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a b s t r a c t

The microvasculature network of retina plays an important role in understanding of the retinal function
and diagnosis of many diseases. Although it is possible to noninvasively acquire diffraction-limited
resolution retinal images at microscopic cellular level, noises and other structures still make it difficult
for diagnosis. In this paper, a new vessel extraction method is introduced. First, we use motion contrast
method to trace the motion of the blood components and get the main vessel contour. Second, an
improved matched filter method is applied to extract the vessel contour while the single-side edges are
eliminated. Then, the combined corner/edge detector is adopted to eliminate the elongated fragments
caused by the motion artifacts. Finally, we use mathematical morphology method to dilate the edges of
vessels acquired in last step and obtain the exact contour of the vessels. The contrast of the vessels is
significantly enhanced and the noises as well as other structures are effectively eliminated.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The retina is a complex and multilayer structure, which can be
noninvasively observed in vivo. The microscopic imaging of retina
provides an important approach to early diagnosis of many sight-
threatening retinal diseases, age-related macular degeneration as
well as systemic diseases (diabetes, hypertension et al.) [1,2].
However, ocular aberrations limit the resolution of the retinal
images. To overcome this obstacle, a variety of technologies were
introduced into the retinal imaging systems (adaptive optics [3],
optical coherence tomography [4], scanning laser ophthalmoscope
[5], and so on). These technologies made it feasible to noninva-
sively acquire diffraction-limited resolution retinal images at
microscopic cellular level.

Above all of the retinal structure, the microvasculature network
plays a vital role in understanding of the retinal function and
pathological changes because the microvasculature is the most
predominant and stable structures appearing in the images. Since
the huge quantity of images precludes strictly manual analysis
while the noise and other structures out of focus will mislead the
diagnosis, automated vessel extraction is necessary for retinal
image processing and analysis [6].

The challenges of vessel extraction in retinal images can be
summarized as follows:

� The widths of vessels are fickle, ranging from one pixel to more
than 10 pixel.

� Some vessels are low contrast, especially for narrow vessels.
� Noises and other structures, which are out of focus, degenerate

the images.
� The central reflex of the wider vessels makes it hard to be

distinguished from a pair of side-by-side vessels.

The techniques on retinal vessel extraction may be roughly
divided into categories based on: intensity edge methods [7,8],
adaptive threshold methods [9,10], matched filter methods [11,12],
mathematical morphology methods [13,14], region growing meth-
ods [15,16], Hessian-based methods [17,18] and machine learning
methods [19,20]. All the methods concentrate on solving the
challenges discussed above.

However, these methods discussed above mainly work on high-
contrast retinal images (images obtained by fundus camera for
example), which are high-contrast. They work badly on low-
contrast retinal images (images obtained by AOSLO for example).
This paper aims at the extraction of the capillaries, the width of
which is less than 10 μm, in low-contrast retinal images (images
obtained by AOSLO for example). As far as the authors know, there
is no extraction method working on this kind of images. In this
paper we introduce a new vessel extraction method, aiming at
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solving the first three challenges discussed above. Because the
forth challenge can be overcome by so-called forward scatter
method during imaging procedure [21]. The flow chart of the
main algorithms is shown in Fig. 1.

The vessel video is acquired with an Adaptive Optics scanning
laser ophthalmoscope (AOSLO). The video is 30 fps for 2 s mon-
itoring the same region (275 μm�286 μm) of the retina. The
imaging wavelength is 840 nm, at which waveband some compo-
nents of blood reflect the light while other components of blood
absorb the light. So we can see white flow parcels travelling
through vessels. There is still debate in the field as to what
the “white parcels” represent. According to Ref. [22], the motion
of the parcels will adhere to the vessel walls. Then we can extract
the vessel contour by tracing the motion of these white parcels.
Because of the error of image registration and motion artifacts,
there are many noises in the motion contrast image. Subsequently,
we introduce a new multiple-scale matched filter method to
distinguish vessels from false edges. To eliminate the effect of
motion artifacts, we apply the combined corner/edge detector to
the vessel image. Because the combined corner/edge detector has
different responses to corners and edges, a local adaptive thresh-
old is applied to acquire the edges which stand for the vessels.
Finally, we smooth the vessels in the image through a series of
post procedures.

This paper is organized as follows: In Section 2, we discuss the
techniques and methods in detail. Then, the experimental condi-
tion and result are shown in Section 3. At last, we conclude this
paper in Section 4.

2. Description of the methods

2.1. Motion contrast method

The blood mainly contains three components: plasma, erythro-
cytes and leukocytes. The light absorptions of these components
are different at the imaging wavelength. So some components in
the retinal image are white parcels while the other components of
vessels are dark background, as shown in Fig. 2.

The white parcels travel through the vessels as marked in Fig. 2.
Even if the vessels are dark background, the contrast is too low to
distinguish the locations of vessels. This is because the photo-
receptors are also white dots in the images. The photoreceptors
have waveguide properties to return light directly back through
the pupil [23]. So the light reflectance of photoreceptors is high as
well. The centerline of the vessels is shown in Fig. 2(f).

The low contrast between vessels and background makes it
impossible to extract the vessel contour using traditional methods.
Since the white parcels travel along the vessel wall, we can make
use of the motion of these white parcels to extract the vessel
contour. The motion contrast method is similar to the one used in
Ref. [24]. The motion contrast method is based on variance map
between images, so the images must be cropped into the same size
in pixels and the same region of retina. Then, these images pass
through a median filter to eliminate the effect of noise. It is also

important that the images in the sequence have the same L2 norm.

J IJ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iðx1; y1Þ2þ Iðx2; y2Þ2þ⋯þ Iðxn; ynÞ2

q
ð1Þ

here, I is the retinal image, Iðx1; y1Þ; Iðx2; y2Þ;…; Iðxn; ynÞ are the
pixels of I. ||||2 denotes the L2 norm.

Once the procedures discussed above have finished, we can go
on to trace the motion of the white parcels along the vessels.
A mean image Mðx; yÞ is calculated from all of the images.

Mðx; yÞ ¼ 1
N

∑
N

i ¼ 1
Iiðx; yÞ ð2Þ

where Iiðx; yÞ represents the intensities of frame i in the video. N is
the number of frames in the video. We useM as reference image to
construct division image Diðx; yÞ

Diðx; yÞ ¼ Iiðx; yÞ=Mðx; yÞ ð3Þ

In the division image Diðx; yÞ, pixels at the location of white
parcels have large intensities while the pixels at the other parts
have small intensities around 1. That is because the other parts of
the image are stable when the white parcels are changeable. Then,
a threshold, which is slightly larger than 1, is applied to the
division images Diðx; yÞ to eliminate the stable background. Finally,
all the division images Diðx; yÞ are synthesized into a single image
(motion contrast image).

As shown in Fig. 3(b), the vessel contour is well detected, but
we find that there are many white dots in the background, which
degenerate the motion contrast image. From the size and distribu-
tion of the dots, we consider that it may be caused by two reasons:

(1) The error of image registration: the images of the video are
manually registered, and the main error of image registration
is the shift from its original location. This kind of error will
cause the motion contrast image degenerate on the whole
scale of image.

(2) The oscillations of the photoreceptors: the reflectance of some
photoreceptors fluctuates within a second or two, which is in
accordance with the time for imaging. In some cases, the
photoreceptors disappeared and then reappeared [25]. This
kind of error will lead to the local variance in some region. The
intensity and location of the variance are random.

To eliminate these errors, a combined corner/edge detector is
introduced and it will be discussed in Section 2.3.

2.2. Matched filter method

The matched filter method evaluates the correlation between
image regions, which potentially contain a blood vessel segment,
and the two-dimensional matched-filter masks, which approxi-
mate the typical blood vessel segments. If the manually selected
blood vessel segments are available, the matched-filter masks can
be constructed accordingly [26]. However, there is not any priori
knowledge of the vessel images in our case. And our purpose is
extracting the vessels automatically. So a reasonable matched-
filter mask should be constructed. Since the distribution along the
normal direction of the vessels is similar to one-dimensional
Gaussian distribution, the matched-filter mask can be derived
basing on Gaussian distribution [27].

The tangential distribution of traditional two-dimensional
matched-filter mask is constant. That will exaggerate the con-
tribution of the neighbor pixels and result in false vessels, as
shown in Fig. 4.

We can see in the figure that: (1) The segments around the
corner of vessels exceed the vessel contour and produce false

Fig. 1. Flow chart of vessel extraction algorithm by means of motion contrast,
matched filter and combined corner/edge detector.
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Fig. 2. High resolution retinal images acquired by AOSLO using an 840 nm laser. These images are from the video offered by Johnny Tam from the University of California,
Berkeley. (a) Retinal image with white parcel (shown in red circle). (b) Retinal image with white parcel. (c) Retinal image with white parcel. (d) Retinal image with white
parcel. (e) Retinal image with white parcel. (f) The manually labeled centerline of vessels. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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vessels. (2) If two or more vessels are closed to each other, the
segment between them will form a false conjunction.

To solve this problem, we introduce a new two-dimensional
matched-filter mask. The distribution of the normal direction is a
second-order derivative of Gaussian while the distribution of the
tangential direction is Gaussian distribution.

g2ndðu;suÞ ¼ ðu2�sÞ
s2 � exp � u2

2s

� �
ð4Þ

where g2ndðu;suÞ is the second-order derivative of Gaussian
function with standard deviation su. u represents one-
dimensional pixel location.

gðv;svÞ ¼ exp � v2

2sv

� �
ð5Þ

where gðv;svÞ is Gaussian function with standard deviation sv, v
represents one-dimensional pixel location. Then, the matched-
filter response can be expressed as:

Rðu; v;su;svÞ ¼
Z 1

�1

Z 1

�1
g2ndðu�u0;suÞ � gðv�v0;svÞ

�Iðu0; v0Þdu0dv0 ð6Þ
where Iðu0; v0Þ is the intensity of image at location ðu0; v0Þ.

In order to extract vessels with a variety of widths, a group of
multiple-scale matched-filtering masks (i.e. the value of su is
changeable, but the value of sv is constant) are applied to the vessel
image. Then, the matched-filtering responses are combined to form
the vessel contour. We choose the image in DRIVE databases to test
the method proposed. The image, matched-filter mask, matched-
filter response and manually labeled vessel are shown in Fig. 5.

From Fig. 5, we can see that this matched-filter method can
detect all the manually labeled vessels. But there are many false
vessels in the response image (Fig. 5(d)). These false vessels may
be caused by the single edge in the original image (Fig. 5(a)).
To eliminate the false vessels caused by single edge, another mask
based on first-order derivative of Gaussian function is applied in
this method.

To simplify the illustration, we consider that the vessels and
single edges are the ideal step as shown in Fig. 6(a) and (b). The
responses of vessels and single edges for both masks are shown in
Fig. 7, respectively. We can find that the response of vessels for
first-order derivative of Gaussian function (first-order mask) has a
maximum at pixel u� ffiffiffiffiffiffisu

p
and a minimum at pixel uþ ffiffiffiffiffiffisu

p
while

the response of vessels for second-order derivative of Gaussian
function (second-order mask) only have a maximum at pixel u. On
the other hand, the response of single edges for first-order mask

Fig. 3. (a) Reference image. (b) Motion contrast image.

Fig. 4. (a) Vessel image with noise; (b) vessel segments with traditional mask.
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only has a minimum at pixel u while the response of single edges
for second-order mask has a maximum at pixel u� ffiffiffiffiffiffisu

p
and a

minimum at pixel uþ ffiffiffiffiffiffisu
p

. We can use this difference to distin-
guish vessels from single edges. The responses of original image
for both first-order mask and second-order mask are calculated,
respectively. For every local maximum pixel u in the response for
second-order mask, if there is a maximum at pixel u� ffiffiffiffiffiffisu

p
in the

response for first-order mask and a minimum at pixel uþ ffiffiffiffiffiffisu
p

in
the response for first-order mask, then the pixel u belongs to
vessels. Otherwise, this pixel u belongs to single edge and should
be eliminated from the response for second-order mask. Once
every local maximum pixel is judged by the method discussed
above, the effect of single edges is eliminated as shown in Fig. 8.

From Fig. 8(b), we can see that most of the vessels are extracted
while the effect of single edges is eliminated.

2.3. Combined corner/edge detector

As discussed in Section 2.1, the error of registration and the
oscillations of photoreceptors will cause white dots in the back-
ground and degenerate the vessel extraction image. To solve this
problem, we introduce a combined corner/edge detector [28]. The
main purpose of this method is to detect corners and edges

respectively with different responses. To illustrate, we now con-
sider a window patch (5 pixel�5 pixel for example) of the image:

(1) If this window patch locates in a flat region (i.e. the intensities
are almost constant in this region), then no matter which
direction does the window patch move towards, the sum of
the intensities in the window patch will have a small change
(i.e. result in a small response).

(2) If this window patch straddles an edge of vessel, then the sum
of intensities in the window patch will have a small change
(small response) when the window patch moves along the
edge. However, the sum of intensities in the window patch
will have a large change (large response) when the window
patch moves perpendicularly to the edge.

(3) If this window patch locates at a corner or a parcel of dots,
then no matter which direction does the window patch move
towards, the sum of the intensities in the window patch will
have a large change (large response).

The schematic diagram is shown in Fig. 9.
According to the discussion above, we define the change of the

sum intensities in the window patch as follows:

Cðx; yÞ ¼∑
u;v
fwðu; vÞ � ½Iðxþu; yþvÞ� Iðu; vÞ�2g ð7Þ

Fig. 5. The test result of matched-filter method with DRIVE databases. (a) The original vessel, (b) the matched-filtering mask, (c) the manually labeled vessels and
(d) the matched-filter response.
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where Cðx; yÞ represents the change of the sum intensities in the
window patch. ðx; yÞ is the movement of the window patch w and
ðu; vÞ is the location of the pixel in the window patch. Iðu; vÞ is the
intensity of the pixel located at ðu; vÞ.

For a small movement ðx; yÞ, the formula (7) can be approxi-
mated with the gradients as shown below

Cðx; yÞ �∑
u;v
wðu; vÞ � x� ∂I

∂x
þy� ∂I

∂y

� �2

¼∑
u;v
wðu; vÞ � x2 � ∂I

∂x

� �2

þ2xy� ∂I
∂x
d
∂I
∂y

þy2 � ∂I
∂y

� �2
" #

ð8Þ

∂I
∂x

¼ I � ½�1;0;1�; ∂I
∂y

¼ I � ½�1;0;1�T ð9Þ

where ð∂I=∂xÞ and ð∂I=∂yÞ are the gradients of the Image I for
directions of x and y, respectively. Since x and y are scalars, the
summation of formula (8) can be expressed by convolution

Cðx; yÞ � x2 � ∂I
∂x

� �2

� wþ2xy� ∂I
∂x
d
∂I
∂y

� �
� wþy2 � ∂I

∂y

� �2

� w ð10Þ

wherew is the window patch, and � represents convolution. Then
the response of the combined corner/edge detector can be defined

Fig. 6. Ideal vessel, single edge and mask. (a) Ideal vessel, (b) ideal edge, (c) first derivation of gaussian and (d) second derivative of gaussian.

Fig. 7. The responses of the masks. (a) vessel response of gaussian 1st, (b) edge response of gaussian 1st, (c) vessel response of gaussian 2nd and (d) edge response of gaussian 2nd.
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as follows:

Rðu0; v0Þ ¼ ∂I
∂x

� �2

� wþ ∂I
∂y

� �2

� w�k� ∂I
∂x
d
∂I
∂y

� �
� w

� �2
ð11Þ

where Rðu0; v0Þ is the response of the combined corner/edge
detector at pixel ðu0; v0Þ. ðu0; v0Þ is the central pixel of the window
patch w, k is a scalar, which should be determined by experiments.

If the window patch w locates at a flat region, for a small
movement (x,y) (Note that, x and y are both positive.), C(x,y) will
be close to zero (i.e. ð∂I=∂xÞ2 � w,ðð∂I=∂xÞdð∂I=∂yÞÞ � w and
ð∂I=∂yÞ2 � w are all small.). So the response Rðu0; v0Þ is around zero.

If the window patch w straddles a vessel edge, for a small
movement (x,y) along the edge of vessel, C(x,y) will be close to
zero. However, for a small movement (x,y) perpendicular the edge
of vessel, C(x,y) will be large enough. In other words, either
ð∂I=∂xÞ2 � w is large while ð∂I=∂yÞ2 � w is small, or ð∂I=∂xÞ2 � w
is small while ð∂I=∂yÞ2 � w is large. In this case, ðð∂I=∂xÞdð∂I=∂yÞÞ �
w is small. So Rðu0; v0Þ will have a large positive value.

If the window patch w is around photoreceptors, for a small
movement (x,y) towards any direction, C(x,y) will be large enough.
That is to say, ð∂I=∂xÞ2 � w, ðð∂I=∂xÞdð∂I=∂yÞÞ � w and ð∂I=∂yÞ2 � w
are all large. So Rðu0; v0Þ will have a negative value (we can adjust
the value of k for a given image to achieve this).

Therefore, we can calculate the response Rðu0; v0Þ of the com-
bined corner/edge detector for every pixel in the image. If the
response Rðu0; v0Þ is a large positive value, the pixel ðu0; v0Þ belongs
to an edge of vessel. If the response Rðu0; v0Þ is close to zero, the
pixel ðu0; v0Þ belongs to a flat region. If the response Rðu0; v0Þ is

negative, the pixel ðu0; v0Þ belongs to photoreceptors. By this
means, we can distinguish vessels from photoreceptors.

3. Results

As mentioned above, the microvasculature network plays an
important role in diagnosis of diseases. But the available high-
resolution images cannot satisfy the requirement of diagnosis very
well because the contrast of the vessels is not high enough as
shown in Fig. 3(a). Our purpose is to use a combination of the
methods discussed in Section 2 to enhance the contrast of the
vessels. The image set, which is used for evaluating the proposed
method in this paper, consists of 89 images obtained by AOSLO
(The image set is offered by Johnny Tam from the University of
California, Berkeley). First of all, motion contrast method is applied
to the original video. The result is shown in Fig. 10(a).

From Fig. 10(a), we can find that the contrast of the vessels is
enhanced by motion contrast method. The vessels are noticeable,
however, there are also many white dots, which are caused by the
error of image registration. Second, the multiple-scale matched-
filter method with both first-order derivative of Gaussian and
second-order derivative of Gaussian is introduced to extract the
vessel contour and eliminate the single-side edges. The result is
shown in Fig. 10(b). We can see that the main contour of vessels is
kept while the single-side edges are eliminated. But there are also
some noises in the result as labeled in the red circle. These noises
are caused by the error of image registration and detected by the
match-filter method as elongated fragments. To avoid the effect of

Fig. 8. (a) The original vessel image obtained by fundus camera; (b) the vessels extracted by the matched filter method.

Fig. 9. The schematic diagram of the combined corner/edge detector.
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the error of image registration, we apply a combined corner/edge
detector to the motion contrast image (Fig. 10(a)). According to the
features of the combined corner/edge detector discussed in
Section 2.3, the vessels are detected as edges with large positive
response while the photoreceptors are detected as corners with
negative response. So we can use a threshold, which is slightly
greater than zero, to extract the edges of vessels as shown in
Fig. 10(c). Since the detector can only detect the edges of the
vessels, we should adopt mathematical morphology method to
restore the contour of vessels. A disk with the radius of 5 pixels is
adopted to dilate the edges detected in Fig. 10(c). Then we get the
dilated mask of the vessel contour as shown in Fig. 10(d). Finally,
the dilated mask is used to implement so-called “and operation”
with the match-filter image (Fig. 10(b)). That is we just reserve this
part of matched filter image, which locates inside the dilated
mask. The final result of the methods proposed in this paper is
shown in Fig. 11(a). For the convenience of comparison, the
original image is also shown in Fig. 11(b).

From Fig. 11 we can see that the contrast of the vessel is
significantly enhanced by the methods proposed in this paper.
Most of the vessel contour is extracted and satisfies the require-
ment for diagnosis. Although there is no ground truth segmenta-
tion of the vessels, the combined corner/edge detection can partly
detect the boundary of the vessels. The yellow part in Fig. 11(a) is

detected as edges of vessels by combined corner/edge detection
method and detected as vessels by the improved matched filter
method. Therefore, this part of vessels definitely belongs to the
real vessels. The red part, which is surrounded by the yellow part,
also belongs to the real vessels. Because they are inside the edges,
which are indicated by the yellow part, and have high matched
filter response. The green part is detected as edges of vessels by
combined corner/edge detection method, but the matched filter
response of this part is low. Hence, this part possibly belongs to
the real vessels to some extent. As for the red part, which is
outside the yellow part, it has high matched filter response while
it is detected as corner by the combined corner/edge detection.
Hence, it may be some filaments attached to the vessels as shown
in Fig. 11(a) (labeled by blue circles). By comparing this result with
the motion contrast image, we think these filaments may be
caused by the motion artifacts next to the vessels. These pixels
are so closed to the vessels that they are detected as the white
parcels floating in the vessels. Furthermore, these pixels are
adhering to the vessels, so they cannot be detected by the
combined corner/edge detector as corners. As a result, they are
detected by the combined method as filaments. This is a drawback
of the proposed methods and will be overcome by future work.

The time consumption for each step of the proposed method
are listed in Table1.

Fig. 10. The result of the methods proposed in Section 2. (a) motion contrast image, (b) matched filter response, (c) combined corner/edge detection and (d) mathematical
morphology mask. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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4. Conclusion

Although it is possible to noninvasively acquire diffraction-
limited resolution retinal images at microscopic cellular level,
noises and other structures also make it difficult for diagnosis. In
this paper, we propose a new vessel extraction method based on
motion contrast, matched filter and combined corner/edge detec-
tor. First of all, motion contrast method is applied to trace the
motion of blood components in the video (obtained by AOSLO).
Since the white parcels travel along the vessel wall, we can make
use of the motion of these white parcels to extract the vessel
contour. There are also many noises in the motion contrast image
at this time. Second, we use an improved matched-filter method to
extract the main contour of the vessels. However, there are still
some elongated fragments caused by the motion artifacts. Then,
a combined corner/edge detector is adopted to distinguish the
edge of vessels from the motion artifacts. Finally, we use mathe-
matical morphology method to dilate the combined corner/edge
detecting image and get the extracted vessels. From the result of
this vessel extraction method, we can see that the contrast of the
vessels is significantly improved and the noises as well as other
structures are effectively eliminated.
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Fig. 11. (a) The final result of the proposed methods. (b) The original image. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Table1
Time consumption.

MC MF CD MM Total

Time (s) 1.56 22.30 6.58 0.28 30.72

MC, MF, CD, MM stand for the step of Motion Contrast, Matched Filter, Combined
corner/edge Detector and Mathematical Morphology, respectively. Total represents
the total time consumption of the proposed methods. This experiment is conducted
on the desktop computer with parameters as follows: CPU, Intel i3-2100 3.10 GHz;
RAM, 4 G; OS, Windows7; Software, MATLAB R2009b.
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