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a b s t r a c t

In this paper, we consider a stochastic SIS epidemic model with vaccination. We prove that
the densities of the distributions of the solution can converge in L1 to an invariant density
under appropriate conditions. Also we find the support of the invariant density.
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1. Introduction

In recent years epidemiologicalmodeling of infectious disease transmission has had an increasing influence on the theory
and practice of disease management and control. In order to eliminate infectious disease vaccination has been an important
strategy. Many authors considered epidemic models with vaccination, see (e.g., Refs. [1–6]). The following model is one of
classic SIS models with vaccination:

dSt
dt

= A(1 − q) − βSt It − (µ + p)St + γ It + εVt ,

dIt
dt

= βSt It − (µ + γ + α)It ,

dVt

dt
= µq + pSt − (µ + ε)Vt .

(1.1)
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All parameter values in the model are assumed to be nonnegative (µ, A > 0) and summarized in the following list:

A: a constant input of new members into the population per unit time;
q: a fraction of vaccinated for newborns;
β: transmission coefficient between compartments S and I;
p: the proportional coefficient of vaccinated for the susceptible;
µ: the natural death rate of S, I , V compartments;
γ : recovery rate of infectious individuals;
ε: the rate of losing their immunity for vaccinated individuals;
α: disease-caused death rate of infectious individuals.

Due to the existence of environmental noise, the parameters involved in (1.1) are not absolute constants, and they always
fluctuate around some average values due to continuous fluctuations in the environment. As a result, the parameters in the
model exhibit continuous oscillation around some average values but do not attain fixed values with the advancement of
time. Inmodel (1.1) the disease transmission coefficientβ is the keyparameter to disease transmission. It is of special interest
to evaluate the effect of perturbed parameter β on our model. Here we assume that β is subject to the environmental white
noise, that is

β → β + σ Ḃt .

Consequently, βdt → βdt +σdBt , where Bt is a standard Brownianmotion, σ 2 > 0 is the intensity of environmental white
noise. Then model (1.1) becomesdSt = [A(1 − q) − βSt It − (µ + p)St + γ It + εVt ]dt − σ St ItdBt ,

dIt = [βSt It − (µ + γ + α)It ]dt + σ St ItdBt ,
dVt = (µq + pSt − (µ + ε)Vt)dt.

(1.2)

The system (1.2) has been considered by Zhao et al. [7]. They obtained that, when the noise is large, the infective
decays exponentially to zero regardless of the magnitude of R0; When the noise is small, sufficient conditions for extinction
exponentially and persistence in the mean are established. But in the case of persistence they cannot obtain the existence
of stationary distribution of system (1.2). The aim of this paper is to fill the gap. Hence our work can be considered as the
further work of Zhao et al. [7].

We assume that α = 0 and A = µ. So the total size of the whole population of (1.2) is constant. That is, St + It + Vt = 1.
Noting that Vt does not arise explicitly in the first two equations of (1.2), we just need to consider the following two-
dimensional system:

dSt = [µ(1 − q) − βSt It − (µ + p)St + γ It + ε(1 − St − It)]dt − σ St ItdBt ,
dIt = [βSt It − (µ + γ )It ]dt + σ St ItdBt .

(1.3)

The deterministic part of system (1.3) has been considered in Ref. [3].
In this paper we are devoted to studying the existence of a stationary distribution of system (1.3) and its asymptotic

stability. We will prove that the densities can converge in L1 to an invariant density under appropriate conditions. Also we
find the support of the invariant density.

The difficulty in obtaining stationary distribution derives form the fact that the Fokker–Planck equation corresponding
to system (1.3) is of degenerate type, which leads to the invalidity of the approach used in Refs. [8,9]. Here we will employ
the Markov semigroup approach [10–12] to obtain the existence of stationary distribution.

Throughout this paper, let (Ω, F , {Ft}t≥0, Prob) be a complete probability space with a filtration {Ft}t≥0 satisfying the
usual conditions (i.e. it is right continuous and F0 contains all Prob-null sets). Denote

R2
+

:= {(x, y) ∈ R2
: x > 0, y > 0}.

Since the existence of positive solution of model (1.3) has been obtained by Zhao et al. [7], we take R2
+
as the whole space.

Moreover, it is easy to check that the region Γ ∗
= {(x, y) ∈ R2

+
: 0 < x+ y < 1} is a positively invariant set of system (1.3).

Hence, we always assume that (S0, I0) ∈ Γ ∗.
The rest of this paper is organized as follows. In Section 2, we present ourmain results andmake numerical simulation to

support our results. In Section 3, the proof of our results are given. In Section 4,we give a brief conclusion. For the convenience
of the reader, in the Appendix we present some auxiliary results concerning Markov semigroups, which contain the main
tools used in this paper.

2. Main results and numerical simulation

In this section, we present our result as follows.
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Theorem 2.1. Let (St , It) be a solution of system (1.3). Then for every t > 0 the distribution of (St , It) has a density u(t, x, y)

which satisfies the Fokker–Planck equation (3.1). If R0 − 1 >
σ 2m2

0
2(µ+γ )

and

aσ 2I∗

2(µ + ε)
< min


S∗2, I∗2, (m0

− S∗
− I∗)2/2, (m0 − S∗

− I∗)2/2


,

then there exists a unique density u∗(x, y) which is a stationary solution of (3.1) and

lim
t→∞


R2

+

|u(t, x, y) − u∗(x, y)|dxdy = 0,

where

R0 =
βm0

µ + γ
, m0 =

ε + µ(1 − q)
µ + ε + p

, m0
=

ε + µ(1 − q)
µ + ε

,

a =
2µ + 2ε + p

β
, S∗

=
µ + γ

β
, I∗ =

(µ + γ )(µ + ε + p)
β(µ + ε)

(R0 − 1).

In addition, we have

suppu∗ =

(x, y) ∈ R2

+
: m0 < x + y < m0

:= E. (2.1)

Remark 2.1. By the support of a measurable function f we simply mean the set

suppf = {(x, y) ∈ R2
+

: f (x, y) ≠ 0}.

Remark 2.2. From the result of Theorem 2.1, the solution for system (1.3) is ergodic.

Next we make numerical simulations to illustrate our results by using Milstein’s Higher Order Method [13]. We assume
that the unit of time is one day and the population sizes are measured in units of 1 million. The parameters in (1.3) are given
by

µ = 0.1, p = q = 0.5, β = 0.85, ε = 0.2, γ = 0.1, σ = 0.5.

By direct calculation, we know

R0 −
σ 2m2

0

2(µ + γ )
= 1.2671 > 1.

We find that these lines in Fig. 1 fit very well which implies that wherever S(t) and I(t) start from, the density functions of
S(t) and I(t) converge to the same functions respectively. Fig. 2 indicates that there is a stationary distribution for system
(1.3). Hence, Figs. 1 and 2 approve the result of Theorem2.1. In Fig. 3, blue line and red line are almost the same. This strongly
implies ergodicity.

3. Proofs of main result

To prove Theorem 2.1, we need to establish a Markov semigroup connected with model (1.3).
Let X = R2

+
, Σ be the σ -algebra of Borel subsets of X , and m be the Lebesgue measure on (X, Σ). By P(t, x, y, A) we

denote the transition probability function for the diffusion process (St , It), i.e. P(t, x, y, A) = Prob((St , It) ∈ A) and (St , It)
is a solution of (1.3) with the initial condition (S0, I0) = (x, y). If, for t > 0, the distribution of (St , It) is absolutely continuous
with respect to the Lebesgue measure with the density u(t, x, y), then u(t, x, y) satisfies the Fokker–Planck equation:

∂u
∂t

=
1
2
σ 2


∂2(x2y2u)

∂x2
− 2

∂2(x2y2u)
∂x∂y

+
∂2(x2y2u)

∂y2


−

∂(f1(x, y)u)
∂x

−
∂(f2(x, y)u)

∂y
, (3.1)

where f1(x, y) = µ(1 − q) − βxy − (µ + p)x + γ y + ε(1 − x − y), f2(x, y) = βxy − (µ + γ )y.
Now we introduce a Markov semigroup connected with (3.1). Let P(t)v(x, y) = u(t, x, y) for any v(x, y) ∈ D. The

definition of D is given in (A.1) (see the Appendix). Since P(t) is a contraction on D, it can be extended to a contraction on
L1(X, Σ,m). Thus the operators {P(t)}t≥0 form a Markov semigroup. Let A be the infinitesimal generator of the semigroup
{P(t)}t≥0, i.e.

A v =
1
2
σ 2


∂2(x2y2v)

∂x2
− 2

∂2(x2y2v)

∂x∂y
+

∂2(x2y2v)

∂y2


−

∂(f1v)

∂x
−

∂(f2v)

∂y
.
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Fig. 1. Based on the 10,000 sample paths, after iterating 10,000 times, we get the density functions of S(t) and I(t) with different initial values. Here
△t = 0.1.

The adjoint operator of A is of the form

A ∗v =
1
2
σ 2x2y2


∂2v

∂x2
− 2

∂2v

∂x∂y
+

∂2v

∂y2


+ f1

∂v

∂x
+ f2

∂v

∂y
. (3.2)

The strategy of the proof of Theorem 2.1 is as follows.
• First, using the Hörmander condition [14] we show that the transition function of the process (St , It) is absolutely

continuous.
• Then, using support theorems [15–17] we prove that the density of the transition function is positive on E (E is given

in (2.1)).
• Next, we show that the Markov semigroup satisfies the ‘‘Foguel alternative’’ (see Appendix).
• Finally, we exclude sweeping by showing that there exists a Khasminskiı̆ function.

In the following, we realize this strategy by Lemmas 3.1–3.5.

Lemma 3.1. The transition probability function P(t, x0, y0, A) has a continuous density k(t, x, y; x0, y0).
Proof. If a(x) and b(x) are vector fields on Rd, then the Lie bracket [a, b] is a vector field given by

[a, b]j(x) =

d
k=1


ak

∂bj
∂xk

(x) − bk
∂aj
∂xk

(x)


, j = 1, 2, . . . , d.

Let

a(ξ , η) =


µ(1 − q) − βξη − (µ + p)ξ + γ η + ε(1 − ξ − η)

βξη − (µ + γ )η


, b(ξ , η) =


−σξη,
σξη


where (ξ , η) ∈ R2

+
. Then by direct calculation,

[a, b] =


ση[−µ(1 − q) − ε + (µ + ε)ξ + (ε − γ )η]

ση[µ(1 − q) + ε − (µ + ε + p)ξ + (γ − ε)η]


.

Consequently,−σξη ση[−µ(1 − q) − ε + (µ + ε)ξ + (ε − γ )η]

σξη ση[µ(1 − q) − (µ + p)ξ + γ η + ε − εξ − εη]

 = pσξ 2η > 0

which means that b, [a, b] are linearly independent on R2
+
.
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Fig. 2. Based on the 10,000 sample paths, after iterating 10,000 times, 20,000 times and 30,000 times respectively, we get another three groups of density
functions of S(t) and I(t) for system (1.3) with S(0) = 0.5, I(0) = 0.3. Here △t = 0.1.

Fig. 3. The blue line corresponds to the density function of the solution for system (1.3) with S(0) = 0.5, I(0) = 0.3, based on the 10,000 sample paths,
after iterating 10,000 times. The red line corresponds to the density function of all states that one trajectory of model (1.3) reaches. Here △t = 1. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Thus for every (ξ , η) ∈ R2
+
, vector b(ξ , η), [a, b](ξ , η) span the space R2. In view of Hörmander’s Theorem [14], the

transition probability function P(t, x0, y0, A) has a density k(t, x, y; x0, y0) and k ∈ C∞

(0, ∞) × R2

+
× R2

+


. �

Remark 3.1. It follows from Lemma 3.1 that for every f ∈ D,

P(t)f (x, y) =


R2

+

k(t, x, y; u, v)f (u, v)dudv.

Hence, the semigroup {P(t)}t≥0 is an integral Markov semigroup.

Next, we rewrite SDE (1.3) of Itô type as SDE of Stratonovitch type:
dSt = f̂1(St , It)dt − σ St It ◦ dBt ,

dIt = f̂2(St , It)dt + σ St It ◦ dBt .

where

f̂1(x, y) = µ(1 − q) − βxy − (µ + p)x + γ y + ε(1 − x − y) +
1
2
σ 2

[x2y − xy2],

f̂2(x, y) = βxy − (µ + γ )y −
1
2
σ 2

[x2y − xy2].

Now we briefly describe the method based on support theorems [15–17] which allows us to check where the kernel k is
positive. Fixing a point (x0, y0) ∈ R2

+
and a function φ ∈ L2([0, T ]; R), consider the following system of integral equations:

xφ(t) = x0 +

 t

0
[f̂1(xφ(s), yφ(s)) − σφxφ(s)yφ(s)]ds, (3.3)

yφ(t) = y0 +

 t

0
[f̂2(xφ(s), yφ(s)) + σφxφ(s)yφ(s)]ds. (3.4)

Let Dx0,y0;φ be the Frechét derivative of the function h → xφ+h(T ) from L2([0, T ]; R) to R2, where xφ+h =


xφ+h
yφ+h


.

If for some φ ∈ L2([0, T ]; R) the derivative Dx0,y0;φ has rank 2, then k(T , x, y; x0, y0) > 0 for x = xφ(T ) and
y = yφ(T ). The derivative Dx0,y0;φ can be found by means of the perturbation method for ODEs. Namely, let Γ (t) =

f′(xφ(t), yφ(t))+g′(xφ(t), yφ(t))φ, where f′ and g′ are the Jacobians of f =


f̂1(x, y)
f̂2(x, y)


and g =


−σ xy
σ xy


respectively. Let Q (t, t0),

for T ≥ t ≥ t0 ≥ 0, be a matrix function such that Q (t0, t0) = I , ∂Q (t, t0)/∂t = Γ (t)Q (t, t0). Then

Dx0,y0;φh =

 T

0
Q (T , s)g(s)h(s)ds.

Lemma 3.2. For each (x0, y0) ∈ E and (x, y) ∈ E, there exists T > 0 such that k(T , x, y; x0, y0) > 0, where E is as in (2.1).

Proof. First, we check that the rank of Dx0,y0;φ is 2. Let ε ∈ (0, T ) and h(t) =
1[T−ε,T ](t)
xφ (t)yφ (t) , t ∈ [0, T ], where 1[T−ε,T ] is the

characteristic function of interval [T − ε, T ]. Since Q (T , s) = I + Γ (T )(T − s) + o(T − s), we obtain

Dx0,y0;φh = εv +
1
2
ε2Γ (T )v + o(ε2), v =


−σ
σ


,

Γ (T )v =

σβ(y − x) + σ 2(y − x)φ + σ(µ + p + γ ) +
1
2
σ 3

[x2 + y2]

σβ(x − y) + σ 2(x − y)φ − σ(µ + γ ) −
1
2
σ 3

[x2 + y2]

 .

Hence, v and Γ (T )v are linearly independent. Thus Dx0,y0;φ has rank 2.
Next, we prove that for any two points (x0, y0) ∈ E and (x, y) ∈ E, there exist a control function φ and T > 0 such that

xφ(0) = x0, yφ(0) = y0, xφ(T ) = x, yφ(T ) = y. The system (3.3), (3.4) can be replaced by the following system of differential
equations:

x′

φ = f̂1(xφ, yφ) − σφxφyφ, (3.5)

y′

φ = f̂2(xφ, yφ) + σφxφyφ . (3.6)
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Let zφ = yφ + xφ . Then (3.5), (3.6) become

x′

φ = g1(xφ, zφ) − σφxφ(zφ − xφ), (3.7)

z ′

φ = g2(xφ, zφ), (3.8)

where

g1(x, z) = f̂1(x, z − x),
g2(x, z) = ε + µ(1 − q) − px − (µ + ε)z.

Let

E0 =

(x, z) ∈ R2

+
: 0 < x < m0,m0 < z < m0 and x < z


.

Now we claim that for any (x0, z0) ∈ E0 and (x1, z1) ∈ E0 there exist a control function φ and T > 0 such that
xφ(0) = x0, zφ(0) = z0, xφ(T ) = x1 and zφ(T ) = z1. If this is the case, it follows that for any two points (x0, y0) ∈ E
and (x, y) ∈ E there exist a control function φ and T > 0 such that xφ(0) = x0, yφ(0) = y0, xφ(T ) = x and yφ(T ) = y.

In the following, we will prove that our claim holds. First, we find a positive constant T and a differentiable function

zφ : [0, T ] →

m0,m0

such that zφ(0) = z0, zφ(T ) = z1, z ′

φ(0) = g2(x0, z0) := zd0 , z
′

φ(T ) = g2(x1, z1) := zdT and

ε + µ(1 − q) − (µ + ε + p)zφ(t) < z ′

φ(t) < ε + µ(1 − q) − (µ + ε)zφ(t), t ∈ [0, T ]. (3.9)

We split the construction of the function zφ on three intervals [0, τ ], [τ , T − τ ] and [T − τ , T ], where 0 < τ < T/2. Let

θ =
1
2
min


z0 − m0, z1 − m0,m0

− z0,m0
− z1


.

When zφ ∈ (m0 + θ,m0
− θ), we have

ε + µ(1 − q) − (µ + ε + p)zφ(t) < −(µ + ε + p)θ < 0,
ε + µ(1 − q) − (µ + ε)zφ(t) > (µ + ε)θ > 0, t ∈ [0, T ]. (3.10)

In view of (3.10) and z0 ∈ (m0 + θ,m0
− θ), we can construct a C2-function

zφ : [0, τ ] →

m0 + θ,m0

− θ


such that

zφ(0) = z0, z ′

φ(0) = zd0 , z ′

φ(τ ) = 0

and zφ satisfies (3.9) for t ∈ [0, τ ]. Analogously, we construct a C2-function

zφ : [T − τ , T ] →

m0 + θ,m0

− θ


such that

zφ(T ) = z1, z ′

φ(T ) = zdT , z ′

φ(T − τ) = 0

and zφ satisfies inequality (3.9) for t ∈ [T − τ , T ].
Taking T sufficiently large we can extend the function

zφ : [0, τ ] ∪ [T − τ , T ] →

m0 + θ,m0

− θ


to a C2-function zφ defined on the whole interval [0, T ] such that

−(µ + ε + p)θ ≤ z ′

φ(t) ≤ (µ + ε)θ, t ∈ [τ , T − τ ],

and therefore, the function zφ satisfies (3.9) on [0, T ] in view of (3.10). It follows that we can find a C1-function xφ which
satisfies (3.8) and finally we can determine a continuous function φ from (3.7).

Therefore, our claim holds. This completes our proof. �

Lemma 3.3. Assume R0 − 1 >
σ 2m2

0
2(µ+γ )

. For the semigroup {P(t)}t≥0 and every density f , we have

lim
t→∞


E
P(t)f (x, y)dxdy = 1,

where E is given in (2.1).
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Remark 3.2. From Lemmas 3.2 and 3.3, we know that if (3.1) has a stationary solution u∗, then suppu∗ = E.

Proof. Let Zt = St + It . The system (1.3) can be replaced by

dSt = [ε + µ(1 − q) − βSt(Zt − St) − (µ + p + γ )St + (γ − ε)Zt ]dt − σ St(Zt − St)dBt ,

dZt = [ε + µ(1 − q) − pSt − (µ + ε)Zt ]dt.

Since (St , It) is a positive solution of system (1.3) with probability 1, we get

ε + µ(1 − q) − (µ + ε + p)Zt <
dZt
dt

< ε + µ(1 − q) − (µ + ε)Zt , t ∈ (0, +∞), a.s. (3.11)

Now we claim that for almost every ω ∈ Ω there exists t0 = t0(ω) such that

m0 < Zt(ω) < m0 for t > t0,

which completes our proof. According to the position of initial value Z0 we consider three cases:

Case 1: Z0 ∈ (m0,m0). In this case, from (3.11) it is obvious that our claim holds.
Case 2: Z0 ∈ [0,m0]. If our claim is false, then we know that there exists Ω ′

⊂ Ω with Prob(Ω ′) > 0 such that
Zt(ω) ∈ [0,m0], ω ∈ Ω ′. By (3.11), it follows that for any ω ∈ Ω ′, Zt(ω) is strictly increasing on [0, +∞), and
therefore limt→∞ Zt(ω) = m0, ω ∈ Ω ′. From the equation that Zt satisfies, it follows that limt→∞ St(ω) = m0 and
limt→∞ It(ω) = 0, ω ∈ Ω ′. By Itô’s Formula, we get

d log It =


βSt − (µ + γ ) −

σ 2S2t
2


dt + σ StdBt

which yields

log It − log I0
t

=
β

 t
0 Srdr
t

− (µ + γ ) −
σ 2

 t
0 S2r dr
2t

+
σ

 t
0 SrdBr

t
. (3.12)

LetM(t) =
 t
0 SrdBr . Obviously,

lim sup
t→+∞

⟨M,M⟩t

t
= lim sup

t→+∞

 t
0 S2r dr
t

≤ 1 < +∞ a.s.

By using Strong Law of Large Numbers (Lemma 2.6 in Ref. [18]), we obtain t
0 SrdBr

t
= 0 a.s. (3.13)

Condition R0 − 1 >
σ 2m2

0
2(µ+γ )

implies that

lim
t→∞


β

 t
0 Srdr
t

− (µ + γ ) −
σ 2

 t
0 S2r dr
2t

+
σ

 t
0 SrdBr

t



= βm0 − (µ + γ ) −
σ 2m2

0

2
= (µ + γ )


R0 − 1 −

σ 2m2
0

2(µ + γ )


> 0, a.s. on Ω ′.

By (3.12), we get limt→∞
log It
t > 0 a.s. on Ω ′ which contradicts limt→∞ It(ω) = 0, ω ∈ Ω ′.

Case 3: Z0 ∈ [m0, 1]. If our claim is false, by similar arguments to Case 2, we obtain that there exists Ω ′
⊂ Ω with

Prob(Ω ′) > 0 such that for any ω ∈ Ω ′, limt→∞ Zt(ω) = m0, limt→∞ St(ω) = 0 and limt→∞ It(ω) = m0. Taking
t → ∞ in (3.12), we get

lim
t→∞

log It − log I0
t

= 0, on Ω ′

and

lim
t→∞


β

 t
0 Srdr
t

− (µ + γ ) −
σ 2

 t
0 S2r dr
2t

+
σ

 t
0 SrdBr

t


= −(µ + γ ), a.s. on Ω ′,

where (3.13) is used. This is a contradiction. Thus our claim holds for Z0 ∈ [m0, 1]. �

Lemma 3.4. Assume R0 − 1 >
σ 2m2

0
2(µ+γ )

. The semigroup {P(t)}t≥0 is asymptotically stable or is sweeping with respect to compact
sets.
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Proof. From Lemma 3.1 it follows that {P(t)}t≥0 is an integral Markov semigroup with a continuous kernel k(t, x, y) for
t > 0. From Lemma 3.3 it follows that it is sufficient to investigate the restriction of the semigroup {P(t)}t≥0 to the space
L1(E). According to Lemma 3.2 for every f ∈ D, we have

∞

0
P(t)f dt > 0 a.e. on E.

So in view of Lemma A.1, the desired result follows. �

Lemma 3.5. If R0 − 1 >
σ 2m2

0
2(µ+γ )

and

aσ 2I∗

2(µ + ε)
< min


S∗2, I∗2, (m0

− S∗
− I∗)2/2, (m0 − S∗

− I∗)2/2


, (3.14)

then the semigroup {P(t)}t≥0 is asymptotically stable, where m0,m0, S∗, I∗, a are given in Theorem 2.1.

Proof. We will construct a nonnegative C2-function V and a closed set U ∈ Σ (which lies entirely in E) such that

sup
x∈E\U

A ∗V (x) < 0.

Such a function is called a Khasminskiı̆ function.
Let

V (x) =
1
2
(S − S∗

+ I − I∗)2 + a

I − I∗ − I∗ log

I
I∗


, x = (S, I).

Then

A ∗V = (S − S∗
+ I − I∗)(µ(1 − q) + ε − (µ + ε + p)S − (µ + ε)I) + a(I − I∗)(βS − (µ + γ )) +

aI∗σ 2S2

2
= (S − S∗

+ I − I∗)((µ + ε + p)S∗
+ (µ + ε)I∗ − (µ + ε + p)S

− (µ + ε)I) + a(I − I∗)β(S − S∗) +
aI∗σ 2S2

2

= (S − S∗
+ I − I∗)(−(µ + ε + p)(S − S∗) − (µ + ε)(I − I∗)) + aβ(I − I∗)(S − S∗) +

aI∗σ 2S2

2

= −(µ + ε + p)(S − S∗)2 − (µ + ε)(I − I∗)2 +
aI∗σ 2S2

2
− (2µ + 2ε + p − aβ)(S − S∗)(I − I∗),

where in the second equality we use the fact that (S∗, I∗) is the equilibrium of the deterministic part of system (1.3). In view
of a = (2µ + 2ε + p)/β , it follows that

A ∗V = −(µ + ε + p)(S − S∗)2 − (µ + ε)(I − I∗)2 +
aI∗σ 2S2

2

≤ −(µ + ε + p)(S − S∗)2 − (µ + ε)(I − I∗)2 +
aI∗σ 2

2

≤ −(µ + ε)(S − S∗)2 − (µ + ε)(I − I∗)2 +
aI∗σ 2

2
.

Condition (3.14) implies that the ball

−(µ + ε)(S − S∗)2 − (µ + ε)(I − I∗)2 +
aI∗σ 2

2
= 0

lies entirely in E. Therefore there exist a closed set U ∈ Σ which contains this ellipsoid and c > 0 such that

sup
x∈E\U

A ∗V (x) ≤ −c < 0.

By using similar arguments to those in Ref. [19], the existence of a Khasminskiı̆ function implies that the semigroup is not
sweeping from the set U . According to Lemma A.1, the semigroup {P(t)}t≥0 is asymptotically stable, which completes the
proof. �



196 Y. Lin et al. / Physica A 394 (2014) 187–197

4. Conclusion

This paper studies the existence of stationary distribution of a stochastic SIS epidemic model with vaccination and its
asymptotic stability. The proof of our result is based on the techniques developed in Ref. [10]. Rudnicki et al. [10,11] study
long-time behavior of a stochastic prey–predator model. They firstly replaced the system under consideration by s slightly
simpler one and then proved that for this simpler system there exists a stationary distribution. But this strategy is invalid
for our model. This leads to different details which must be made according to specific form of our model. Especially, when
constructing a Khasminskiı̆ function, Rudnicki et al. [10,11] did not give a explicit expression and those arguments cannot
be transferred to our corresponding proof. Here we construct a explicit expression of the Khasminskiı̆ function. This is a
contribution of this paper.

Appendix

Since the proof of our result is based on the theory of integralMarkov semigroups, we need some auxiliary definitions and
results concerning Markov semigroups (see Refs. [10,11]). For the convenience of the reader, we present these definitions
and results in the Appendix. Let the triple (X, Σ,m) be a σ -finite measure space. Denote by D the subset of the space
L1 = L1(X, Σ,m) which contains all densities, i.e.

D = {f ∈ L1 : f ≥ 0, ∥f ∥ = 1}. (A.1)

A linear mapping P : L1 → L1 is called a Markov operator if P(D) ⊂ D.
The Markov operator P is called an integral or kernel operator if there exists a measurable function k : X × X → [0, ∞)

such that
X
k(x, y)m(dx) = 1 (A.2)

for all y ∈ X and

Pf (x) =


X
k(x, y)f (y)m(dy)

for every density f .
A family {P(t)}t≥0 of Markov operators which satisfies conditions:

(a) P(0) = Id,
(b) P(t + s) = P(t)P(s) for s, t ≥ 0,
(c) for each f ∈ L1 the function t → P(t)f is continuous with respect to the L1 norm,

is called a Markov semigroup. A Markov semigroup {P(t)}t≥0 is called integral, if for each t > 0, the operator P(t) is an
integral Markov operator.

We also need two definitions concerning the asymptotic behavior of a Markov semigroup. A density f∗ is called invariant
if P(t)f∗ = f∗ for each t > 0. The Markov semigroup {P(t)}t≥0 is called asymptotically stable if there is an invariant density
f∗ such that

lim
t→∞

∥P(t)f − f∗∥ = 0 for f ∈ D.

A Markov semigroup {P(t)}t≥0 is called sweeping with respect to a set A ∈ Σ if for every f ∈ D

lim
t→∞


A
P(t)f (x)m(dx) = 0.

We need some result concerning asymptotic stability and sweeping which can be found in Ref. [10] (see Corollary 1).

Lemma A.1. Let X be a metric space and Σ be the σ -algebra of Borel sets. Let {P(t)}t≥0 be an integral Markov semigroup with
a continuous kernel k(t, x, y) for t > 0, which satisfies (A.2) for all y ∈ X. We assume that for every f ∈ D we have

∞

0
P(t)f dt > 0 a.e.

Then this semigroup is asymptotically stable or is sweeping with respect to compact sets.

The property that a Markov semigroup {P(t)}t≥0 is asymptotically stable or sweeping for a sufficiently large family of
sets (e.g. for all compact sets) is called the Foguel alternative.
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