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Abstract In this paper, we give two spinor wave equations of free electromagnetic field,
corresponding to the reducibility and irreducibility representations D10 + D01 and D10 of
the proper Lorentz group, which are the differential equations of space-time one order. The
spinor equations are covariant and are equivalent to Maxwell equations.
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1 Introduction

Photons are quantum particles that their behavior is governed by the laws of quantum me-
chanics. This means, their state are described by wave functions. According to modern quan-
tum field theory, photons, together with all other particles, are the quantum excitations of
a field. In the case of photons, these are the excitations of the electromagnetic field. The
lowest field excitation of a given type corresponds to one photon and higher field excitations
involve more than one photon. This concept of a photon enables one to use the photon wave
function not only to describe quantum states of an excitation of the free field but also of the
electromagnetic field interacting with a medium [1–12]. Maxwell equations in the matrix
Dirac-like form considered during long time by many authors, the interest to the Majorana-
Oppenheimer formulation of electrodynamics has grown in recent years [13–20].

After discovering the relativistic equation for a particle with spin 1/2 [21]. In Refs. [8, 9,
15, 20], the authors have proposed to consider the Maxwell theory of electromagnetism as
the wave mechanics of the photon, then it must be possible to write Maxwell equations as a
Dirac-like equation for a probability quantum wave �ψ , this wave function being expressable
by means of the physical E, B fields, and the complex 3-vector wave function satisfying the
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massless Dirac-like equations. Afterwards, much work was done to study spinor and vectors
within the Lorentz group theory: Moglich [22], Ivanenko-Landau [23], Neumann [24], van
der Waerden [25]. As was shown any quantity which transforms linearly under Lorentz
transformations is a spinor. For that reason spinor quantities are considered as fundamental
in quantum field theory and basic equations for such quantities should be written in a spinor
form. A spinor formulation of Maxwell equations was studied by many authors in [26–30].
In this paper, we give the spinor wave equations of classical electromagnetic field, which are
the differential equation of space-time one order. The spinor wave equations are covariant,
and the spinors field ψ are corresponding to the reducibility representations of the proper
Lorentz group.

2 Spinor Wave Equation of Classical Electromagnetic Field

The differential equation of space-time two order of free electromagnetism wave is

�Aμ = 0, (1)

and the Lorentz condition is

∂μAμ = 0, (2)

where

∂μ =
(

∇,
∂

∂(ict)

)
, �= ∂μ∂μ = ∇2 − 1

c2

1

∂t2
. (3)

Equation (1) has four components Aμ (μ = 1,2,3,4). Making Eq. (1) into one order differ-
ential equation of space-time, the number of field functions should be added.

Defining the function

Fνμ = ∂νAμ, (4)

and Eq. (1) becomes

∂νFνμ = ∂ν∂νAμ = �Aμ = 0, (5)

i.e., the differential equation of space-time one order for free electromagnetism wave is

∂νFνμ = 0. (6)

By Eqs. (2) and (4), we have

∂μFνμ = ∂ν∂μAμ = 0, (7)

with Eqs. (6) and (7), there is

∂νFνμ = ∂μFνμ = ∂νFμν = 0. (8)

From Eq. (8), we have

Fμν = Fνμ, (9)

or

Fμν = −Fνμ. (10)
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In classical electrodynamics, the field strength tensor is

Fc
μν = ∂μAν − ∂νAμ, (11)

if Fμν = ∂μAν = Fνμ = ∂νAμ is symmetric, the field strength tensor Fc
μν = 0, which isn’t

reasonable. We should take the antisymmetric form (10), and its matrix form is

Fμν =

⎛
⎜⎜⎜⎝

0 F12 F13 F14

−F12 0 F23 F24

−F13 −F23 0 F34

−F14 −F24 −F34 0

⎞
⎟⎟⎟⎠ . (12)

For the proper Lorentz group Lp , the irreducibility representations of spin 1 particle or field

are D10, D01 and D
1
2

1
2 , respectively, and the dimension of irreducibility representations are

corresponding to three, three and four. Therefore, the reducibility representations of particle
or field with spin 1 are

D = D10 + D01, (13)

D = D10 + D01 + D
1
2

1
2 , (14)

· · ·

Equations (13) and (14) are corresponding to six and ten dimensions irreducibility represen-
tations, which are the two lowest dimensional irreducibility representations

When Fμν take the antisymmetry tensor (12), which is the representation vector of re-
ducibility representations D = D10 + D01. Equation (6) can be written as

μ = 1 : ∂1F11 + ∂2F21 + ∂3F31 + ∂4F41 = 0, (15)

μ = 2 : ∂1F12 + ∂2F22 + ∂3F32 + ∂4F42 = 0, (16)

μ = 3 : ∂1F13 + ∂2F23 + ∂3F33 + ∂4F43 = 0, (17)

μ = 4 : ∂1F14 + ∂2F24 + ∂3F34 + ∂4F44 = 0, (18)

substituting Eq. (12) into (15)–(18), there is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2F12 + ∂3F13 + ∂4F14 = 0

∂1F12 − ∂3F23 − ∂4F24 = 0

∂1F13 + ∂2F23 − ∂4F34 = 0

∂1F14 + ∂2F24 + ∂3F34 = 0.

(19)

Equation (19) can be written as the differential form of space-time one order

βμ∂μψ = 0 (μ = 1,2,3,4), (20)
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where the spinor wave function ψ is

ψ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

F12

F13

F14

F23

F24

F34

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

ψ5

ψ6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (21)

and the β matrices are

β1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, β2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

β3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, β4 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(22)

with Eq. (4), we have

Fc
μν = ∂μAν − ∂νAμ = Fμν − Fνμ = 2Fμν, (23)

the matrix form of Fc
μν and Fμν are

Fc
μν =

⎛
⎜⎜⎜⎜⎝

0 B3 −B2 − i
c
E1

−B3 0 B1 − i
c
E2

B2 −B1 0 − i
c
E3

i
c
E1

i
c
E2

i
c
E3 0

⎞
⎟⎟⎟⎟⎠ , (24)

and

Fμν = 1

2
Fc

μν = 1

2

⎛
⎜⎜⎜⎜⎝

0 B3 −B2 − i
c
E1

−B3 0 B1 − i
c
E2

B2 −B1 0 − i
c
E3

i
c
E1

i
c
E2

i
c
E3 0

⎞
⎟⎟⎟⎟⎠ , (25)
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the spinor wave function ψ can be written as

ψ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

F12

F13

F14

F23

F24

F34

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

ψ5

ψ6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 B3

− 1
2B2

− i
2c

E1

1
2 B1

− i
2c

E2

− i
2c

E3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (26)

In the following, we should give the Spinor form of electromagnetic field for the irreducibil-
ity representations D10 of the proper Lorentz group. In the natural unit (c = 1), the Maxwell
equations in vacuum are:

∇ × �E = −∂ �B
∂t

, (27)

∇ × �B = 1

c2

∂ �E
∂t

= ∂ �E
∂t

, (28)

∇ · �E = 0, (29)

∇ · �B = 0. (30)

With Eqs. (27) and (28), we have

∂

∂t

1√
2

( �E + i �B) = −i∇ × 1√
2

( �E + i �B)
, (31)

defining

�ψ = 1√
2

( �E + i �B)
, (32)

substituting Eq. (32) into (31), there is

∂ �ψ
∂t

= −i∇ × �ψ, (33)

the component form of Eq. (33) is

⎧⎪⎪⎨
⎪⎪⎩

∂
∂t

(Ex + iBx) = −i( ∂
∂y

(Ez + iBz) − ∂
∂z

(Ey + iBy))

∂
∂t

(Ey + iBy) = i( ∂
∂z

(Ez + iBz) − ∂
∂z

(Ex + iBx))

∂
∂t

(Ez + iBz) = −i( ∂
∂x

(Ey + iBy) − ∂
∂y

(Ex + iBx)),

(34)

defining spinor wave function

ψ =
⎛
⎝ψ1

ψ2

ψ3

⎞
⎠ = 1√

2

⎛
⎝Ex + iBx

Ey + iBy

Ez + iBz

⎞
⎠ . (35)
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Equation (34) becomes

⎧⎪⎪⎨
⎪⎪⎩

∂
∂t

ψ1 + i ∂
∂y

ψ3 − i ∂
∂z

ψ2 = 0
∂
∂t

ψ2 − i ∂
∂x

ψ3 + i ∂
∂z

ψ1 = 0
∂
∂t

ψ3 + i ∂
∂x

ψ2 − i ∂
∂y

ψ1 = 0.

(36)

Equations (29) and (30) can be written as

∇ · ( �E + i �B) = 0, (37)

or

∂

∂x
ψ1 + ∂

∂y
ψ2 + ∂

∂z
ψ3 = 0. (38)

Equation (36) can be written as the differential form of space-time one order, i.e., the spinor
form

βμ∂μψ = 0, (39)

i.e.,

(
β0∂0 + β1∂1 + β2∂2 + β3∂3

)
⎛
⎝ψ1

ψ2

ψ3

⎞
⎠ = 0, (40)

where

β0 =
⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ , β1 =

⎛
⎝0 0 0

0 0 −i

0 i 0

⎞
⎠

β2 =
⎛
⎝ 0 0 i

0 0 0
−i 0 0

⎞
⎠ , β3 =

⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠ .

(41)

The β matrices are hermitian

(
βμ

)+ = βμ (μ = 0,1,2,3). (42)

Equation (39) conjugation equation is

∂μψ+βμ = 0, (43)

Eq. (40) is

β0 · ∂

∂t
ψ = − �β · ∇ψ, (44)

and its conjugation form is (
∂

∂t
ψ+

)
β0 = −�∇ψ+ · �β. (45)
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From Eqs. (44) and (45), we have

∂

∂t
ρ + ∇ · �j = 0, (46)

where

ρ = ψ+ψ, �j = ψ+ �βψ, (47)

defining four-dimensional current vector, it is

Jμ = ψ+βμψ, (48)

where

j 0 = ψ+β0ψ = ψ+ψ = 1

2

(
E2 + B2

)
, (49)

j i = ψ+βiψ (i = 1,2,3), (50)

the three component of j i are

j 1 = ψ+β1ψ = (
ψ∗

1 ψ∗
2 ψ∗

3

)
⎛
⎝0 0 0

0 0 −i

0 i 0

⎞
⎠

⎛
⎝ψ1

ψ2

ψ3

⎞
⎠

= −EzBy + EyBz = (E × B)x, (51)

j 2 = (E × B)y, (52)

and

j 3 = (E × B)z. (53)

We find j 0 and �j = �E × �B are energy and momentum density of electromagnetic field,
respectively.

We take the Lagrangian density of spinor Eqs. (39) and (43) as

L = ψ+βμ∂μψ, (54)

we have

∂L

∂ψ
= 0, (55)

and

∂L

∂(∂μψ)
= ψ+βμ, (56)

substituting Eqs. (55) and (56) into Lagrangian equation

∂L

∂ψ
− ∂μ

∂L

∂(∂μψ)
= 0, (57)
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we get Eq. (43)

∂μψ+βμ = 0, (58)

since

∂L

∂ψ+ = βμ∂μψ, (59)

and

∂L

∂(∂μψ+)
= 0, (60)

by Lagrangian equation

∂L

∂ψ+ − ∂μ

∂L

∂(∂μψ+)
= 0, (61)

we get Eq. (39)

βμ∂μψ = 0. (62)

We can find the Lagrangian density (54) is the Lagrangian density of spinor electromagnetic
field of irreducibility.

3 The Covariance of Spinor Wave Equation

The relativistic quantum theory and quantum field theory should be covariant, the spinor
wave Eqs. (20) and (39) should be also.

At Lorentz transformation

x ′
μ = αμνxν, (63)

to get

xμ = ανμx ′
ν (64)

and

∂μ = ανμ∂ ′
ν, (65)

substituting Eq. (65) into (20) and (39), there is

ανμβμ · ∂ ′
νψ = 0, (66)

defining

ανμβμ = L−1βνL, (67)

i.e.,

LανμβμL−1 = βν. (68)
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Equation (66) becomes

L−1βν∂
′
νLψ = 0, (69)

defining

ψ ′(x ′) = Lψ. (70)

Equation (69) becomes

βν∂
′
νψ

′(x ′) = 0. (71)

The covariance of Eqs. (20) and (39) are proved, and we can give the transformation L.
For a infinitesimal Lorentz transformation

xμ → x ′
μ = (δμν + εμν)xν, (72)

where

εμν = −ενμ, |εμν | � 1, (73)

writing Eq. (72) with infinitesimal operator, it is

x ′
μ =

(
δμν + 1

2
ερσ Iμν

ρσ

)
xν, (74)

comparing Eq. (72) with (74), there is

1

2
ερσ Iμν

ρσ = εμν, (75)

under the infinitesimal Lorentz transformation, the spinor infinitesimal transformation is

ψ ′(x ′) =
(

1 + 1

2
ερσ Iρσ

)
ψ(x) (76)

where Iρσ is the infinitesimal operator (matrix) of Lorentz group.
Comparing Eq. (70) with (76), we obtain the transformation matrix L

L = 1 + 1

2
ερσ Iρσ (77)

and

L−1 = 1 − 1

2
ερσ Iρσ , (78)

substituting Eqs. (77) and (78) into (68), there is

(
1 + 1

2
ερσ Iρσ

)
(δνμ + ενμ)βμ

(
1 − 1

2
ερσ Iρσ

)
= βν, (79)

expanding Eq. (79) to one order of ε, we obtain

1

2
ερσ (Iρσ βν − βνIρσ ) = −ενμβμ. (80)
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Equation (80) gives the relation between the infinitesimal operator Iρσ and matrix βν , i.e.,
the transformation L is existential. The spinor wave Eqs. (20) and (39) are covariant.

For a infinitesimal Lorentz transformation (72), the solution of Eq. (67) is

L = 1 + 1

2
ερσ (βρβσ − βσ βρ), (81)

and

L−1 = 1 − 1

2
ερσ (βρβσ − βσ βρ), (82)

the infinitesimal operator Iρσ is

Iρσ = βρβσ − βσ βρ, (83)

and spin operator is

s3 = �

i
I12 = �

i
(β1β2 − β2β1). (84)

Substituting β matrices (41), we can calculate the spin of the irreducibility representations,
it is

s3 = �

i
(β1β2 − β2β1)

= �

i

⎛
⎝

⎛
⎝0 0 0

0 0 −i

0 i 0

⎞
⎠

⎛
⎝ 0 0 i

0 0 0
−i 0 0

⎞
⎠ −

⎛
⎝ 0 0 i

0 0 0
−i 0 0

⎞
⎠

⎛
⎝0 0 0

0 0 −i

0 i 0

⎞
⎠

⎞
⎠

= �

i

⎛
⎝ 0 1 0

−1 0 0
0 0 0

⎞
⎠ , (85)

the eigenvalue equation of spin operator is

�

i

⎛
⎝ 0 1 0

−1 0 0
0 0 0

⎞
⎠

⎛
⎝ψ1

ψ2

ψ3

⎞
⎠ = λ

⎛
⎝ψ1

ψ2

ψ3

⎞
⎠ , (86)

the equation eigenvalues are

λ1 = 0, λ2 = �, λ3 = −�, (87)

substituting β matrices (22), we can calculate the spin of the reducibility representations, it
is

s3 = �

i
I12 = �

i
(β1β2 − β2β1)

= �

i

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
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−

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

= �

i

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
1 0 0 0 0 0
0 0 −1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (88)

the eigenvalue equation of spin operator is

�

i

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
1 0 0 0 0 0
0 0 −1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

ψ5

ψ6

⎞
⎟⎟⎟⎟⎟⎟⎠

= λ

⎛
⎜⎜⎜⎜⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

ψ5

ψ6

⎞
⎟⎟⎟⎟⎟⎟⎠

(89)

their eigenvalues are

λ1 = 0, λ2 = 0, λ3 = 0, λ4 = 0, λ5 = �, λ6 = −�. (90)

In the quantization of spinor field ψ , we should find the eigenstates of λ = 0 haven’t contri-
bution to the energy and momentum, and the eigenstate of eigenvalue λ = �,−� have con-
tribution to the energy and momentum for the irreducibility and reducibility spinor field ψ .
So, Eqs. (20) and (39) are the spinor field equations of spin s = 1, and mass m = 0, i.e., they
are the spinor equations of electromagnetic field.

4 Conclusion

In classical electromagnetism theory, the 4-vector potential Aμ satisfies the differential equa-
tion of space-time two order, i.e., d’ Alembert equation. In this paper, we give the spinor
wave equations of free electromagnetic field, which are the differential equation of space-
time one order. The spinor wave equations are covariant and equivalent to Maxwell equa-
tions. The spinor wave equations of electromagnetic field can be quantized more easily.
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