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The recursive estimation problem is studied for a class of uncertain dynamical systems with different delay rates sensor network and
autocorrelated process noises. The process noises are assumed to be autocorrelated across time and the autocorrelation property
is described by the covariances between different time instants. The system model under consideration is subject to multiplicative
noises or stochastic uncertainties. The sensor delay phenomenon occurs in a random way and each sensor in the sensor network
has an individual delay rate which is characterized by a binary switching sequence obeying a conditional probability distribution.
By using the orthogonal projection theorem and an innovation analysis approach, the desired recursive robust estimators including
recursive robust filter, predictor, and smoother are obtained. Simulation results are provided to demonstrate the effectiveness of the
proposed approaches.

1. Introduction

The Kalman filter is very popular for estimating the system
states of a class of linear systems which are characterized by
state-space models. Since its inception in the early 1960s, it
has played an important role in the research fields of target
tracking, communication, control engineering, and signal
processing. An implied assumption of traditional Kalman
filter is that the system model and measurement model
are exactly known. Unfortunately, this assumption does not
always hold due to the constrained knowledge and the
variation of the system and environment. When the system
model and measurement model under consideration are
not exactly known, the performance of traditional Kalman
filter can deteriorate appreciably [1–3]. Therefore, in the past
decades, the recursive robust state-space estimation problem
has become a hot topic of the estimation theory. There
are many different ways to describe the model uncertainty.
Multiplicative noise is an important stochastic uncertainty
which is commonly encountered in aerospace systems [4],
communication systems [5], and image processing systems
[6, 7]. Different from the additive noise, the second-order
statistics of the multiplicative noise are usually unknown and

this property leads to more difficulties in the research. Up to
now, there are several solutions to treat with the estimation
and control problems for systems with multiplicative noises,
including linearmatrix inequality approach [8], Riccati equa-
tion approach [9, 10], and game-theoretic method [11], to
name just a few.

In traditional state estimation theory, the process noises
are usually assumed to be Gaussian and uncorrelated with
each other. However, this assumption is not always realistic,
correlated noises are commonly encountered in practical
applications. For example, in a target tracking system, the
system state is usually consecutive (i.e., the system state at
time k is correlatedwith its neighbors); thus,when the process
noises are dependent on the system state, the process noises
are usually autocorrelated across time. So far, there have been
several approaches to deal with the estimation problem for
systems with correlated noises [12–16]. The optimal Kalman
filtering fusion problem for dynamic systems with cross-
correlated measurement noises has been dealt with in [13–
15]. In [16], the state estimation for discrete-time systems
with cross-correlated noises has been treated based on an
optimal weighted matrix sequence, where the process noises
and measurement noises are cross correlated. It should be
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pointed out that the estimatorsmentioned previously are only
suited for the correlated noises at the same time instant. In
[17, 18], a Kalman-type recursive filter has been proposed
for dynamic systems with finite-step autocorrelated process
noises, where the autocorrelation property is described by
the covariances between different time instants. The filtering
problem with finite-step cross-correlated process noises and
measurement noises has been investigated in [19]. In [20], the
optimal robust nonfragile Kalman-type recursive filter has
been designed for a class of uncertain systems with finite-step
autocorrelated noises.

On another research frontier, with the development
of network technologies, the sensor network has attracted
increasing attention from many researchers in different
fields due to their wide scope applications in surveillance,
environment monitoring, information collection, wireless
networks, robotics, and so on. In the sensor network, the
network-induced time-delay or/and packet dropouts cannot
be avoided due to limited single-sensor energy and commu-
nication capability and these have brought us new challenges
in the design of the desired state estimators. The binary
switching sequence is a popular way to describe the network-
induced time-delay or/and packet dropouts since the time-
delay or/and packet dropouts in the sensor network are
inherently random [21–24]. The least-mean-square filtering
problem for one-step random sampling delay has been
studied in [25, 26]. Unfortunately, the filters designed in [25,
26] are suboptimal since a colored noise due to augmentation
has been treated as a white noise. The filtering problem
for systems with random measurement delays and multiple
packet dropouts has also been discussed in [24]. In [27], the
problemof robust filtering for uncertain systemswithmissing
measurements and finite-step correlated process noises has
been investigated. It should be noted that, in all the afore-
mentioned literature, sensors involved in the sensor network
have the same delay characteristics. Recently, Hounkpevi and
Yaz [28, 29] present minimum variance state estimators for
multiple sensorswith different delay or failure rates.The least-
square filtering problem for systems with one- or two-step
random delay has been studied in [30], where the algorithms
are derived without requiring the knowledge of the state
space model but only the means and covariance functions
of the processes involved in the observation equations. The
optimal unbiased filtering problem for uncertain systems
with different delay rates sensor network and autocorrelated
process noises has also been discussed in [31]. However, the
estimator obtained in [31] is nonrecursive and a colored noise
due to augmentation has been treated as white noise. Up
to now, to the best of the authors’ knowledge, the recursive
robust estimation problem has not yet been addressed for
uncertain systems with different delay rates sensor network
and autocorrelated noises, and this situation motivates our
current study.

Motivated by the above analysis, in this paper, we aim
to investigate the recursive robust estimation problem for
uncertain systems with different delay rates sensor network
and autocorrelated noises. The system model and mea-
surement model under consideration are both subject to
stochastic uncertainties or multiplicative noises. Different

sensors in the sensor network have different delay rates
and different delay rates are described by different binary
switching sequences. The process noises are assumed to
be one-step autocorrelated across time and the autocor-
relation property is described by the covariances between
different time instants. Based on an innovation analysis
approach (IAA) and the orthogonal projection theorem
(OPT), recursive robust estimators including filter, predictor,
and smoother are obtained. This paper extends the results in
[31], in two directions: (1) the autocorrelated measurement
noise due to augmentation leads to more difficulties in the
design of the recursive robust estimators; however, in [31],
the measurement noise is treated as a white noise; and (2) the
filter obtained in [31] is actually a nonrecursive filter; however,
in our current work, we do not only derive a recursive
robust filter, but also derive a recursive robust predictor and
a recursive robust smoother. Also, the current paper differs
from [28, 30] for the model uncertainties considered and for
the autocorrelated process noises considered to derive the
desired recursive robust estimators.

The remainder of the paper is organized as follows. In
Section 2, the recursive robust estimation problem is for-
mulated for a class of uncertain systems with autocorrelated
noises and different delay rates sensor network.The recursive
robust estimators including filter, predictor, and smoother are
derived in Section 3. In Section 4, a simulation example is
provided to illustrate the usefulness of the theory developed
in this paper. We end the paper with some concluding
remarks in Section 5.

Notation 1. The notation used in the paper is fairly standard.
The superscript “𝑇” stands for matrix transposition, the
notation R𝑛 denotes the 𝑛-dimensional Euclidean space, the
notation R𝑚×𝑛 is the set of all real matrices of dimension
𝑚 × 𝑛, and 𝐼 and 0 represent the identity matrix and zero
matrix, respectively. The notation 𝑃 > 0 means that 𝑃 is
real symmetric and positive definite, and diag(⋅ ⋅ ⋅ ) stands for
block-diagonal matrix. The notation 𝛿

𝑘−𝑗
is the Kronecker

delta function, which is equal to unity for 𝑘 = 𝑗 and zero for
𝑘 ̸= 𝑗. In addition,E{𝑥}meansmathematical expectation of 𝑥
and Prob{⋅} represents the occurrence probability of the event
“⋅”. Matrices, if their dimensions are not explicitly stated, are
assumed to be compatible for algebraic operations.

2. Problem Formulation

Consider the following system model and measurement
model:

𝑥̆
𝑘+1

= (𝐴̆
𝑘
+ 𝐴̆
𝑠,𝑘
𝜇
𝑘
) 𝑥̆
𝑘
+ 𝐵̆
𝑘
𝜔
𝑘
,

̆𝑦
𝑖

𝑘
= (𝐶̆
𝑖

𝑘
+ 𝐶̆
𝑖

𝑠,𝑘
𝜂
𝑖

𝑘
) 𝑥̆
𝑘
+ V̆𝑖
𝑘
,

𝑦
𝑖

𝑘
= (1 − 𝜆

𝑖

𝑘
) ̆𝑦
𝑖

𝑘
+ 𝜆
𝑖

𝑘
̆𝑦
𝑖

𝑘−1
, 𝑖 = 1, 2, . . . , 𝑁,

(1)

where 𝑥̆
𝑘
∈ R𝑛 is the state to be estimated, the vector ̆𝑦𝑖

𝑘
∈

R is the actual output vector of the 𝑖th sensor, the vector
𝑦
𝑖

𝑘
∈ R is the measured output vector of the 𝑖th sensor, the

vector 𝜔
𝑘
∈ R𝑚 is the process noise, the vectors 𝜇

𝑘
∈ R
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and 𝜂𝑖
𝑘
∈ R are multiplicative noises, the vector V̆𝑖

𝑘
∈ R is

the measurement noise of the 𝑖th sensor, the matrices 𝐴̆
𝑘
,

𝐴̆
𝑠,𝑘
, 𝐵̆
𝑘
, 𝐶̆𝑖
𝑘
, and 𝐶̆𝑖

𝑠,𝑘
are known real time-varyingmatrices of

appropriate dimensions, and the variable𝜆𝑖
𝑘
∈ R is amutually

uncorrelated binary switching sequence (and uncorrelated
with other random variables) taking values on 1 and 0 with

Prob {𝜆𝑖
𝑘
= 1} = E {𝜆

𝑖

𝑘
} = 𝛽
𝑖

𝑘
,

Prob {𝜆𝑖
𝑘
= 0} = 1 −E {𝜆

𝑖

𝑘
} = 1 − 𝛽

𝑖

𝑘
.

(2)

Remark 1. The measurement model (1) is a popular way to
model the random sensor delay. It can be seen that if 𝜆𝑖

𝑘
= 1

then 𝑦𝑖
𝑘
= ̆𝑦𝑖
𝑘−1

which means that the measurement of the 𝑖th
sensor is delayed; if 𝜆𝑖

𝑘
= 0, then 𝑦𝑖

𝑘
= ̆𝑦𝑖
𝑘
; that is to say, the

measurement of the 𝑖th sensor is up to date.

Thenoise signals𝜇
𝑘
, V̆𝑖
𝑘
, and 𝜂𝑖

𝑘
are all zero-meanGaussian

white noises. They, together with the initial state 𝑥̆
0
and the

process noise 𝜔
𝑘
, have the following statistical properties:

E {𝑥̆
0
} = 𝑥̆
0
, E {(𝑥̆

0
− 𝑥̆
0
) (𝑥̆
0
− 𝑥̆
0
)
𝑇

} = 𝑃̆
0
,

E

{{{{{{{{{

{{{{{{{{{

{

[
[
[
[
[
[
[
[

[

𝜔
𝑘

𝜇
𝑘

V̆𝑖
𝑘

𝜂𝑖
𝑘

𝑥̆
0

]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[

[

𝜔
𝑙

𝜇
𝑙

V̆𝑗
𝑙

𝜂
𝑗

𝑙

𝑥̆
0

]
]
]
]
]
]
]
]

]

𝑇

}}}}}}}}}

}}}}}}}}}

}

=

[
[
[
[
[

[

𝑌
𝑘,𝑙

0 0 0 0

0 𝛿
𝑘−𝑙

0 0 0

0 0 𝑅̆𝑖
𝑘
𝛿
𝑘−𝑙
𝛿
𝑖−𝑗

0 0

0 0 0 𝛿
𝑘−𝑙
𝛿
𝑖−𝑗

0

0 0 0 0 𝑋̆
0

]
]
]
]
]

]

,

(3)

where 𝑌
𝑘,𝑙
= 𝑄
𝑘
𝛿
𝑘−𝑙

+ 𝑄
𝑘,𝑙
𝛿
𝑘−𝑙−1

+ 𝑄
𝑘,𝑙
𝛿
𝑘−𝑙+1

, 𝑋̆
0
= 𝑃̆
0
+ 𝑥̆
0
𝑥̆
𝑇

0
.

By defining

𝑥
𝑘
= [

𝑥̆
𝑘

𝑥̆
𝑘−1

] , 𝐴
𝑘
= [

𝐴̆
𝑘
0

𝐼 0
] ,

𝐴
𝑠,𝑘

= [
𝐴̆
𝑠,𝑘

0

0 0
] , 𝐵

𝑘
= [

𝐵̆
𝑘

0
] ,

𝑉
𝑘
= [

V̆
𝑘

V̆
𝑘−1

] , 𝑅
𝑘
= [

𝑅̆
𝑘

0

0 𝑅̆
𝑘−1

] ,

𝑅
𝑘,𝑘−1

= [
0 0

𝑅̆
𝑘−1

0
] , 𝑅

𝑘,𝑘+1
= [

0 𝑅̆
𝑘

0 0
] ,

𝑦
𝑘
= [(𝑦1

𝑘
)
𝑇

⋅ ⋅ ⋅ (𝑦𝑁
𝑘
)
𝑇

]
𝑇

,

𝐷
𝑘
= [(𝐼 − 𝐽

𝑘
) 𝐽
𝑘
] ,

𝐶
𝑘
= [(𝐼 − 𝐽

𝑘
) 𝐶̆
𝑘
𝐽
𝑘
𝐶̆
𝑘−1

] ,

𝐶
𝑠,𝑘

= [(𝐼 − 𝐽
𝑘
) 𝐶̆
𝑠,𝑘
𝜂
𝑘
𝐽
𝑘
𝐶̆
𝑠,𝑘−1

𝜂
𝑘−1

] ,

(4)

where

𝐶̆
𝑘
= [(𝐶̆1

𝑘
)
𝑇

⋅ ⋅ ⋅ (𝐶̆𝑁
𝑘
)
𝑇

]
𝑇

,

V̆
𝑘
= [(V̆1
𝑘
)
𝑇

⋅ ⋅ ⋅ (V̆𝑁
𝑘
)
𝑇

]
𝑇

,

𝐽
𝑘
= diag (𝜆1

𝑘
, . . . , 𝜆

𝑁

𝑘
) ,

𝜂
𝑘
= diag (𝜂1

𝑘
, . . . , 𝜂

𝑁

𝑘
) , 𝐶̆

𝑠,𝑘
= [(𝐶̆1

𝑠,𝑘
)
𝑇

⋅ ⋅ ⋅ (𝐶̆𝑁
𝑠,𝑘
)
𝑇

]
𝑇

,

𝑅̆
𝑘
= diag (𝑅̆1

𝑘
, . . . , 𝑅̆

𝑁

𝑘
) ,

(5)

a compact representation of (1) can be expressed as follows:

𝑥
𝑘+1

= (𝐴
𝑘
+ 𝐴
𝑠,𝑘
𝜇
𝑘
) 𝑥
𝑘
+ 𝐵
𝑘
𝜔
𝑘
, (6)

𝑦
𝑘
= 𝐶
𝑘
𝑥
𝑘
+ 𝐶
𝑠,𝑘
𝑥
𝑘
+ 𝐷
𝑘
𝑉
𝑘
, (7)

where 𝑉
𝑘
is the measurement noise of the newly obtained

auxiliary system (6) and (7). It follows readily from (4) that
𝑉
𝑘
has the statistic properties as follows:

E {𝑉
𝑘
} = 0,

E {𝑉
𝑘
𝑉
𝑇

𝑡
} = 𝑅
𝑘
𝛿
𝑘−𝑡

+ 𝑅
𝑘,𝑘−1

𝛿
𝑘−𝑡−1

+ 𝑅
𝑘,𝑘+1

𝛿
𝑘−𝑡+1

.
(8)

Remark 2. It can be seen from (3) and (8) that the process
noise 𝜔

𝑘
and the measurement noise 𝑉

𝑘
are both one-step

autocorrelated across time. For example, the process noise at
time 𝑘 is correlated with the process noises at times 𝑘 − 1

and 𝑘 + 1 with covariances 𝑄
𝑘,𝑘−1

and 𝑄
𝑘,𝑘+1

, respectively.
The measurement noise at time 𝑘 is correlated with the
measurement noises at times 𝑘−1 and 𝑘+1with covariances
𝑅
𝑘,𝑘−1

and 𝑅
𝑘,𝑘+1

, respectively.

Remark 3. Observe that the system model and measurement
model of system (6) and (7) are both subject to stochastic
uncertainties and 𝐶

𝑘
, 𝐶
𝑠,𝑘
, and 𝐷

𝑘
involve the stochastic

variable 𝜆𝑖
𝑘
. Thus, system (6) and (7) is actually a stochastic

uncertain system. On the other hand, the process noise 𝜔
𝑘

and the measurement noise 𝑉
𝑘
are both one-step autocorre-

lated across time. Therefore, the traditional recursive robust
estimation approaches may not satisfy the performance
requirements here.
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Remark 4. A seemingly natural way of handling the auto-
correlated noises is the augmentation of the system states.
However, such a state augmentation approach gives rise to
significant increase in the system dimension, which would
inevitably lead to computational burden. In addition, in
the state augmentation method, the noises are treated as
components of the auxiliary system state, generally, it is
difficult for an estimator to track noise signals, and this will
affect the estimation of other components of the auxiliary
system state. Without resorting to state augmentation, in our
current work, we treat system (6) and (7) directly by using an
IAA and the OPT.

3. The Main Results

For convenience of later development, let us introduce the
following lemmas, which are very useful in establishing our
main results.

Lemma5. For stochastic matrices 𝐽
𝑘
,𝐶
𝑘
,𝐷
𝑘
, and𝐶

𝑠,𝑘
, one has

the following results:

𝐽
𝑘
= E {𝐽

𝑘
} = diag (𝛽1

𝑘
, . . . , 𝛽

𝑁

𝑘
) , 𝐽

𝑘
= 𝐽
𝑘
− 𝐽
𝑘
,

Σ
𝑘
= E {𝐽

𝑘
𝐽
𝑇

𝑘
} = diag ((1 − 𝛽1

𝑘
) 𝛽
1

𝑘
, . . . , (1 − 𝛽

𝑁

𝑘
) 𝛽
𝑁

𝑘
) ,

𝐶
𝑘
= E {𝐶

𝑘
} = [(𝐼 − 𝐽

𝑘
) 𝐶̆
𝑘
𝐽
𝑘
𝐶̆
𝑘−1

] ,

𝐶
𝑘
= 𝐶
𝑘
− 𝐶
𝑘
= (𝐽
𝑘
− 𝐽
𝑘
) [−𝐶̆

𝑘
𝐶̆
𝑘−1

] = 𝐽
𝑘
𝐶
𝑒,𝑘
,

𝐷
𝑘
= E {𝐷

𝑘
} = [(𝐼 − 𝐽

𝑘
) 𝐽
𝑘
] ,

𝐷
𝑘
= 𝐷
𝑘
− 𝐷
𝑘
= (𝐽
𝑘
− 𝐽
𝑘
) [−𝐼 𝐼] = 𝐽

𝑘
𝐷
𝑒,𝑘
,

𝐶
𝑒,𝑘

= [−𝐶̆
𝑘
𝐶̆
𝑘−1

] , 𝐷
𝑒,𝑘

= [−𝐼 𝐼] ,

E {𝐽
𝑘
} = E {𝐶

𝑘
} = E {𝐷

𝑘
} = E {𝐶

𝑠,𝑘
} = 0.

(9)

Proof. Lemma 5 follows directly from (2), (4), and (5) and the
fact that 𝜂

𝑘
is zero mean.

Lemma 6. For system state 𝑥
𝑘
and the process noise 𝜔

𝑘
, one

has the following result:

E {𝑥
𝑘
𝜔
𝑇

𝑘
} = 𝐵
𝑘−1

𝑄
𝑘−1,𝑘

. (10)

Proof. Lemma 6 follows directly from (3) and (6).

Lemma 7. The state covariance matrix𝑋
𝑘
= E{𝑥

𝑘
𝑥𝑇
𝑘
} has the

following recursion:

𝑋
𝑘+1

= 𝐴
𝑘
𝑋
𝑘
𝐴
𝑇

𝑘
+ 𝐴
𝑘
𝐵
𝑘−1

𝑄
𝑘−1,𝑘

𝐵
𝑇

𝑘
+ 𝐴
𝑠,𝑘
𝑋
𝑘
𝐴
𝑇

𝑠,𝑘

+ 𝐵
𝑘
𝑄
𝑘,𝑘−1

𝐵
𝑇

𝑘−1
𝐴
𝑇

𝑘
+ 𝐵
𝑘
𝑄
𝑘
𝐵
𝑇

𝑘
.

(11)

Proof. Lemma 7 follows directly from (3), (6), and Lemma 6.

Furthermore, defining 𝑋̆
𝑘+1

= E{𝑥̆
𝑘+1

𝑥̆𝑇
𝑘+1

} and 𝑋̆
𝑘+1,𝑘

=

E{𝑥̆
𝑘+1

𝑥̆𝑇
𝑘
}, one has from (4) and Lemma 7 the following:

𝑋̆
𝑘+1

= 𝐴̆
𝑘
𝑋̆
𝑘
𝐴̆
𝑇

𝑘
+ 𝐴̆
𝑘
𝐵̆
𝑘−1

𝑄
𝑘−1,𝑘

𝐵̆
𝑇

𝑘
+ 𝐴̆
𝑠,𝑘
𝑋̆
𝑘
𝐴̆
𝑇

𝑠,𝑘

+ 𝐵̆
𝑘
𝑄
𝑘,𝑘−1

𝐵̆
𝑇

𝑘−1
𝐴̆
𝑇

𝑘
+ 𝐵̆
𝑘
𝑄
𝑘
𝐵̆
𝑇

𝑘
,

𝑋̆
𝑘+1,𝑘

= 𝐴
𝑘
𝑋̆
𝑘
+ 𝐵̆
𝑘
𝑄
𝑘,𝑘−1

𝐵̆
𝑇

𝑘−1
.

(12)

Lemma 8 (see [32]). If 𝐴 ∈ R𝑝×𝑝 is a real matrix and 𝐵 =

diag(𝑏
1
, . . . , 𝑏

𝑝
) is a diagonal stochastic matrix, then

E {BAB 𝑇} =
[
[
[

[

E {𝑏
2

1
} ⋅ ⋅ ⋅ E {𝑏

1
𝑏
𝑝
}

... ⋅ ⋅ ⋅
...

E {𝑏
𝑝
𝑏
1
} ⋅ ⋅ ⋅ E {𝑏2

𝑝
}

]
]
]

]

⊗ 𝐴, (13)

where ⊗ is the Hadamard product (this product is defined as
[𝐴 ⊗ 𝐵]

𝑖,𝑗
= 𝐴
𝑖,𝑗
⋅ 𝐵
𝑖,𝑗
).

3.1. Recursive Robust Filter

Theorem 9. For the addressed system (6) and (7), one has the
following recursive robust filter:

𝑥
𝑘|𝑘−1

= 𝐴
𝑘−1

𝑥
𝑘−1|𝑘−1

+ 𝐵
𝑘−1

𝑄
𝑘−1,𝑘−2

𝐵
𝑇

𝑘−2
𝐶
𝑇

𝑘−1
Π
−1

𝑘−1
𝜀
𝑘−1

,

(14)

𝑃
𝑘|𝑘−1

= 𝐴
𝑘−1

𝑃
𝑘−1|𝑘−1

𝐴
𝑇

𝑘−1
+ 𝐵
𝑘−1

𝑄
𝑘−1

𝐵
𝑇

𝑘−1

+ 𝐴
𝑠,𝑘−1

𝑋
𝑘−1

𝐴
𝑇

𝑠,𝑘−1

+ 𝐴
𝑘−1

(𝐵
𝑘−2

𝑄
𝑘−2,𝑘−1

− ϝ
𝑘−1,𝑘−1

× Π
−1

𝑘−1
𝐶
𝑘−1

𝐵
𝑘−2

𝑄
𝑘−2,𝑘−1

) 𝐵
𝑇

𝑘−1

+ 𝐵
𝑘−1

(𝐵
𝑘−2

𝑄
𝑘−2,𝑘−1

− ϝ
𝑘−1,𝑘−1

× Π
−1

𝑘−1
𝐶
𝑘−1

𝐵
𝑘−2

𝑄
𝑘−2,𝑘−1

)
𝑇

𝐴
𝑇

𝑘−1

− 𝐵
𝑘−1

𝑄
𝑘−1,𝑘−2

𝐵
𝑇

𝑘−2
𝐶
𝑇

𝑘−1
Π
−1

𝑘−1
𝐶
𝑘−1

𝐵
𝑘−2

× 𝑄
𝑇

𝑘−1,𝑘−2
𝐵
𝑇

𝑘−1
,

(15)

𝜀
𝑘
= 𝑦
𝑘
− 𝐶
𝑘
𝑥
𝑘|𝑘−1

− 𝐷
𝑘
𝑅
𝑘,𝑘−1

𝐷
𝑇

𝑘−1
Π
−1

𝑘−1
𝜀
𝑘−1

, (16)

ϝ
𝑘,𝑘

= 𝑃
𝑘|𝑘−1

𝐶
𝑇

𝑘

− (𝐴
𝑘−1

ϝ
𝑘−1,𝑘−1

+ 𝐵
𝑘−1

𝑄
𝑘−1,𝑘−2

𝐵
𝑇

𝑘−2
𝐶
𝑇

𝑘−1
)

× Π
−1

𝑘−1
𝐷
𝑘−1

𝑅
𝑘,𝑘−1

𝐷
𝑇

𝑘
,

(17)
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Π
𝑘
= 𝐶
𝑘
𝑃
𝑘|𝑘−1

𝐶
𝑇

𝑘
− 𝐶
𝑘

× [ (𝐴
𝑘−1

ϝ
𝑘−1,𝑘−1

+ 𝐵
𝑘−1

𝑄
𝑘−1,𝑘−2

𝐵
𝑇

𝑘−2
𝐶
𝑇

𝑘−1
)

× Π
−1

𝑘−1
𝐷
𝑘−1

𝑅
𝑘−1,𝑘

]𝐷
𝑇

𝑘
+ Σ
𝑘
⊗ (𝐶
𝑒,𝑘
𝑋
𝑘
𝐶
𝑇

𝑒,𝑘
)

+ (𝐼 − 𝐽
𝑘
) 𝐶̆
𝑠,𝑘
𝑋̆
𝑘
𝐶
𝑇

𝑠,𝑘
(𝐼 − 𝐽

𝑘
)
𝑇

+ Σ
𝑘
⊗ (𝐶̆
𝑠,𝑘
𝑋̆
𝑘
𝐶
𝑇

𝑠,𝑘
)

+ 𝐽
𝑘
𝐶̆
𝑠,𝑘−1

𝑋̆
𝑘−1

𝐶̆
𝑇

𝑠,𝑘−1
𝐽
𝑇

𝑘
+ Σ
𝑘
⊗ (𝐶̆
𝑠,𝑘−1

𝑋̆
𝑘−1

𝐶
𝑇

𝑠,𝑘−1
)

− 𝐷
𝑘
[ (𝐴
𝑘−1

ϝ
𝑘−1,𝑘−1

+ 𝐵
𝑘−1

𝑄
𝑘−1,𝑘−2

𝐵
𝑇

𝑘−2
𝐶
𝑇

𝑘−1
)

× Π
−1

𝑘−1
𝐷
𝑘−1

𝑅
𝑘−1,𝑘

]
𝑇

𝐶
𝑇

𝑘
+ 𝐷
𝑘
𝑅
𝑘
𝐷
𝑇

𝑘

+ Σ
𝑘
⊗ (𝐷
𝑒,𝑘
𝑅
𝑘
𝐷
𝑇

𝑒,𝑘
) − 𝐷

𝑘
𝑅
𝑘,𝑘−1

𝐷
𝑇

𝑘−1

× Π
−1

𝑘−1
𝐷
𝑘−1

𝑅
𝑇

𝑘,𝑘−1
𝐷
𝑇

𝑘
,

(18)

𝑥
𝑘|𝑘

= 𝑥
𝑘|𝑘−1

+ ϝ
𝑘,𝑘
Π
−1

𝑘
𝜀
𝑘
,

𝑃
𝑘|𝑘

= 𝑃
𝑘|𝑘−1

− ϝ
𝑘,𝑘
Π
−1

𝑘
ϝ
𝑇

𝑘,𝑘
,

(19)

where 𝜀
𝑘
is the innovation with covariance Π

𝑘
, the matrix ϝ

𝑘,𝑘

is the covariance between 𝑥
𝑘
and 𝜀
𝑘
, the vectors 𝑥

𝑘|𝑘
and 𝑥

𝑘|𝑘−1

are the filter and one-step predictor, and the matrices 𝑃
𝑘|𝑘

and
𝑃
𝑘|𝑘−1

are the filter error covariance and one-step prediction

error covariance. The initial values are 𝑥
0|0

= [𝑥̆
𝑇

0
0]
𝑇

, 𝑃
0|0

=

diag(𝑃̆
0
, 0), and 𝜀

1
= 𝑦
1
− 𝐶
1
𝑥
1|0
.

Proof. Please see Appendix A.

Remark 10. In the traditional recursive estimation problem,
the innovation is calculated as 𝜀

𝑘
= 𝑦
𝑘
− 𝐶
𝑘
𝑥
𝑘|𝑘−1

. However,
due to possible sensor delay which occurs in a random way,
this is not true for the problem at hand; thus, we have to
recalculate the innovation as in (16). Furthermore, it can be
seen that the second term on the right-hand side of (14), the
last four terms on the right-hand side of (15), the second
term of the right-hand side of (17), and the last ten terms on
the right-hand side of (18) are caused by the random delays,
the stochastic uncertainties, and autocorrelated noises.These
terms constitute the main differences between our work and
the traditional Kalman filter.

Next, we will derive the recursive robust predictor and
recursive robust smoother based onTheorem 9.

3.2. Recursive Robust Predictor

Theorem 11. For the addressed system (6) and (7), one has the
following 𝐿-step (𝐿 ≥ 2) recursive robust predictor:

𝑥
𝑘+𝐿|𝑘

= 𝐴
𝑘+𝐿−1

𝑥
𝑘+𝐿−1|𝑘

,

𝑃
𝑘+𝐿|𝑘

= 𝐴
𝑘+𝐿−1

𝑃
𝑘+𝐿−1|𝑘

𝐴
𝑇

𝑘+𝐿−1

+ 𝐴
𝑘+𝐿−1

𝐵
𝑘+𝐿−2

𝑄
𝑘+𝐿−2,𝑘+𝐿−1

𝐵
𝑇

𝑘+𝐿−1
+ 𝐴
𝑠,𝑘+𝐿−1

× 𝑋
𝑘+𝐿−1

𝐴
𝑇

𝑠,𝑘+𝐿−1
+ 𝐵
𝑘+𝐿−1

𝑄
𝑘+𝐿−1,𝑘+𝐿−2

× 𝐵
𝑇

𝑘+𝐿−2
𝐴
𝑇

𝑘+𝐿−1
+ 𝐵
𝑘+𝐿−1

𝑄
𝑘+𝐿−1

𝐵
𝑇

𝑘+𝐿−1
,

(20)

where the initial values 𝑥
𝑘+1|𝑘

and 𝑃
𝑘+1|𝑘

can be calculated as
in Theorem 9.

Proof. Please see Appendix B.

3.3. Recursive Smoother

Theorem 12. For the addressed system (6) and (7), one has the
following robust recursive 𝐿-step (𝐿 > 0) fixed-lag smoother:

𝑥
𝑘|𝑘+𝐿

= 𝑥
𝑘|𝑘+𝐿−1

+ ϝ
𝑘,𝑘+𝐿

Π
−1

𝑘+𝐿
𝜀
𝑘+𝐿

,

ϝ
𝑘,𝑘+𝐿

= Ψ
𝑘+𝐿

𝐶
𝑇

𝑘+𝐿
− ϝ
𝑘,𝑘+𝐿−1

Π
−1

𝑘+𝐿−1

× 𝐷
𝑘+𝐿−1

𝑅
𝑇

𝑘+𝐿,𝑘+𝐿−1
𝐷
𝑇

𝑘+𝐿
,

Ψ
𝑘+1

= 𝑃
𝑘|𝑘−1

𝐴
𝑇

𝑘
− ϝ
𝑘,𝑘
Π
−1

𝑘
ϝ
𝑇

𝑘,𝑘
𝐴
𝑇

𝑘
+ 𝐵
𝑘−1

𝑄
𝑘−1,𝑘

𝐵
𝑇

𝑘

− ϝ
𝑘,𝑘
Π
−1

𝑘
𝐶
𝑘
𝐵
𝑘−1

𝑄
𝑇

𝑘,𝑘−1
𝐵
𝑇

𝑘
,

Ψ
𝑘+𝐿

= Ψ
𝑘+𝐿−1

𝐴
𝑇

𝑘+𝐿−1
− ϝ
𝑘,𝑘+𝐿−1

Π
−1

𝑘+𝐿−1
ϝ
𝑘+𝐿−1,𝑘+𝐿−1

− ϝ
𝑘,𝑘+𝐿−1

Π
−1

𝑘+𝐿−1
𝐶
𝑘+𝐿−1

𝐵
𝑘+𝐿−2

× 𝑄
𝑇

𝑘+𝐿−1,𝑘+𝐿−2
𝐵
𝑇

𝑘+𝐿−1
, (𝐿 > 1) ,

𝑃
𝑘|𝑘+𝐿

= 𝑃
𝑘|𝑘+𝐿−1

− ϝ
𝑘,𝑘+𝐿

Π
−1

𝑘+𝐿
ϝ
𝑇

𝑘,𝑘+𝐿
,

(21)

where the initial values 𝑥
𝑘|𝑘
, 𝑃
𝑘|𝑘
, and ϝ

𝑘,𝑘
are supplied by

Theorem 9.

Proof. Please see Appendix C.

4. An Illustrative Example

Consider the following uncertain system with different delay
rates sensor network and autocorrelated process noises:

𝑥̆
𝑘+1

= ([
0.95 0.1

0 0.95
] + [

0.1 0

0 0.1
] 𝜇
𝑘
) 𝑥̆
𝑘
+ [

0.3

0.1
] 𝜔
𝑘
, (22)

𝜔
𝑘
= 𝜁
𝑘
+ 𝜁
𝑘−1

, (23)

̆𝑦
𝑖

𝑘
= (𝐶̆
𝑖

𝑘
+ 𝐶̆
𝑖

𝑘,𝑠
𝜂
𝑖

𝑘
) 𝑥̆
𝑘
+ V̆𝑖
𝑘
, 𝑖 = 1, 2, (24)

𝑦
𝑖

𝑘
= (1 − 𝜆

𝑖

𝑘
) ̆𝑦
𝑖

𝑘
+ 𝜆
𝑖

𝑘
̆𝑦
𝑖

𝑘−1
, 𝑖 = 1, 2, (25)

where 𝑥̆
𝑘
∈ R2 is the state to be estimated.The vectors 𝜁

𝑘
∈ R,

𝜇
𝑘
∈ R, 𝜂𝑖

𝑘
∈ R, and V𝑖

𝑘
∈ R, 𝑖 = 1, 2 are zero-mean Gaussian

white noises with covariances 0.5, 1, 1, and 1, respectively.
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Figure 1: MSE1 filter, predictor, and smoother.

Without loss of generality, the process noise 𝜔
𝑘
is chosen to

be as defined in (23).
In the simulation, the initial value 𝑥̆

0
has mean E{𝑥̆

0
} =

𝑥̆
𝑇

0
= [100 10]

𝑇 and covariance 𝑃̆
0

= diag(20, 1). The
variables 𝜆𝑖

𝑘
∈ R, 𝑖 = 1, 2 are binary switching sequences

taking values on 1 with Prob{𝜆1
𝑘
= 1} = E{𝜆1

𝑘
} = 𝛽1
𝑘
= 0.15

and Prob{𝜆2
𝑘
= 1} = E{𝜆2

𝑘
} = 𝛽2

𝑘
= 0.25, respectively,

and the matrices are set as 𝐶̆1
𝑘

= [0 1], 𝐶̆2
𝑘

= [1 0],
𝐶̆1
𝑘,𝑠

= [0 0.1], and 𝐶̆2
𝑘,𝑠

= [0.1 0]. The newly obtained
recursive robust estimators and the filter of Zeng et al. [31]
are compared in the simulation. Let MSE1 denotes the mean-
square error for estimation of the first component of 𝑥̆

𝑘
;

that is, (1/𝐾)∑𝐾
𝑘=1

{[1 0](𝑥̆
𝑘
− ̂̆𝑥
𝑘|𝑘
)}, where 𝐾 is the number

of the samples. Similarly, MSE2 denotes the mean-square
error for estimation of the second component of 𝑥̆

𝑘
; that is,

(1/𝐾)∑
𝐾

𝑘=1
{[0 1](𝑥̆

𝑘
− ̂̆𝑥
𝑘|𝑘
)}.

From Figures 1 and 2, we can see that the smoother
has the best performance and the predictor has the worst
performance. This is due to the fact that smoother uses the
most measurement information and the predictor uses the
least measurement information.

From Figures 3 and 4, we can see that the filter developed
in this work has better performance than the filter of Zeng
et al. [31]. This is due to the fact that the autocorrelated
measurement noise 𝑉

𝑘
was treated as zero-mean Gaussian

white noise in the filter of Zeng et al. [31].

5. Conclusions

In this paper, we have studied the recursive robust estimation
problem for a class of uncertain systems with autocorrelated
process noises and different delay rates sensor network. The
system model and measurement model are both subject
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Figure 2: MSE2 filter, predictor, and smoother.
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Figure 3: MSE1 filter of this work and Zeng et al. [31].

to stochastic uncertainties. The process noises are one-step
autocorrelated across time. Each sensor in the sensor network
has a different delay rate and the delay rate has been described
by an individual binary switching sequence obeying a con-
ditional probability distributed. Based on an IAA and the
OPT, recursive robust estimators including filter, predictor,
and smoother have been obtained. Simulation results have
indicated that the smoother has the best performance and the
predictor has the worst performance, and the filter obtained
in this work has better performance than the filter of Zeng et
al. [31].
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Figure 4: MSE2 filter of this work and Zeng et al. [31].

Appendices

A. The Proof of Theorem 9

Proof. Using the OPT, the one-step measurement prediction
𝑦
𝑘|𝑘−1

can be calculated as follows:

𝑦
𝑘|𝑘−1

=

𝑘−1

∑
𝑖=1

E {𝑦
𝑘
𝜀
𝑇

𝑖
}Π
−1

𝑖
𝜀
𝑖

=

𝑘−1

∑
𝑖=1

E {𝐶
𝑘
𝑥
𝑘
𝜀
𝑇

𝑖
}Π
−1

𝑖
𝜀
𝑖
+

𝑘−1

∑
𝑖=1

E {𝐷
𝑘
𝑉
𝑘
𝜀
𝑇

𝑖
}Π
−1

𝑖
𝜀
𝑖

= 𝐶
𝑘
𝑥
𝑘|𝑘−1

+

𝑘−1

∑
𝑖=1

E {𝐷
𝑘
𝑉
𝑘
𝜀
𝑇

𝑖
}Π
−1

𝑖
𝜀
𝑖
.

(A.1)

Taking into account the fact that 𝑉
𝑘
is one-step autocorre-

lated, we have from (4), (8), and (9) the following:

E {𝐷
𝑘
𝑉
𝑘
𝜀
𝑇

𝑖
} = 0, 𝑖 ≤ 𝑘 − 2,

E {𝐷
𝑘
𝑉
𝑘
𝜀
𝑇

𝑘−1
} = E {𝐷

𝑘
𝑉
𝑘
(𝑦
𝑘−1

− 𝑦
𝑘−1|𝑘−2

)
𝑇

}

= E {𝐷
𝑘
𝑉
𝑘
𝑉
𝑇

𝑘−1
𝐷
𝑇

𝑘−1
}

= 𝐷
𝑘
𝑅
𝑘,𝑘−1

𝐷
𝑇

𝑘−1
.

(A.2)

Substituting (A.2) into (A.1), we have

𝑦
𝑘|𝑘−1

= 𝐶
𝑘
𝑥
𝑘|𝑘−1

+ 𝐷
𝑘
𝑅
𝑘,𝑘−1

𝐷
𝑇

𝑘−1
Π
−1

𝑘−1
𝜀
𝑘−1

. (A.3)

Therefore, the innovation 𝜀
𝑘
can be calculated as follows:

𝜀
𝑘
= 𝑦
𝑘
− 𝑦
𝑘|𝑘−1

= 𝑦
𝑘
− 𝐶
𝑘
𝑥
𝑘|𝑘−1

− 𝐷
𝑘
𝑅
𝑘,𝑘−1

𝐷
𝑇

𝑘−1
Π
−1

𝑘−1
𝜀
𝑘−1

= (𝐶
𝑘
+ 𝐶
𝑘
) 𝑥
𝑘
+ 𝐶
𝑠,𝑘
𝑥
𝑘
+ 𝐷
𝑘
𝑉
𝑘
− 𝐶
𝑘
𝑥
𝑘|𝑘−1

− 𝐷
𝑘
𝑅
𝑘,𝑘−1

𝐷
𝑇

𝑘−1
Π
−1

𝑘−1
𝜀
𝑘−1

= 𝐶
𝑘
𝑥
𝑘|𝑘−1

+ 𝐶
𝑘
𝑥
𝑘
+ 𝐶
𝑠,𝑘
𝑥
𝑘
+ 𝐷
𝑘
𝑉
𝑘

− 𝐷
𝑘
𝑅
𝑘,𝑘−1

𝐷
𝑇

𝑘−1
Π
−1

𝑘−1
𝜀
𝑘−1

,

(A.4)

where 𝑥
𝑘|𝑘−1

= 𝑥
𝑘
− 𝑥
𝑘|𝑘−1

.
Again, according to the OPT, the state prediction 𝑥

𝑘|𝑘−1

can be obtained as follows:

𝑥
𝑘|𝑘−1

=

𝑘−1

∑
𝑖=1

E {𝑥
𝑘
𝜀
𝑇

𝑖
}Π
−1

𝑖
𝜀
𝑖
,

=

𝑘−1

∑
𝑖=1

E { (𝐴
𝑘−1

𝑥
𝑘−1

+ 𝐴
𝑠,𝑘−1

𝜇
𝑘−1

𝑥
𝑘−1

+𝐵
𝑘−1

𝜔
𝑘−1

) 𝜀
𝑇

𝑖
}Π
−1

𝑖
𝜀
𝑖

= 𝐴
𝑘−1

𝑥
𝑘−1|𝑘−1

+ 𝐵
𝑘−1

𝑘−1

∑
𝑖=1

E {𝜔
𝑘−1

𝜀
𝑇

𝑖
}Π
−1

𝑖
𝜀
𝑖
.

(A.5)

Taking (3) into consideration, the expectationE{𝜔
𝑘−1

𝜀𝑇
𝑖
} can

be calculated as follows:

E {𝜔
𝑘−1

𝜀
𝑇

𝑖
} = 0, 𝑖 ≤ 𝑘 − 2,

E {𝜔
𝑘−1

𝜀
𝑇

𝑘−1
} = E {𝜔

𝑘−1
(𝑦
𝑘−1

− 𝑦
𝑘−1|𝑘−2

)
𝑇

}

= E {𝜔
𝑘−1

𝑥
𝑇

𝑘−1
𝐶
𝑇

𝑘−1
} ,

= E {𝜔
𝑘−1

(𝐴
𝑘−2

𝑥
𝑘−2

+ 𝐴
𝑠,𝑘−2

𝜇
𝑘−2

𝑥
𝑘−2

+𝐵
𝑘−2

𝜔
𝑘−2

)
𝑇

} 𝐶
𝑇

𝑘−1

= 𝑄
𝑘−1,𝑘−2

𝐵
𝑇

𝑘−2
𝐶
𝑇

𝑘−1
.

(A.6)

Substituting (A.6) into (A.5), we have

𝑥
𝑘|𝑘−1

= 𝐴
𝑘−1

𝑥
𝑘−1|𝑘−1

+ 𝐵
𝑘−1

𝑄
𝑘−1,𝑘−2

× 𝐵
𝑇

𝑘−2
𝐶
𝑇

𝑘−1
Π
−1

𝑘−1
𝜀
𝑘−1

.

(A.7)
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Therefore, the one-step prediction error 𝑥
𝑘|𝑘−1

can be calcu-
lated as follows:

𝑥
𝑘|𝑘−1

= 𝑥
𝑘
− 𝑥
𝑘|𝑘−1

= (𝐴
𝑘−1

+ 𝐴
𝑠,𝑘−1

𝜇
𝑘−1

) 𝑥
𝑘−1

+ 𝐵
𝑘−1

𝜔
𝑘−1

− 𝐴
𝑘−1

𝑥
𝑘−1|𝑘−1

− 𝐵
𝑘−1

𝑄
𝑘−1,𝑘−2

𝐵
𝑇

𝑘−2
𝐶
𝑇

𝑘−1
Π
−1

𝑘−1
𝜀
𝑘−1

,

= 𝐴
𝑘−1

𝑥
𝑘−1|𝑘−1

+ 𝐴
𝑠,𝑘−1

𝜇
𝑘−1

𝑥
𝑘−1

+ 𝐵
𝑘−1

𝜔
𝑘−1

− 𝐵
𝑘−1

𝑄
𝑘−1,𝑘−2

𝐵
𝑇

𝑘−2
𝐶
𝑇

𝑘−1
Π
−1

𝑘−1
𝜀
𝑘−1

,

(A.8)

where 𝑥
𝑘−1|𝑘−1

is the filter error at time instant 𝑘 − 1. Taking
into account the fact that 𝜔

𝑘
is one-step autocorrelated across

time and 𝜇
𝑘
is uncorrelated with other signals, the one-

step prediction error covariance 𝑃
𝑘|𝑘−1

can be calculated as
follows:
𝑃
𝑘|𝑘−1

= E {𝑥
𝑘|𝑘−1

𝑥
𝑇

𝑘|𝑘−1
}

= 𝐴
𝑘−1

𝑃
𝑘−1|𝑘−1

𝐴
𝑇

𝑘−1
+ 𝐴
𝑘−1

E {𝑥
𝑘−1|𝑘−1

𝜔
𝑇

𝑘−1
} 𝐵
𝑇

𝑘−1

+ 𝐴
𝑠,𝑘−1

𝑋
𝑘−1

𝐴
𝑇

𝑠,𝑘−1
+ 𝐵
𝑘−1

E {𝜔
𝑘−1

𝑥
𝑇

𝑘−1|𝑘−1
}𝐴
𝑇

𝑘−1

+ 𝐵
𝑘−1

𝑄
𝑘−1

𝐵
𝑇

𝑘−1
− 𝐵
𝑘−1

E {𝜔
𝑘−1

𝜀
𝑇

𝑘−1
}Π
−1

𝑘−1
𝐶
𝑘−1

× 𝐵
𝑘−2

𝑄
𝑇

𝑘−1|𝑘−2
𝐵
𝑇

𝑘−1

− 𝐵
𝑘−1

𝑄
𝑘−1,𝑘−2

𝐵
𝑇

𝑘−2
𝐶
𝑇

𝑘−1
Π
−1

𝑘−1
E {𝜀
𝑘−1

𝜔
𝑇

𝑘−1
} 𝐵
𝑇

𝑘−1

+ 𝐵
𝑘−1

𝑄
𝑘−1,𝑘−2

𝐵
𝑇

𝑘−2
𝐶
𝑇

𝑘−1
Π
−1

𝑘−1
𝐶
𝑘−1

× 𝐵
𝑘−2

𝑄
𝑇

𝑘−1|𝑘−2
𝐵
𝑇

𝑘−1
,

(A.9)

where the expectation E{𝜔
𝑘−1

𝜀𝑇
𝑘−1

} can be calculated as in
(A.6) and expectation E{𝑥

𝑘−1|𝑘−1
𝜔𝑇
𝑘−1

} can be obtained as
follows:
E {𝑥
𝑘−1|𝑘−1

𝜔
𝑇

𝑘−1
} = E {𝑥

𝑘−1
𝜔
𝑇

𝑘−1
} −E {𝑥

𝑘−1|𝑘−1
𝜔
𝑇

𝑘−1
}

= 𝐵
𝑘−2

E {𝜔
𝑘−2

𝜔
𝑇

𝑘−1
}

−E{(

𝑘−1

∑
𝑖=1

E {𝑥
𝑘−1

𝜀
𝑇

𝑖
}Π
−1

𝑖
𝜀
𝑖
)𝜔
𝑇

𝑘−1
}

= 𝐵
𝑘−2

𝑄
𝑘−2,𝑘−1

−E {𝑥
𝑘−1

𝜀
𝑇

𝑘−1
}Π
−1

𝑘−1

×E {𝜀
𝑘−1

𝜔
𝑇

𝑘−1
}

= 𝐵
𝑘−2

𝑄
𝑘−2,𝑘−1

− ϝ
𝑘−1,𝑘−1

Π
−1

𝑘−1
𝐶
𝑘−1

× 𝐵
𝑘−2

𝑄
𝑘−2,𝑘−1

,

(A.10)

where the third equality in (A.10) holds since 𝜔
𝑘
is one-

step autocorrelated across time. Substituting (A.10) into (A.9)
yields (15).

Noting the fact that 𝑥
𝑘|𝑘−1

is orthogonal to 𝑥
𝑘|𝑘−1

, we have
from (9) and (A.4) the following:

ϝ
𝑘,𝑘

= E {𝑥
𝑘
𝜀
𝑇

𝑘
}

= E {𝑥
𝑘
(𝐶
𝑘
𝑥
𝑘|𝑘−1

+ 𝐶
𝑘
𝑥
𝑘
+ 𝐶
𝑠,𝑘
𝑥
𝑘
+ 𝐷
𝑘
𝑉
𝑘

−𝐷
𝑘
𝑅
𝑘,𝑘−1

𝐷
𝑇

𝑘−1
Π
−1

𝑘−1
𝜀
𝑘−1

)
𝑇

}

= 𝑃
𝑘|𝑘−1

𝐶
𝑇

𝑘
−E {𝑥

𝑘
𝜀
𝑇

𝑘−1
}Π
−1

𝑘−1
𝐷
𝑘−1

𝑅
𝑘,𝑘−1

𝐷
𝑇

𝑘

= 𝑃
𝑘|𝑘−1

𝐶
𝑇

𝑘
− (𝐴
𝑘−1

E {𝑥
𝑘−1

𝜀
𝑇

𝑘−1
} + 𝐵
𝑘−1

E {𝜔
𝑘−1

𝜀
𝑇

𝑘−1
})

× Π
−1

𝑘−1
𝐷
𝑘−1

𝑅
𝑘,𝑘−1

𝐷
𝑇

𝑘

= 𝑃
𝑘|𝑘−1

𝐶
𝑇

𝑘
− (𝐴
𝑘−1

ϝ
𝑘−1,𝑘−1

+ 𝐵
𝑘−1

𝑄
𝑘−1,𝑘−2

× 𝐵
𝑇

𝑘−2
𝐶
𝑇

𝑘−1
)Π
−1

𝑘−1
𝐷
𝑘−1

𝑅
𝑘,𝑘−1

𝐷
𝑇

𝑘
.

(A.11)

It implies from (9), (A.4), and Lemmas 5 and 8 that the
expectation Π

𝑘
can be obtained as follows:

Π
𝑘
= E {𝜀

𝑘
𝜀
𝑇

𝑘
}

= E { (𝐶
𝑘
𝑥
𝑘|𝑘−1

+ 𝐶
𝑘
𝑥
𝑘
+ 𝐶
𝑠,𝑘
𝑥
𝑘
+ 𝐷
𝑘
𝑉
𝑘

−𝐷
𝑘
𝑅
𝑘,𝑘−1

𝐷
𝑇

𝑘−1
Π
−1

𝑘−1
𝜀
𝑘−1

)

× (𝐶
𝑘
𝑥
𝑘|𝑘−1

+ 𝐶
𝑘
𝑥
𝑘
+ 𝐶
𝑠,𝑘
𝑥
𝑘
+ 𝐷
𝑘
𝑉
𝑘

−𝐷
𝑘
𝑅
𝑘,𝑘−1

𝐷
𝑇

𝑘−1
Π
−1

𝑘−1
𝜀
𝑘−1

)
𝑇

}

= 𝐶
𝑘
𝑃
𝑘|𝑘−1

𝐶
𝑇

𝑘
+ 𝐶
𝑘
E {𝑥
𝑘|𝑘−1

𝑉
𝑇

𝑘
}𝐷
𝑇

𝑘

+E {𝐶
𝑘
𝑥
𝑘
𝑥
𝑇

𝑘
𝐶
𝑇

𝑘
} +E {𝐶

𝑠,𝑘
𝑥
𝑘
𝑥
𝑇

𝑘
𝐶
𝑇

𝑠,𝑘
}

+ 𝐷
𝑘
E {𝑉
𝑘
𝑥
𝑇

𝑘|𝑘−1
} 𝐶
𝑇

𝑘
+E {𝐷

𝑘
𝑉
𝑘
𝑉
𝑇

𝑘
𝐷
𝑇

𝑘
}

−E {𝐷
𝑘
𝑉
𝑘
𝜀
𝑇

𝑘−1
}Π
−1

𝑘−1
𝐷
𝑘−1

𝑅
𝑇

𝑘,𝑘−1
𝐷
𝑇

𝑘

− 𝐷
𝑘
𝑅
𝑘,𝑘−1

𝐷
𝑇

𝑘−1
Π
−1

𝑘−1
E {𝜀
𝑘−1

𝑉
𝑇

𝑘
𝐷
𝑇

𝑘
}

+ 𝐷
𝑘
𝑅
𝑘,𝑘−1

𝐷
𝑇

𝑘−1
Π
−1

𝑘−1
𝐷
𝑘−1

𝑅
𝑇

𝑘,𝑘−1
𝐷
𝑇

𝑘
,

(A.12)

where the remaining expectations can be obtained as follows:

E {𝑥
𝑘|𝑘−1

𝑉
𝑇

𝑘
}

= E {𝑥
𝑘
𝑉
𝑇

𝑘
} −E {𝑥

𝑘|𝑘−1
𝑉
𝑇

𝑘
}

= 0 −E{(

𝑘−1

∑
𝑖=1

E {𝑥
𝑘
𝜀
𝑇

𝑖
}Π
−1

𝑖
𝜀
𝑖
)𝑉
𝑇

𝑘
}
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= −E {𝑥
𝑘
𝜀
𝑇

𝑘−1
}Π
−1

𝑖
E {𝜀
𝑘−1

𝑉
𝑇

𝑘
}

= − (𝐴
𝑘−1

E {𝑥
𝑘−1

𝜀
𝑇

𝑘−1
}

+𝐵
𝑘−1

E {𝜔
𝑘−1

𝜀
𝑇

𝑘−1
})

× Π
−1

𝑘−1
𝐷
𝑘−1

𝑅
𝑘−1,𝑘

= − (𝐴
𝑘−1

ϝ
𝑘−1,𝑘−1

+𝐵
𝑘−1

𝑄
𝑘−1,𝑘−2

𝐵
𝑇

𝑘−2
𝐶
𝑇

𝑘−1
)

× Π
−1

𝑘−1
𝐷
𝑘−1

𝑅
𝑘−1,𝑘

,

E {𝐶
𝑘
𝑥
𝑘
𝑥
𝑇

𝑘
𝐶
𝑇

𝑘
}

= E {𝐽
𝑘
𝐶
𝑒,𝑘
𝑥
𝑘
𝑥
𝑇

𝑘
𝐶
𝑇

𝑒,𝑘
𝐽
𝑇

𝑘
}

= Σ
𝑘
⊗ (𝐶
𝑒,𝑘
𝑋
𝑘
𝐶
𝑇

𝑒,𝑘
) ,

E {𝐶
𝑠,𝑘
𝑥
𝑘
𝑥
𝑇

𝑘
𝐶
𝑇

𝑠,𝑘
}

= E{ [(𝐼 − 𝐽
𝑘
) 𝐶̆
𝑠,𝑘
𝜂
𝑘
𝐽
𝑘
𝐶̆
𝑠,𝑘−1

𝜂
𝑘−1

]

× [

[

𝑥̆
𝑘
𝑥̆𝑇
𝑘

𝑥̆
𝑘
𝑥̆𝑇
𝑘−1

𝑥̆
𝑘−1

𝑥̆𝑇
𝑘

𝑥̆
𝑘−1

𝑥̆𝑇
𝑘−1

]

]

×[(𝐼 − 𝐽
𝑘
)𝐶̆
𝑠,𝑘
𝜂
𝑘

𝐽
𝑘
𝐶̆
𝑠,𝑘−1

𝜂
𝑘−1

]
𝑇

}

= E { (𝐼 − 𝐽
𝑘
) 𝐶̆
𝑠,𝑘
E {𝜂
𝑘
𝑥̆
𝑘
𝑥̆
𝑇

𝑘
𝜂
𝑇

𝑘
}

× 𝐶
𝑇

𝑠,𝑘
(𝐼 − 𝐽
𝑘
)
𝑇

}

+E {(𝐼 − 𝐽
𝑘
) 𝐶̆
𝑠,𝑘
E {𝜂
𝑘
} 𝑋̆
𝑘,𝑘−1

× E {𝜂
𝑇

𝑘−1
} 𝐶̆
𝑇

𝑠,𝑘−1
𝐽
𝑇

𝑘
}

+E {𝐽
𝑘
𝐶̆
𝑠,𝑘−1

E {𝜂
𝑘−1

} 𝑋̆
𝑘−1,𝑘

E{𝜂
𝑘
}
𝑇

× 𝐶̆
𝑇

𝑠,𝑘
(1 − 𝐽

𝑘
)
𝑇

}

+E {𝐽
𝑘
𝐶̆
𝑠,𝑘−1

E {𝜂
𝑘−1

𝑥̆
𝑘−1

𝑥̆
𝑇

𝑘−1
𝜂
𝑇

𝑘−1
}

× 𝐶̆
𝑇

𝑠,𝑘−1
𝐽
𝑇

𝑘
}

= E {(𝐼 − 𝐽
𝑘
) 𝐶̆
𝑠,𝑘
𝑋̆
𝑘
𝐶
𝑇

𝑠,𝑘
(𝐼 − 𝐽
𝑘
)
𝑇

}

+E {𝐽
𝑘
𝐶̆
𝑠,𝑘−1

𝑋̆
𝑘−1

𝐶̆
𝑇

𝑠,𝑘−1
𝐽
𝑇

𝑘
}

= E { [(𝐼 − 𝐽
𝑘
) − 𝐽
𝑘
] 𝐶̆
𝑠,𝑘
𝑋̆
𝑘
𝐶
𝑇

𝑠,𝑘

× [(𝐼 − 𝐽
𝑘
) − 𝐽
𝑘
]
𝑇

}

+E { (𝐽
𝑘
+ 𝐽
𝑘
) 𝐶̆
𝑠,𝑘−1

𝑋̆
𝑘−1

× 𝐶̆
𝑇

𝑠,𝑘−1
(𝐽
𝑘
+ 𝐽
𝑘
)
𝑇

}

= (𝐼 − 𝐽
𝑘
) 𝐶̆
𝑠,𝑘
𝑋̆
𝑘
𝐶
𝑇

𝑠,𝑘
(𝐼 − 𝐽

𝑘
)
𝑇

+ Σ
𝑘
⊗ (𝐶̆
𝑠,𝑘
𝑋̆
𝑘
𝐶
𝑇

𝑠,𝑘
)

+ 𝐽
𝑘
𝐶̆
𝑠,𝑘−1

𝑋̆
𝑘−1

𝐶̆
𝑇

𝑠,𝑘−1
𝐽
𝑇

𝑘

+ Σ
𝑘
⊗ (𝐶̆
𝑠,𝑘−1

𝑋̆
𝑘−1

𝐶
𝑇

𝑠,𝑘−1
) ,

E {𝐷
𝑘
𝑉
𝑘
𝑉
𝑇

𝑘
𝐷
𝑇

𝑘
}

= E {(𝐷
𝑘
+ 𝐷
𝑘
)𝑉
𝑘
𝑉
𝑇

𝑘
(𝐷
𝑘
+ 𝐷
𝑘
)
𝑇

}

= E {𝐷
𝑘
𝑉
𝑘
𝑉
𝑇

𝑘
𝐷
𝑇

𝑘
}

+E {𝐽
𝑘
𝐷
𝑒,𝑘
𝑉
𝑘
𝑉
𝑇

𝑘
𝐷
𝑇

𝑒,𝑘
𝐽
𝑇

𝑘
}

= 𝐷
𝑘
𝑅
𝑘
𝐷
𝑇

𝑘
+ Σ
𝑘
⊗ (𝐷
𝑒,𝑘
𝑅
𝑘
𝐷
𝑇

𝑒,𝑘
) ,

(A.13)

where Lemmas 5–8 have been used. Substituting (A.13) into
(A.12) yields to (18).

Again, by using the OPT, the state estimation 𝑥
𝑘|𝑘

can be
calculated as follows:

𝑥
𝑘|𝑘

=

𝑘

∑
𝑖=1

E {𝑥
𝑘
𝜀
𝑇

𝑖
}Π
−1

𝑖
𝜀
𝑖

=

𝑘−1

∑
𝑖=1

E {𝑥
𝑘
𝜀
𝑇

𝑖
}Π
−1

𝑖
𝜀
𝑖
+E {𝑥

𝑘
𝜀
𝑇

𝑘
}Π
−1

𝑘
𝜀
𝑘

= 𝑥
𝑘|𝑘−1

+ ϝ
𝑘,𝑘
Π
−1

𝑘
𝜀
𝑘
.

(A.14)

Therefore, the estimation error 𝑥
𝑘|𝑘

can be obtained as
follows:

𝑥
𝑘|𝑘

= 𝑥
𝑘
− 𝑥
𝑘|𝑘

= 𝑥
𝑘
− 𝑥
𝑘|𝑘−1

− ϝ
𝑘,𝑘
Π
−1

𝑘
𝜀
𝑘

= 𝑥
𝑘|𝑘−1

− ϝ
𝑘,𝑘
Π
−1

𝑘
𝜀
𝑘
.

(A.15)

From (A.15), the estimation error covariance 𝑃
𝑘|𝑘

can be
calculated as follows:

𝑃
𝑘|𝑘

= E {𝑥
𝑘|𝑘
𝑥
𝑇

𝑘|𝑘
}

= 𝑃
𝑘|𝑘−1

−E {𝑥
𝑘|𝑘−1

𝜀
𝑇

𝑘
}Π
−1

𝑘
ϝ
𝑇

𝑘,𝑘

− ϝ
𝑘,𝑘
Π
−1

𝑘
E {𝜀
𝑘
𝑥
𝑇

𝑘|𝑘−1
} + ϝ
𝑘,𝑘
Π
−1

𝑘
ϝ
𝑇

𝑘,𝑘
,

(A.16)
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where the remaining expectation E{𝑥
𝑘|𝑘−1

𝜀𝑇
𝑘
} can be calcu-

lated as follows:

E {𝑥
𝑘|𝑘−1

𝜀
𝑇

𝑘
} = E {𝑥

𝑘
𝜀
𝑇

𝑘
} −E {𝑥

𝑘|𝑘−1
𝜀
𝑇

𝑘
}

= ϝ
𝑘,𝑘

−E{

𝑘−1

∑
𝑖=1

E {𝑥
𝑘
𝜀
𝑇

𝑖
}Π
−1

𝑖
𝜀
𝑖
𝜀
𝑇

𝑘
}

= ϝ
𝑘,𝑘
.

(A.17)

Substituting (A.17) into (A.16), we have

𝑃
𝑘|𝑘

= 𝑃
𝑘|𝑘−1

− ϝ
𝑘,𝑘
Π
−1

𝑘
ϝ
𝑇

𝑘,𝑘
, (A.18)

which completes the proof of Theorem 9.

B. The Proof of Theorem 11

Proof. Taking into account the fact that the process noise 𝜔
𝑘

is one-step autocorrelated across time, the 𝐿-step prediction
𝑥
𝑘+𝐿|𝑘

can be calculated as follows:

𝑥
𝑘+𝐿|𝑘

=

𝑘

∑
𝑖=1

E {𝑥
𝑘+𝐿

𝜀
𝑇

𝑖
}Π
−1

𝑖
𝜀
𝑖

=

𝑘

∑
𝑖=1

E { [(𝐴
𝑘+𝐿−1

+ 𝐴
𝑠,𝑘+𝐿−1

𝜇
𝑘+𝐿−1

) 𝑥
𝑘+𝐿−1

+𝐵
𝑘+𝐿−1

𝜔
𝑘+𝐿−1

] 𝜀
𝑇

𝑖
}Π
−1

𝑖
𝜀
𝑖

= 𝐴
𝑘+𝐿−1

𝑥
𝑘+𝐿−1|𝑘

.

(B.1)

Therefore, the 𝐿-step prediction error 𝑥
𝑘+𝐿|𝑘

can be obtained
as follows:

𝑥
𝑘+𝐿|𝑘

= 𝑥
𝑘+𝐿

− 𝑥
𝑘+𝐿|𝑘

= (𝐴
𝑘+𝐿−1

+ 𝐴
𝑠,𝑘+𝐿−1

𝜇
𝑘+𝐿−1

) 𝑥
𝑘+𝐿−1

+ 𝐵
𝑘+𝐿−1

𝜔
𝑘+𝐿−1

− 𝐴
𝑘+𝐿−1

𝑥
𝑘+𝐿−1|𝑘

= 𝐴
𝑘+𝐿−1

𝑥
𝑘+𝐿−1|𝑘

+ 𝐴
𝑠,𝑘+𝐿−1

𝜇
𝑘+𝐿−1

𝑥
𝑘+𝐿−1

+ 𝐵
𝑘+𝐿−1

𝜔
𝑘+𝐿−1

.

(B.2)

Thus, the 𝐿-step prediction error covariance 𝑃
𝑘+𝐿−1|𝑘

can be
calculated as follows:

𝑃
𝑘+𝐿|𝑘

= E {𝑥
𝑘+𝐿|𝑘

𝑥
𝑇

𝑘+𝐿|𝑘
}

= 𝐴
𝑘+𝐿−1

𝑃
𝑘+𝐿−1|𝑘

𝐴
𝑇

𝑘+𝐿−1
+ 𝐴
𝑘+𝐿−1

×E {𝑥
𝑘+𝐿−1|𝑘

𝜔
𝑇

𝑘+𝐿−1
} 𝐵
𝑇

𝑘+𝐿−1
+ 𝐴
𝑠,𝑘+𝐿−1

× 𝑋
𝑘+𝐿−1

𝐴
𝑇

𝑠,𝑘+𝐿−1
+ 𝐵
𝑘+𝐿−1

E {𝜔
𝑘+𝐿−1

𝑥
𝑇

𝑘+𝐿−1|𝑘
}

× 𝐴
𝑇

𝑘+𝐿−1
+ 𝐵
𝑘+𝐿−1

𝑄
𝑘+𝐿−1

𝐵
𝑇

𝑘+𝐿−1

= 𝐴
𝑘+𝐿−1

𝑃
𝑘+𝐿−1|𝑘

𝐴
𝑇

𝑘+𝐿−1

+ 𝐴
𝑘+𝐿−1

𝐵
𝑘+𝐿−2

𝑄
𝑘+𝐿−2,𝑘+𝐿−1

𝐵
𝑇

𝑘+𝐿−1
+ 𝐴
𝑠,𝑘+𝐿−1

× 𝑋
𝑘+𝐿−1

𝐴
𝑇

𝑠,𝑘+𝐿−1
+ 𝐵
𝑘+𝐿−1

𝑄
𝑘+𝐿−1,𝑘+𝐿−2

× 𝐵
𝑇

𝑘+𝐿−2
𝐴
𝑇

𝑘+𝐿−1
+ 𝐵
𝑘+𝐿−1

𝑄
𝑘+𝐿−1

𝐵
𝑇

𝑘+𝐿−1
,

(B.3)

which completes the proof of Theorem 11.

C. The Proof of Theorem 12

Proof. According to the OPT, the 𝐿-step fixed-lag smoother
𝑥
𝑘|𝑘+𝐿

can be calculated as follows:

𝑥
𝑘|𝑘+𝐿

=

𝑘+𝐿

∑
𝑖=1

E {𝑥
𝑘
𝜀
𝑇

𝑖
}Π
−1

𝑖
𝜀
𝑖

=

𝑘+𝐿−1

∑
𝑖=1

E {𝑥
𝑘
𝜀
𝑇

𝑖
}Π
−1

𝑖
𝜀
𝑖
+E {𝑥

𝑘
𝜀
𝑇

𝑘+𝐿
}Π
−1

𝑘+𝐿
𝜀
𝑘+𝐿

= 𝑥
𝑘|𝑘+𝐿−1

+ ϝ
𝑘,𝑘+𝐿

Π
−1

𝑘+𝐿
𝜀
𝑘+𝐿

,

(C.1)

where ϝ
𝑘,𝑘+𝐿

can be calculated as follows:

ϝ
𝑘,𝑘+𝐿

= E {𝑥
𝑘
𝜀
𝑇

𝑘+𝐿
}

= E {𝑥
𝑘
(𝐶
𝑘+𝐿

𝑥
𝑘+𝐿|𝑘+𝐿−1

+ 𝐶
𝑘+𝐿

𝑥
𝑘+𝐿

+ 𝐶
𝑠,𝑘+𝐿

𝑥
𝑘+𝐿

+ 𝐷
𝑘+𝐿

𝑉
𝑘+𝐿

− 𝐷
𝑘+𝐿

𝑅
𝑘+𝐿,𝑘+𝐿−1

𝐷
𝑇

𝑘+𝐿−1

×Π
−1

𝑘+𝐿−1
𝜀
𝑘+𝐿−1

)
𝑇

}

= E {𝑥
𝑘
(𝐶
𝑘+𝐿

𝑥
𝑘+𝐿|𝑘+𝐿−1

− 𝐷
𝑘+𝐿

𝑅
𝑘+𝐿,𝑘+𝐿−1

×𝐷
𝑇

𝑘+𝐿−1
Π
−1

𝑘+𝐿−1
𝜀
𝑘+𝐿−1

)
𝑇

}

= Ψ
𝑘+𝐿

𝐶
𝑇

𝑘+𝐿
− ϝ
𝑘,𝑘+𝐿−1

Π
−1

𝑘+𝐿−1

× 𝐷
𝑘+𝐿−1

𝑅
𝑇

𝑘+𝐿,𝑘+𝐿−1
𝐷
𝑇

𝑘+𝐿
,

(C.2)

where the third equality holds since𝐶
𝑘+𝐿

,𝐶
𝑠,𝑘+𝐿

, and𝑉
𝑘+𝐿

are
zero-mean stochastic matrices and they are all uncorrelated
with 𝑥

𝑘
. From (A.8) the expectation Ψ

𝑘+𝐿
= E{𝑥

𝑘
𝑥𝑇
𝑘+𝐿|𝑘+𝐿−1

}

can be obtained as follows:

Ψ
𝑘+1

= E {𝑥
𝑘
𝑥
𝑇

𝑘+1|𝑘
}

= E {𝑥
𝑘
(𝐴
𝑘
𝑥
𝑘|𝑘

+ 𝐴
𝑠,𝑘
𝜇
𝑘
𝑥
𝑘
+ 𝐵
𝑘
𝜔
𝑘

−𝐵
𝑘
𝑄
𝑘,𝑘−1

𝐵
𝑇

𝑘−1
𝐶
𝑇

𝑘
Π
−1

𝑘
𝜀
𝑘
)
𝑇

}

= E {𝑥
𝑘
𝑥
𝑇

𝑘|𝑘
}𝐴
𝑇

𝑘
+E {𝑥

𝑘
𝜔
𝑇

𝑘
} 𝐵
𝑇

𝑘

−E {𝑥
𝑘
𝜀
𝑇

𝑘
}Π
−1

𝑘
𝐶
𝑘
𝐵
𝑘−1

𝑄
𝑇

𝑘,𝑘−1
𝐵
𝑇

𝑘
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= E {𝑥
𝑘
(𝑥
𝑘|𝑘−1

− ϝ
𝑘,𝑘
Π
−1

𝑘
𝜀
𝑘
)
𝑇

}𝐴
𝑇

𝑘

+ 𝐵
𝑘−1

𝑄
𝑘−1,𝑘

𝐵
𝑇

𝑘
− ϝ
𝑘,𝑘
Π
−1

𝑘
𝐶
𝑘
𝐵
𝑘−1

𝑄
𝑇

𝑘,𝑘−1
𝐵
𝑇

𝑘

= 𝑃
𝑘|𝑘−1

𝐴
𝑇

𝑘
− ϝ
𝑘,𝑘
Π
−1

𝑘
ϝ
𝑇

𝑘,𝑘
𝐴
𝑇

𝑘
+ 𝐵
𝑘−1

𝑄
𝑘−1,𝑘

𝐵
𝑇

𝑘

− ϝ
𝑘,𝑘
Π
−1

𝑘
𝐶
𝑘
𝐵
𝑘−1

𝑄
𝑇

𝑘,𝑘−1
𝐵
𝑇

𝑘
.

(C.3)

Similarly, when 𝐿 ≥ 2, the expectationΨ
𝑘+𝐿

can be calculated
as follows:

Ψ
𝑘+𝐿

= Ψ
𝑘+𝐿−1

𝐴
𝑇

𝑘+𝐿−1
− ϝ
𝑘,𝑘+𝐿−1

Π
−1

𝑘+𝐿−1
ϝ
𝑘+𝐿−1,𝑘+𝐿−1

− ϝ
𝑘,𝑘+𝐿−1

Π
−1

𝑘+𝐿−1
𝐶
𝑘+𝐿−1

𝐵
𝑘+𝐿−2

× 𝑄
𝑇

𝑘+𝐿−1,𝑘+𝐿−2
𝐵
𝑇

𝑘+𝐿−1
.

(C.4)

From (6) and (C.1), the smoother error can be obtained as
follows:

𝑥
𝑘|𝑘+𝐿

= 𝑥
𝑘
− 𝑥
𝑘|𝑘+𝐿−1

− ϝ
𝑘,𝑘+𝐿

Π
−1

𝑘+𝐿
𝜀
𝑘+𝐿

= 𝑥
𝑘|𝑘+𝐿−1

− ϝ
𝑘,𝑘+𝐿

Π
−1

𝑘+𝐿
𝜀
𝑘+𝐿

.

(C.5)

Therefore, the smoother error covariance can be obtained as
follows:

𝑃
𝑘|𝑘+𝐿

= E {𝑥
𝑘|𝑘+𝐿

𝑥
𝑇

𝑘|𝑘+𝐿
}

= E { (𝑥
𝑘|𝑘+𝐿−1

− ϝ
𝑘,𝑘+𝐿

Π
−1

𝑘+𝐿
𝜀
𝑘+𝐿

)

× (𝑥
𝑘|𝑘+𝐿−1

− ϝ
𝑘,𝑘+𝐿

Π
−1

𝑘+𝐿
𝜀
𝑘+𝐿

)
𝑇

}

= 𝑃
𝑘|𝑘+𝐿−1

−E {𝑥
𝑘|𝑘+𝐿−1

𝜀
𝑇

𝑘+𝐿
}Π
−1

𝑘+𝐿
ϝ
𝑇

𝑘,𝑘+𝐿

− ϝ
𝑘,𝑘+𝐿

Π
−1

𝑘+𝐿
E {𝜀
𝑘+𝐿

𝑥
𝑇

𝑘|𝑘+𝐿−1
}

+ ϝ
𝑘,𝑘+𝐿

Π
−1

𝑘+𝐿
ϝ
𝑇

𝑘,𝑘+𝐿

= 𝑃
𝑘|𝑘+𝐿−1

− ϝ
𝑘,𝑘+𝐿

Π
−1

𝑘+𝐿
ϝ
𝑇

𝑘,𝑘+𝐿
,

(C.6)

which completes the proof of Theorem 12.
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and J. D. Jiménez-López, “Least-squares linear filtering using
observations coming from multiple sensors with one- or two-
step random delay,” Signal Processing, vol. 89, no. 10, pp. 2045–
2052, 2009.

[31] M. Zeng, J. Feng, and Z. Yu, “Optimal unbiased estimation
for uncertain systems with different delay rates sensor network
and autocorrelated process noises,” in Proceedings of the Chinese
Control and Decision Conference (CCDC ’11), pp. 3014–3018,
Mianyang, China, May 2011.

[32] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis,
Cambridge University Press, New York, NY, USA, 1991.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


