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In this Letter, we report the addition of Pr3� and Mg2� in CSS:Ce3�, Mn2� phosphor for improving the performances
of white light-emitting diodes (LEDs). The additional trivalent Pr3� will occupy the Ca2� site in this host like the
situation of Ce3�, its concentration can be enhanced by the addition of Mg2� in Sc3� site due to the substitution of
Mg2� for Sc3� can compensate the charge mismatch between Pr3� and Ca2�. Based on the efficient Ce3� → Pr3� and
Mn2� → Pr3� energy transfers (ETs) and the compensation effect of Mg2�, the additional Pr3� in our present phos-
phors exhibits an intense red-emission around 610 nm, which is significant for enhancing the color rendering prop-
erty. In addition, we also find that the additionalMg2� in Sc3� site can markedly adjust the photoluminescence (PL)
spectrum shape of our phosphor by controlling the distribution of Mn2� at Ca2� and Sc3� sites. A new tunable full-
color emission is obtained via the ETs (Ce3� → Mn2�, Ce3� → Pr3� andMn2� → Pr3�) and the adjusting effect ofMg2�

in our present phosphors. Finally, a white LED with higher color rendering index of 90, lower correlated color
temperature of 4980 K, and chromaticity coordinates of (0.34, 0.31) was obtained by combining the single
CSS:0.08Ce3�, 0.01Pr3�, 0.3Mn2�, 0.2Mg2� phosphor with a blue-emitting InGaN LED chip. © 2014 Optical Society
of America
OCIS codes: (160.2540) Fluorescent and luminescent materials; (300.6280) Spectroscopy, fluorescence and

luminescence; (160.4670) Optical materials; (230.3670) Light-emitting diodes.
http://dx.doi.org/10.1364/OL.39.002691

White light-emitting diodes (LEDs) are considered to be
a promising candidate for the future lighting system
[1]. The most widely used white LED consists of a
blue-emitting InGaN LED chip and Y 3Al5O12:Ce3�
�YAG:Ce3�� yellow phosphor. However, this type of
white LED emits little red light and therefore has a rel-
atively low color rendering index (CRI) [2]. To solve this
problem, the method of mixing green and red phosphors
instead of YAG:Ce3� phosphor has been proposed [3,4].
Unfortunately, phosphor mixture gives fluorescence re-
absorption that results in loss of luminous efficiency.
Therefore, to achieve single phase phosphor with full
color emission is expected. The attempt to enhance
the red emission component in YAG:Ce3� was performed
by codoping Pr3� on Y3� site to generate a red emission
line around 610 nm, originated from 1D2 → 3H4 transition
of Pr3� through Ce3� → Pr3� energy transfer (ET) [5]. A
new yellow-emitting Ba0.93Eu0.07Al2O4 phosphor with suf-
ficient red component was also synthesized by Li et al.
Warm-white emissions with correlated color temperature
�CCT� < 4000 K and CRI > 80 were readily achieved
when combining this phosphor with a blue LED (440–
470 nm) [6].
Shimomura et al. reported a novel green-emitting

Ca3Sc2Si3O12:Ce3� (CSS:Ce3�) phosphor with higher
thermal stability and luminous intensity [7]. In this host
lattice, the concentration of Ce3� that occupies the Ca2�
site can be enhanced by the substitution of Mg2� for Sc3�
due to the charge compensation effect, resulting in a re-
markable redshift of the Ce3� emission band [8]. In our
previous work, we have introduced Mn2� into CSS:Ce3�

to enrich the longer wavelength visible emission through
Ce3� → Mn2� ET. It was demonstrated that Mn2� may
occupy not only the Ca2� site to generate a yellow emis-

sion around 574 nm [named Mn2��I�] but also the Sc3�
site to generate a red emission around 680 nm [named
Mn2��II�]. However, the white LEDs obtained by combin-
ing this phosphor with a blue InGaN LED chip have lower
CRI (below 80) [9]. For enhancing the color rendering
property, we tentatively introduced Pr3� and Mg2� to
modify this phosphor. It is found that the additional
Pr3� in CSS:Ce3�, Mn2� phosphor can generate a distinct
red emission around 610 nm through obvious Ce3� →
Pr3� and Mn2��I� → Pr3� ETs besides slender direct
excitation when exciting our phosphor with blue light.
Furthermore, we also found that the addition of Mg2�
in Sc3� site can markedly modify the photoluminescence
(PL) spectrum shape of our phosphor for improving the
chromaticity properties of white LEDs.

In this Letter, we report Ce3� → Pr3� and Mn2��I� →
Pr3� ETs besides Ce3� → Mn2� [Mn2��I� and Mn2��II�]
ETs in our present phosphors. The adjustment for PL
spectra is performed through the addition of Mg2� in
the Sc3� site in this host. A white LED with CRI of 90
and CCT of 4980 K is obtained by combining the single
CSS:0.08Ce3�, 0.01Pr3�, 0.3Mn2�, 0.2Mg2� phosphor
with a blue-emitting InGaN LED chip.

The samples were synthesized by conventional solid-
state reaction. Mixtures of raw materials were sintered
in a tubular furnace at 1350°C for 4 h in reductive atmos-
phere (5%H2 � 95%N2). The PL and PL excitation (PLE)
spectra were measured using a HITACHI F-7000 spec-
trometer. The chromaticity coordinates, CRI, CCT, and
luminous efficiency of white LED were measured using
an Ocean Optics USB4000 spectrometer.

Figures 1(a)–1(c) show PLE and PL spectra for
CSS:0.05Ce3�, CSS:0.2Mn2�, and CSS:0.01Pr3�, respec-
tively. CSS:0.05Ce3� exhibits a green PL band with a peak
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at 505 nm and a shoulder around 540 nm, originated from
the transitions of Ce3� from 5d to 2F5∕2 and 2F7∕2 [7]. The
relevant PLE spectrum appears an intense excitation
band around 450 nm, well matching the emitting wave-
length of blue InGaN LEDs. CSS:0.2Mn2� exhibits two
emission bands, one is a yellow emission band around
574 nm �Mn2��I�� and the other one is a red emission band
around 680 nm �Mn2��II��, assigned to 4T1�4G� → 6A1�6S�
transitions of Mn2� ions that substitute for Ca2� and Sc3�

sites, respectively. The relevant PLE spectra show typical
forbidden d–d transitions of Mn2�, resulting in very weak
luminous intensities compared with Ce3� in CSS [9].
CSS:0.01Pr3� exhibits a red emission around 610 nm,
originated from 1D2 → 3H4 transition of Pr3�. The PLE
spectrum monitored at 610 nm includes three bands,
the band peaked around 285 nm is ascribed to 3H4 →
4f5d transitions of Pr3�, the band in the range of 430–
500 nm is attributed to 3H4 → 3P0;1;2 and 3H4 → 1I6
transitions of Pr3�, and the band in the range of 570–
600 nm is assigned to 3H4 → 1D2 transitions of Pr3�

[10,11]. The luminous intensity of Pr3� is also very weak
in comparison with the strong emission of Ce3� in CSS.
Figures 1(d) and 1(e) show PL spectra for

CSS:0.05Ce3�, 0.01Pr3� and CSS:0.2Mn2� xPr3� (x � 0,
0.01). The PL spectrum for CSS:0.05Ce3�, 0.01Pr3� upon
Ce3� excitation at 406 nm exhibits not only the Ce3�

emission band around 505 nm but also the Pr3� emission
around 610 nm. This feature proves the occurrence of
distinct Ce3� → Pr3� ET, which can be clearly under-
stood as noticing the spectral overlap between the Ce3�

emission band and the Pr3� excitation band in CSS. For
CSS:0.2Mn2�, 0.01Pr3�, the PL spectrum upon Mn2� ex-
citation at 406 nm appears not only the Mn2� emission
bands around 574 and 680 nm but also the Pr3� emission
around 610 nm. Considering the extent of spectral over-
lap between the Mn2� [Mn2��I� and Mn2��II�] emission
bands and the Pr3� excitation band in CSS, we infer that

the excitation of Pr3� is likely performed by ET from
Mn2��I� rather than Mn2��II�. In order to prove our infer-
ence, we have seriously compared the PL spectra of
CSS:0.2Mn2� and CSS:0.2Mn2�, 0.01Pr3� in Fig. 1(e),
the emission intensity of Mn2��I� in presence of Pr3� dis-
tinctly decreases compared with that of Mn2��I� in ab-
sence of Pr3�, meanwhile, the emission intensity of
Mn2��II� almost remains unchanged. This feature effec-
tively proves that the excitation of Pr3� is performed
mainly by the ET from Mn2��I� rather than Mn2��II�.

Figure 2(a) shows the normalized PL spectra
(λex � 435 nm) for CSS:0.05Ce3�, 0.01Pr3�, 0.3Mn2�,
yMg2�. For the phosphor without Mg2�, the PL spectrum
exhibits a distinct red-emission of additional Pr3� around
610 nm besides the green band of Ce3�, the yellow band
of Mn2��I�, and the red band of Mn2��II�. Considering
that the emissions of Mn2� [Mn2��I� and Mn2��II�] and
Pr3� are very weak under direct excitation and the exci-
tation wavelength of 435 nm is outside of the optimal
excitation wavelength ranges for Mn2� [Mn2��I� and
Mn2��II�] and Pr3�; the relatively remarkable emissions
of Mn2� [Mn2��I� and Mn2��II�] in present phosphors
should be mainly attributed to ETs from Ce3� rather than
direct excitation, and the distinct emission of Pr3� in
present phosphors is mainly attributed to ETs from Ce3�

and Mn2��I� rather than direct excitation. As shown in
Fig. 2(b), based on these ETs, we obtained full-color
emission in our present phosphors. However, this pho-
sphor still has deficient emission around 610 nm, which
limits its color rendering performance. In order to opti-
mize the luminescence properties of our present

Fig. 1. PLE and PL spectra for (a) CSS:0.05Ce3�,
(b) CSS:0.2Mn2�, and (c) CSS:0.01Pr3�; PL spectra for
(d) CSS:0.05Ce3�, 0.01Pr3� and (e) CSS:0.2Mn2�, xPr3�

(x � 0, 0.01).

Fig. 2. (a) PL spectra for CSS:0.05Ce3�, 0.01Pr3�, 0.3Mn2�,
yMg2� and (b) the schematic for ETs in schematic crystal struc-
ture of present phosphors under excitation by blue light.

2692 OPTICS LETTERS / Vol. 39, No. 9 / May 1, 2014



phosphor, the addition of Mg2� that substitutes for Sc3�

is performed. It is observed that the effect of additional
Mg2� on modifying the PL spectra shape is very signifi-
cant, especially the Pr3� emission around 610 nm
is remarkably enhanced with increasing the nominal
Mg2� content. For the purpose of understanding this
modification, it is necessary to study the effect of addi-
tional Mg2� on the emissions of Ce3�, Pr3�, and Mn2� in
our phosphors, respectively. Therefore, the samples with
nominal compositions of CSS:0.05Ce3�, yMg2�,
CSS:0.01Pr3�, yMg2�, and CSS:0.3Mn2�, yMg2�

(y � 0–0.2) have been prepared separately.
Figure 3 shows the PL spectra for CSS:0.05Ce3�,

yMg2� (λex � 450 nm), CSS:0.01Pr3�, yMg2� (λex �
452 nm), and CSS:0.3Mn2�, yMg2� (λex � 406 nm) under
appropriate light excitation. With increasing Mg2� con-
tent, the redshift of Ce3� emission in CSS:0.05Ce3�,
yMg2� [Fig. 3(a)] and the enhancement of Pr3� emission
in CSS:0.01Pr3�, yMg2� [Fig. 3(b)] are probably attrib-
uted to the enhanced concentrations of Ce3� and Pr3�

in these phosphors, respectively. The trivalent Ce3�

and Pr3� both occupy the Ca2� sites when they are incor-
porated into CSS lattices [7,12]. Their available lower
concentrations, which are restrained by the charge mis-
match between them and Ca2�, can be enhanced by the
substitution of Mg2� for Sc3� due to charge compensa-
tion effect. In the PL spectra for CSS:0.3Mn2�, yMg2�

[Fig. 3(c)], with increasing Mg2� content, the Mn2��I�
emission continuously enhances as the Mn2��II� emis-
sion obviously weakens. The possible reason is that
the incorporation of Mg2� into the Sc3� site in CSS re-
strains the formation of Mn2��II� that substitutes for
Sc3� due to the competitive relation between them, so
that more Mn2� in raw material can be incorporated into
the Ca2� site to be Mn2��I�.
According to the above analysis, the modification

caused by the additional Mg2� for the PL spectra
(λex � 435 nm) of CSS:0.05Ce3�, 0.01Pr3�, 0.3Mn2�

can be understood as follows: with increasing Mg2� con-
tent, the enhancement of the yellow emission band is
comprised of the redshift of the Ce3� emission and the
enhancement of Mn2��I� emission. The redshift of Ce3�

emission is mainly attributed to the increasing concentra-
tion of Ce3�, as reported by Shimomura et al. [8]. The
enhancement of Mn2��I� emission is mainly attributed
to the enhanced Ce3� → Mn2��I� ET efficiency, which is
caused by the increasing concentration of Mn2��I�. The
remarkable enhancement of Pr3� emission around
610 nm is mainly attributed to the enhanced Ce3� →
Pr3� and Mn2��I� → Pr3� ET efficiencies, which are
caused by the increasing concentration of Pr3�. Mean-
while, the reduction of the Mn2��II� emission band
around 680 nm is mainly attributed to the decreasing
Ce3� → Mn2��II� ET efficiency, which is caused by the
decreasing concentration of Mn2��II�.

Temperature-quenching characteristics of YAG:Ce3�

and our present phosphors are presented in Fig. 4, in
which the integral PL intensity at 30°C is set as the nor-
malized standard. Apparently, the original CSS:0.05Ce3�

phosphor exhibits weaker thermal quenching compared
with YAG:Ce3� at the same temperature. With the addi-
tions of Pr3�, Mn2�, and Mg2� in our present phosphors,

Fig. 3. PL spectra for (a) CSS:0.05Ce3�, yMg2�,
(b) CSS:0.01Pr3�, yMg2�, and (c) CSS:0.3Mn2�, yMg2�.

Fig. 4. Temperature dependence of integral PL intensity of
YAG:0.06Ce3�, CSS:0.05Ce3�, and CSS:0.05Ce3�, 0.01Pr3�,
0.3Mn2�, yMg2� under excitation at 450 nm.

Fig. 5. Emission spectrum for the white LED fabricated by us-
ing the single CSS:0.08Ce3�, 0.01Pr3�, 0.3Mn2�, 0.2Mg2�

phosphor and an InGaN LED (λ � 445 nm) chip. The current
is 20 mA.
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the thermal quenching behavior becomes significant due
to the strong thermal quenching of Mn2� and Pr3� emis-
sions, but on the whole, the emissions of our present
phosphors still exhibit satisfactory thermal stability com-
pared with that of YAG:Ce3�.
For evaluating the chromaticity characteristics of our

present phosphor, we have fabricated a white LED by
combining our single CSS:0.08Ce3�, 0.01Pr3�, 0.3Mn2�,
0.2Mg2� phosphor with a blue-emitting InGaN LED chip
(445 nm). Figure 5 shows the emission spectrum of our
white LED. The luminous efficiency of our white LED
can reach 26 lm∕Wwhile the generated white light exhib-
its a higher CRI of 90 and a lower CCT of 4980 K. These
features demonstrate the potential application of our
present phosphor for white LEDs with higher CRI and
lower CCT.
In summary, we report the Ce3� → Pr3� and

Mn2��I� → Pr3� ETs in our present phosphor. The red
emission of additional Pr3� and the adjusting effect of
additional Mg2� in our present phosphors are very signifi-
cant for obtaining phosphors with high performances. A
white LED with luminous efficiency of 26 lm∕W, CRI of
90, CCT of 4980 K, and chromaticity coordinates of (0.34,
0.31) is obtained by combining the single CSS:0.08Ce3�,
0.01Pr3�, 0.3Mn2�, 0.2Mg2� phosphor with a blue-
emitting InGaN LED chip.
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