudes.
The component form of Eq. (1) is

9w e Wy
mat”’*‘“( ay oz
Lo (o, o,
lf‘a*"y—h‘f(az Tx ) 23)

. 0 _ t)llly al//x
m&""l‘“(? Y )

substituting Eqs. (14) and (16) into (23), we have
V.= il//yv (24)

the probability current density becomes

J=icy x =20y, 2T =2y, P 7, 25)
where
W, = wo,e k.7 —ot) (26)

the ypo, is y, amplitude.
For the incident, reflection and transmission photon, their
probability current density Jj, Jr, Jr are

Jy=2c|F;?, 27)
Jr=2cIF,)%, (28)
Jr=2cID,|?, (29)

We can define quantum transmissivity T and quantum reflectivity
R as

2

Da\”, (30)

_Jr_
T F

=7
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4. The quantum transmissivity and quantum dispersion
relation

Since the probability current densities are relevant to the z
component amplitudes of wave function, we should only solve the
z component equation (19) for the one-dimensional PCs, which is
shown in Fig. 2.

With Eq. (19), the photon's quantum wave equation in med-
iums A and B are

‘32"’/‘+k2y/ -0 (0<x<a) (32)
ox2 | ATA ’

Py 2

ax23+k3y13=0 (a<x<a+b, (33)
where

_E—Va_E—ha)(l—na)_Q _2£
k=" = nc == 34

E-Vy, E—-nhw(l1-ny) w 2r
= =—Np=—

hc hc c’ A
where A1=2zc/w is the photon wave length in vacuum,
Vo =nw(1—ng)(V, =hw(1—np)) is the potential energy of photon
in medium A(B), and n4(11p) is the refractive index of medium A(B).
In order to simplify, the index z is omitted, i.e., () is written
as y,(yp). The solutions of Egs. (32) and (33) are

Wy =Are* L Ae % (0 <x<a), (36)

kB = ny, (35)

Wy =B1e** L Bye~ "X (a<x<a+b). 37)
By Bloch law, there is

w(a+b <x<2a+b)=w(0<x<aeke+h
— (Al eil<A(x—(a+b))

+Aze_ikA(X_(a‘Fb)))eik(a‘Fb), (38)

where k is Bloch wave vector.
At x=a, by the continuation of wave function and its derivative,
we have

A] eikAa _’_Aze—ik,‘a — B1 e”(gﬂ +Bze—ikga’ (39)

ikaAq e"‘/*“ —ikaAse™ ikaa ikgB, e“‘Ba —ikgBye~ ikBa, (40)

At x=a+b, by the continuation of wave function and its deriva-
tive, we have

A] eik(a+b) +Azeil<(a+b) — Bl eikg(a+b) +Bze—ikg(a+b)’ (4-1)

il(AA1 eik(a +b) _ ikAAz eik(a +b) _ ikBBl eikg(a +b) _ il(BBze —ikg(a+ b), (42)

0 a a+b X

Fig. 2. The structure of one-dimensional photonic crystals.

and we obtain the following equations set:

AleikAu +Aze—ikAa — B1 eikga +Bze—ik3a

ikaA;etkad —ik,Ase ~kad = jlp By eike® — jkpB, e~ iksa

Aleik(a+b) +A2eik(a+b) — BleikB(aer)+Bze—ik5(a+b)

ikAAleilc(a+b) _ikAAzeil<(a+b) — l'kBB1 eikB(a+b) _ikBBze—ikB(aer),

(43)

the necessary and sufficient condition of Eq. (43) nonzero solution
is its coefficient determinant equal to zero

eikAa e~ ikqa _ eikga —_e~ ikga
kAeikAa _kAe—ikAa _kBeikBa kBe—ik;;a
eik(a+b) eikia-+b) _eiks@+b)  _ o—iks@+b) | T 0, (44)
kAeik(a+b) _kAeik(a+b) _kBeikB(a+b) kBe—ikE(a+b)

simplifying Eq. (44), we obtain the quantum dispersion relation
cos (k(a+b)) = cos (ksa) cos (ka)—1 l+l sin (kqa) sin (kgb).
2 kA kg

(45)
In the following, we should give the wave function of photon in
every medium, and the transmission wave function. In Fig. 3, we
give the simplification form of wave function in every medium,
such as symbols A,1<A and AY k, express simplifying wave function of
medium A in the first period, they express wave function

W () =Ap e+ AL e kax, (46)
in medium B of first period, the symbols B,1<A and B[kA express
wave function

Wy (x) = B;Beik3x+Bl_kBe—ilch7 (47)

in medium A of second period, the symbols AiA and A% k, €Xpress
wave function

W (x) = Ap e+ A% e hax, (48)
similarly, in medium B of second period, the symbols BﬁA and B{kA
express wave function

W) = B%B eiksx | B2 kBe—ikgx7 (49)
and so on.

In the incident area, the total wave function y . (x) is the
superposition of incident and reflection wave function, it is

WiotX) = Y (%) +yg(x) = Fe™™ 4 Fle =1, (50)

where K is the wave vector of incident, reflection, and transmis-
sion photon. In the following, we should use the condition of wave
function and its derivative continuation at interface of two
mediums.

(1) At x=0, by the continuation of wave function and its
derivative, we have

F+F =A;, +AL, . (51
iKF —iKF' = ikpAy, — kA" . (52)
we obtain
1 K K
1 _ 2 N _ /
A,<A_2K1+kA>F+< kA>F}’ (53)
Kx 1 1 2 N N
T 14 | By |4 B:, 4. | Bi, | De
— || B, |42 B 45, (8%,
Fe™
0 a a+tb *

Fig. 3. The quantum structure of one-dimensional photonic crystals.
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. K K\ .,
A= (1) (145 )P (54)

Egs. (53) and (54) can be written as matrix form
Ay 14K/ks 1-K/ky\ / F F
S T O (Y =mi(E). s
ALy, 2\ 1—-K/ka 1+K/ky F F

where M} is the quantum transform matrix of the first
period medium A, it is

} 1<1+1</1<A 1—I</kA>

211 —K/kA 1+K/kA

(2) At x=a, by the continuation of wave function and its
derivative, we have

A;AeikAa +A17 kAe—ikAa — B;Beilcga+BlkBe—ilcgu’ (57)
%(AlcheikAa 7Alkae7ikAa) — B}{Beiksa 7B]—I<Be7ik8ﬂ’ (58)
we get
1. k 1 k
11 itk — k) A\ al —i(ky +kp) A\ al
Bj, = e CB“<1+FB>AkA+§€ ' A*‘B“(kk—B)Aka, (59)

1; kq 1; k4
1 — (kn +kg)a 1 (kg —ka)a 1
B - kg 2e' A +Kp ([ k )AI +;e' B — k) <[+—)A Ka> (60)

Egs. (59) and (60) can be written as matrix form
Bllca 1 eika—kna(1 ky /kg) e~ katkoac] —ky, /kg) Aa
By, | 2\ e®arknd—kaskg) elke—kod(14ky/ks) )\ AL,

A]
=Mé< “ ) 61)

1
Ala

where M} is the quantum transform matrix of the first

period medium B, it is

i(kA—kB)al Ka/k —i(kA+kB)a17] k
1<e (1+ka/k) e (1—ka/ 3)>’ ©2)

1
Mpg zi eitka +I<B)a(1 *kA/kB) ei(ky—kA)ﬂ(] JrkA/kB)

(3) At x=a+b, by the continuation of wave function and its
derivative, we have

. w 2 P w
BI]<BeII<B(a+b)+Bl—kBe ikg(a+b) :AI<AelkA(a+b) +A—kAe tkA(a+b),

(63)
k i ; ; ;
Fj(BLEe',(B(a+b) _317 kEefsz(aer)) =Aée"‘*‘(“b) —A{ kAekaA(a+b), (64)
we get
22— Lito—taasty (1 K\ gt 1t kpasty (K8 (65)
k72 ka) ka2 kn) " e

2 _ ity +kea+b) ke p1 1 ik~ keya+ by kg o1
A_kA_ze 1 kn Bkﬂ+ze 1+kA B ,»

(66)
Egs. (65) and (66) can be written as matrix form

(Aé ) 1 <ei"‘5’k'\)‘“+b)(]+k3/kA) e”“’"‘*"ﬂ)‘“*b‘ﬂ7k3/kA)>( Bly >

A2 kn T2\ eitkatknatb) (1 _ kg /ky)  eitka—ka@+b(1 4 kp/ky) B!,z

=M§< Bia ) (67)

1
B—kB

where M3 is the quantum transform matrix of the second
period medium A, it is

1 <ei(k5—kﬂj(a+b)(1+kB/kA) e—i(l(A+l<B)(a+b)(] *kB/kA)>

2
Mg =3 ei(kA+k,;)(a+b)(1 —ks/kn) ei(ch—lfﬁ)(a+b)(]_'_kB/kA)

(68)

(4) At x=2a+b, by the continuation of wave function and its
derivative, we get

( B, ) 1 (enkﬂ—km(z”b)(]+kA/kB) e—nkﬁkmzama_kA/kB)) ( AL, )

BZ_ o :i ei[k,;+kn)(2ﬂ+b)(‘l —kA/kB) eilkg—k,;)(2u+b)(] +kA/kB) A{M
A
=Mz , | (69)
A—I(A

where M3 is the quantum transform matrix of the second
period medium B, it is

. 1 ei("A*"E)(Z“*b)(l+kA/k3) e—i(kA+kB)(2a+b)(]_kA/kB)
B=j ei(kA+kB>(2a+b>(1_kA/kB) ei"‘ﬂ‘kﬁ)(za*'b)(l+kA/k3) >

(70

(5) At x=2(a+b), by the continuation of wave function and its
derivative, we get

< AiA ) 1 (ei(k”’kﬂ)z(a*b’(l+k3/kA) e—i(V<A+kg)2(a+b)(1_kB/kA)>< BiB >

Aik,, 2 ei(k,\+kg)2(a+b)(-l —kB/kA) ei(kA —kB)Z(aer)(-l +kB/kA) B{kﬂ
B
-3 ). )
—kB

where M3 is the quantum transform matrix of the third

period medium A4, it is

M3 B 1 ei(kgfk,;)Z(aer)(] +kB/kA) e—i(kA +k5)2(a+b)(1 —kB/kA)
ATH ei(kA+kB>2(a+b)(1 —kg/ka) eitka —kB)Z(a+b)(1 +kp/ka)

(72)

(6) Similarly, at x =3a+2b, by the continuation of wave func-
tion and its derivative, we get

Biﬁ 1 ei(kA—kg)(3a+2b)(1 +kA/kB) e—i(kA+k5)(3a+2b)(1 —kA/kB)
33, s 5 ei(kA+kH)<3a+2b)(] —kA/kB) ei(kn—kA)(3a+2b)(1 +kA/kB)

)
Aia Aia
<A3 ) =M <A3 > (73)
— kA — kA

where M3 is the quantum transform matrix of the third
period medium B, it is

1 (ei(kA 7k3)<3a+2b)(1 +kA/kB) efi(k,; +kB)(3u+2b)(1 _ kA/kB)

3
MB=§ ei(kﬂ+kﬂ><3a+2b)(]7kA/kg) ei(l<g—kA)(3a+2b)(1+kA/kB) ) (74)

By the above calculation, we can obtain the results of transform
matrices:

(1) For the transform matrix M} of the first period medium A is
independent form.

(2) For the transform matrices MY of the N-th period (N > 2),
they can be written as

N1 etk —k)N=1)@+b) (1 4 kg /ks) e~ ika+keXN=1)a+b)(1 _ kg /k,)
MA=j el‘(k,q‘#k,q)(N*l)(ﬂ«Fb)(‘l_kB/kA) ei("f"k”"N’l)‘“J'b‘(l+k3/kA) >

(75)
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(3) For the transform matrices M} of the N-th period (N> 1),
they can be written as

N 1 e“""”‘”"”‘“*b)’b)(l+kA/kB) e’i‘k"*kﬂ)(N(”*b)’b)(l7kA/k3)
MB :j ei(kAJrk,;)(N(aer)—b}(]_kA/kB) ei(kﬁ*k;;)(N(Ger)—b)(l+kA/kB) .

(76)
By the quantum transform matrices, we can give their

relations:

(1) The representation of the first period quantum transform
matrices is

Ak F
Tk
By, Al F F
_ Ml kA ) _ apiant gl
(Blkg _MB<A1M>_MBMA<F/)_M (F’)‘ (78)

(2) The representation of the second period quantum transform
matrices is

AL, B| F F
_ M2 kB )\ _ ar2pglipgl a2 gl
( (2 ) <) =i (£

(79)
Bf, o A 2y zaingt [ F o F
B{’(B =Mg AEM :MBMAMBMA<F/):MM (F,>.

(80)

(3) Similarly, the representation of the N-th period quantum
transform matrices is

AN
ka NpN—1pgN—1 2ppiagl [ F
AN =MyMg~ My~ --- MzMgM, F

—ka

F
:Mgw—r..zszl(F,), @1

By, F
(BN"” ) — MM )

ke
=MNMN’1~~~M2M1(II;,>=M<£,>, (82)

where

M:MNMNl---M2M1:<$; $z> (83)

is the total quantum transform matrix of N period, and
M' =MgMj}, is the first period quantum transform matrix,
M? = MzMj is the second period quantum transform matrix,
and MY =MYMY is the N-th period quantum transform
matrix.

By Egs. (82) and (83), we can give the wave function of N-th
period in medium B, it is
W) =Bl elex 1 BY o~ ikx
= (M F+myF)e*eX 4 (m3F 4+ myF )e ~ X, (84)
In Fig. 3, the transmission wave function is

Wp(x) = Del™. (85)

At x=N(a+b), by the continuation of wave function and its
derivative, we have

(miF+ sz/)eikBN(a+ b) +(m3F+ m4]_~/)e —iksN(a+b) _ peikN@a+ b)’ (86)
and
k i k . i
I—?(ml F++myF)ellsN@+b —?B(mgﬂ— myF')e~ksN@+b) — peikN@+b)
(87)
we can obtain
F _m (K- kB)eikBN(a+b) +ms(K+ kB)e— ikgN(a+b)

"= F = (ks — K)eloNa+b) —my(K 4 ke~ FaNa by (88)

a
3_
21 \ / \
o
X
14
O T T T T T T
0 5 10 15 20
olo,
3 |
2 -
o
X
1 -
0 T T T T T T
0 5 10 15 20
oo

0

Fig. 4. Comparing quantum dispersion relation (a) with classical dispersion
relation (b).

a

Fig. 5. Comparing quantum transmissivity (a) with classical transmissivity (b) with-
out defect layer.
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By Egs. (86)-(88), we have
t=9= m _ani/ ei(kst)N(a+b)+ m3+m4£/ e~ itks + K)N(a+Db)
F F F ’
(89)

and the quantum transmissivity T, quantum reflectivity R and
quantum absorptivity are

T=1t]?, (90)
=, 91
A=1-T-R. 92)

Fig. 6. Comparing quantum reflectivity (a) with classical reflectivity (b) without
defect layer.

a 1.0
0.8 A
0.6
T
0.4
0.2 4
0.0 T T T T T T T T T T T
900 1000 1100 1200 1300 1400 1500
Anm
b 1.0
0.8 4
0.6
T
0.4 4
0.2 4
0.0 T T T T T
900 1000 1100 1200 1300 1400 1500
Anm

Fig. 7. Comparing quantum transmissivity (a) with classical transmissivity (b) with
defect layer.

5. Numerical result

In this section, we report our numerical results of quantum
transmissivity and quantum dispersion relation with defect layer
and without defect layer. Firstly, we consider without defect layer,
the main parameters are: medium B refractive index is n,=2.97,
and its thickness is b =130 nm. The medium A refractive index is
n,=1.40, and its thickness is a =277 nm. The central frequency is
@ =271 THz, and the periodicity N=8. In numerical calculation,
we compare quantum dispersion relation, quantum transmissivity
and quantum reflectivity with classical dispersion relation, trans-
missivity and reflectivity. With Eq. (45), we can study the quantum
dispersion relation, and compare it with classical dispersion
relation, which is shown in Fig. 4. In Fig. 4(a) and (b), quantum
dispersion relation and classical dispersion relation, respectively,
are shown. We can find that the dispersion relation of classical and
quantum is identical. With Egs. (88)-(91), we can calculate the
quantum transmissivity and reflectivity, and compare it with

a 1.0
0.8
0.6
R 4
0.4
0.2
00 T T T T T T T T
900 1000 1100 1200 1300 1400 1500
Anm
1.0
0.8
0.6
R
0.4
0.2
00 T T T T T T T T T T
900 1000 1100 1200 1300 1400 1500
Anm

Fig. 8. Comparing quantum reflectivity (a) with classical reflectivity (b) with
defect layer.

a 1.0
0.8 4
0.6 B
A
0.4 —
| M ey
0.0
900 1000 1 100 1200 1300 1400 1500
Anm
b 10
0.8 4
0.6
A
0.4
0.0
900 1000 1 100 1200 1300 1400 1500
Anm

Fig. 9. Comparing quantum absorptivity (a) with classical absorptivity (b) with
defect layer.
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classical transmissivity and reflectivity, which are shown in
Figs. 5 and 6. Fig. 5(a) (6(a)) and Fig. 5(b) (6(b)) are quantum
transmissivity (reflectivity) and classical transmissivity (reflectiv-
ity), respectively. We can find that the transmissivity and reflec-
tivity of classical and quantum are identical. Then, we consider
with defect layer, the main parameters are: medium B refractive
index is n,=1.34, and its thickness is b =576 nm. The medium A
refractive index is n,=4.86, and its thickness is a =810 nm. The
defect layer D refractive index is ny=1.66+0.03i, i.e. plural
refractive indices of positive imaginary part, and its thickness is
d=1000 nm. The central frequency is @wo=271THz, and the
periodicity N=38. In numerical calculation, we compare quantum
transmissivity, reflectivity and absorptivity with classical trans-
missivity, reflectivity and absorptivity, which are shown in Figs. 7-
9, respectively. We can find that the transmissivity, reflectivity and
absorptivity of classical and quantum are identical. In Fig. 10, the
defect layer D refractive index is ny=1.66, i.e., real refractive
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Fig.10. Comparing quantum transmissivity (a) with classical transmissivity (b) with
defect layer.
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Fig.11. Comparing quantum transmissivity (a) with classical transmissivity (b) with
defect layer.
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Fig. 12. Comparing quantum absorptivity (a) with classical absorptivity (b) with
defect layer.

indices. We can find that the transmissivity of classical and
quantum is identical, and the magnitude and position of defect
model are identical. In Figs. 11-12, the defect layer D refractive
index is ny =2.06—0.01i, i.e., plural refractive indices of negative
imaginary part. We can find that the transmissivity is larger than 1,
and the absorptivity is smaller than 0, and the transmissivity and
absorptivity of classical and quantum are identical.

6. Conclusion

In summary, we have presented a quantum theory approach to
study one-dimensional photonic crystals with and without defect
layer. We give quantum dispersion relation, quantum transmissiv-
ity, reflectivity and absorptivity, and compare them with the
classical dispersion relation, transmissivity, reflectivity and
absorptivity. By the calculation, we find the classical and quantum
dispersion relation, transmissivity reflectivity, absorptivity and the
magnitude and position of defect model are identical. With the
quantum theory new approach, we can study two-dimensional
and three-dimensional photonic crystals in the future.

Acknowledgement

This work is supported by Scientific and Technological
Development Foundation of Jilin Province, Grant Number
20130101031JC.

References

[1] JJ. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals: Molding the Flow
of Light, Princeton University Press, New Jersey, 1995.

[2] K. Sakoda, Optical Properties of Photonic Crystals, Springer, Berlin, 2001.

[3] C. Lopez, Adv. Mater. 15 (2003) 1679.

[4] E. Istrate, E.H. Sargent, Rev. Mod. Phys. 78 (2006) 455.

[5] Angel J. Garcia-Adeva, New J. Phys. 8 (2006).

[6] Angel ]J. Garcia-Adeva, Phys. Rev. B emph 73 (2006).

[7] V.S.C. Manga Rao, S. Hughes, Phys. Rev. B 75 (2007) 205437.

[8] A.F. Koenderink, W.L. Vos, J. Opt. Soc. Am. B 22 (2005) 1075.

[9] S.I. Bozhevolnyi, V.S. Volkov, J. Arentoft, A. Boltasseva, T. Sondergaard,
M. Kristensen, Opt. Commun. 212 (2002) 51.

[10] T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Snner, M. Kamp,

A. Forchel, P. Lodahl, Phys. Rev. Lett. 101 (2008) 113903.


http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref1
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref1
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref2
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref3
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref4
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref5
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref6
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref7
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref8
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref9
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref9
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref10
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref10

218 X.-Y. Wu et al. / Optics Communications 321 (2014) 211-218

[11] SJ. Dewhurst, D. Granados, DJ.P. Ellis, AJ. Bennett, R.B. Patel, 1. Farrer,
D. Anderson, G.A.C. Jones, D.A. Ritchie, AJ. Shields, Appl. Phys. Lett. 96
(2010) 031109.

[12] K. Busch, S. John, Phys. Rev. Lett. 83 (1999) 967.

[13] E. Yablonovitch, Phys. Rev. Lett. 58 (1987) 2059.

[14] F. Bordas, M. Steel, C. Seassal, A. Rahmani, Opt. Express 15 (2007) 10890.

[15] S. John, Phys. Rev. Lett. 58 (1987) 2486.

[16] W.C. Stumpf, M. Fujita, M. Yamaguchi, T. Asano, S. Noda, Appl. Phys. Lett. 90
(2007) 231101.

[17] V.S.C. Manga Rao, S. Hughes, Phys. Rev. Lett. 99 (2007) 193901.

[18] K.Inoue, M. Sasada, ]. Kawamata, K. Sakoda, ].W. Haus, Jpn. J. Appl. Phys. Part 2
38 (1999) L157.

[19] R.D. Meade, A. Devenyi, ].D. Joannopoulos, O.L. Alerhand, D.A. Smith, K. Kash, ].
Appl. Phys. 75 (1994) 4753.

[20] Zhigang Zang, Takahiro Minato, Paolo Navaretti, Yasuhiro Hinokuma,
Marcus Duelk, Christian Velez, Kiichi Hamamoto, IEEE Photon. Technol. Lett.
22 (2010) 721.

[21] Zhigang Zang, Keisuke Mukai, Paolo Navaretti, Marcus Duelk, Christian Velez,
Kiichi Hamamoto, IEICE Trans. Electron. E94.C (5) (2011) 862.

[22] C. Velez, K. Hamamoto, Appl. Phys. Lett. 100 (2012) 031108.

[23] D. Torrent, A. Hakansson, F. Cervera, J. Sanchez - Dehesa, Phys. Rev. Lett. 96
(2006) 204302.

[24] A.F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, ].D. Joannopoulos, S.G. Johnson,
Comput. Phys. Commun. 181 (2010) 687.

[25] J.B. Pendry, ]. Mod. Opt. 85 (1995) 306.

[26] M.C. Lin, R.E. Jao, Opt. Express 15 (2007) 207.

[27] W.S. Mohammed, L. Vaissie, E.G. Johnson, Opt. Eng. 42 (8) (2003) 2311.

[28] E.G. Alivizatos, 1.D. Chremmos, N.L. Tsitsas, et al., ]J. Opt. Soc. Am. A 21 (5)
(2004) 847.

[29] 1. Bialynicki-Birula, Acta Phys. Pol. A 86 (1994) 97.

[30] B.J. Smith, M.G. Raymer, New J. Phys. 9 (2007) 414.

[31] Xiang-Yao Wu, Xiao-Jing Liu, Yi-Heng Wu, et al., Int. ]. Theor. Phys. 49 (2010)
194.


http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref11
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref11
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref11
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref12
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref13
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref14
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref15
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref16
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref16
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref17
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref18
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref18
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref19
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref19
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref20
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref20
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref20
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref21
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref21
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref22
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref23
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref23
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref24
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref24
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref25
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref26
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref27
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref28
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref28
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref29
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref30
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref31
http://refhub.elsevier.com/S0030-4018(14)00135-7/sbref31

	Study photonic crystals defect model property with quantum theory
	Introduction
	The quantum wave equation and probability current density of photon
	The quantum theory of one-dimensional photonic crystals
	The quantum transmissivity and quantum dispersion relation
	Numerical result
	Conclusion
	Acknowledgement
	References




