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Moment invariants are important shape descriptors in computer vision. In this study, we
propose new sets of quaternion moment descriptors for color image. They are constructed
in the quaternion framework and are an extension of complex moment invariants for
grayscale images. This is a useful tool in color image processing and color object recogni-
tion tasks that require the similarity invariance. The advantage of the proposed quaternion
moment invariants is that they can not only process color image in a holistic manner but
also grayscale one. In addition, the computational complexity of the proposed method is
much lower than the quaternion Zernike moments defined in the polar coordinates. An
example of using the quaternion moment invariants as pattern features for a color object
classification application is given. Theoretical and experimental results show that the
proposed descriptors perform better than the other competing moment-based methods.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Moment invariants have been become a useful tool for describing objects regardless of their position, viewing angle and
illumination. Due to their ability to represent global features of an image, moment invariants have found widely applications
in image processing and pattern recognition. The pioneering work of moment invariants was reported by Hu [17]. Since then,
numerous works have been devoted to improvements Hu’s moment invariants.

Teague proposed the Zernike and Legendre moments [51] by Zernike and Legendre polynomials, respectively. The defini-
tion of complex moments [26,27] were introduced by Abu-Mostafa and Psaltis, and gave us a straight forward way to derive
moment invariants. Later, Fourier–Mellin descriptor was presented in [41,42] for image processing. Flusser et al. introduced
the implicit moment invariants with respect to polynomial transform of spatial coordinates [10]. Besides, some excellent
works have made outstanding contributions to the theory of moment invariants [9,28,53,54,13,5,24,32,55,35,48,20,44].

The moment invariants for grayscale images have been studied extensively, but little attention has been devoted to the
corresponding theory for color images. Suk and Flusser derived a set of affine invariants based on geometric moments from
different color channel [47]. Mindru et al. introduced the generalized color moments to processing color image and con-
structed the affine moment invariants [25].

In [15], we proposed the quaternion Fourier–Mellin moments (QFMMs), which can process the color image in a holistic
manner. However, the QFMMs are defined in a polar coordinate system, whereas the images are expressed in a Cartesian one.
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The transformations from one coordinate to another need to be done before we calculate the QFMMs. Besides, the coordinate
conversion increases the computation complexity and affects the numerical stability.

Chen et al. proposed the Quaternion Zernike moments (QZMs) for color images, which are also defined in the polar coor-
dinates [4]. They constructed a set of QZMs invariants with respect to similarity deformations. The QZMs have the virtue of
the lower dependency among different orders. However, the calculation of Zernike polynomials was much more time-con-
suming, and then the computation complexity of the QZMs was much higher than the existing methods.

The objective of this paper is to introduce the quaternion-valued moments in Cartesian coordinate system for color image,
and construct the similarity moment invariants. The advantage is obviously: first, the computation can be carried out
directly and avoids the coordinate transformation; second, the computation complexity will be reduced.

The paper is organized as follows. In Section 2 we introduce the concept of quaternion moments for color images. Then,
the construction of similarity invariants based on quaternion moments is investigated. Section 3 is the experimental results
of the proposed invariants compared with other state-of-the-art alternatives in the aspect of color object classification.
Section 4 concludes the paper.

2. Quaternion moment invariants

In this section we first give a brief introduction of the quaternion. Then we propose the concept of quaternion moments
for color images. Last we construct the similarity invariants based on the proposed quaternion moments.

2.1. Quaternion

The quaternion, which is a type of hypercomplex numbers, was formally introduced by Hamilton in 1843. The definition
of quaternion is
q ¼ qr þ qi iþ qj jþ qk k ð1Þ
where qr ; qi; qj; qk are real numbers and i, j, k are complex operators obeying the following rules
i2 ¼ j2 ¼ k2 ¼ �1; ij ¼ �ji ¼ k; jk ¼ �kj ¼ i; ki ¼ �ik ¼ j ð2Þ
A quaternion can be regarded as the composition of a scalar part and a vector part: q ¼ SðqÞ þ VðqÞ, where
SðqÞ ¼ qr ; VðqÞ ¼ qiiþ qjjþ qkk. If a quaternion q has a zero scalar part (qr ¼ 0), then q is called pure quaternion, and if q
has a unit norm (kqk ¼ 1), then q is called unit pure quaternion.

The norm of q is defined as
kqk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

r þ q2
i þ q2

j þ q2
k

q
ð3Þ
Euler’s formula holds for quaternions, that is
el/ ¼ cosð/Þ þ l � sinð/Þ ð4Þ
where l is any unit pure quaternion. We also have: kel/k ¼ 1.
Sangwine proposed to encode the three channel components of a RGB image on the three imaginary parts of a pure qua-

ternion [37], that is
f ðx; yÞ ¼ fRðx; yÞiþ fGðx; yÞjþ fBðx; yÞk ð5Þ
where fRðx; yÞ; f Gðx; yÞ and fBðx; yÞ are the red, green and blue components of the pixel, respectively. In recent years, quater-
nion has been utilized more and more in color image processing domain [15,16,4,37–39,8,33,43,6,46,14]. The advantage of
using quaternion to represent the color image is that we can process the image in a holistic manner without losing color
information.

2.2. Quaternion moments

In this subsection we introduce the definition of quaternion moments. As Eq. (2) indicates, the commutative property for
quaternion multiplication does not hold. Therefore the quaternion moment have three different types.

Definition 1. Let f ðx; yÞ ¼ fRðx; yÞiþ fGðx; yÞjþ fBðx; yÞk represents the color image defined in Cartesian coordinate system, the
ðmþ nÞth order left-side quaternion moments of f ðx; yÞ are given by
Q L½ f ðx; yÞ�ðm;nÞ ¼
Z 1

�1

Z 1

�1
ðx� lyÞmðxþ lyÞnf ðx; yÞdxdy ð6Þ
the ðmþ nÞth order right-side quaternion moments of f ðx; yÞ are given by
Q R½ f ðx; yÞ�ðm;nÞ ¼
Z 1

�1

Z 1

�1
f ðx; yÞðx� lyÞmðxþ lyÞndxdy ð7Þ
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and the ðmþ nÞth order two-side quaternion moments of f ðx; yÞ are given by
QT ½ f ðx; yÞ�ðm;nÞ ¼
Z 1

�1

Z 1

�1
ðx� lyÞmf ðx; yÞðxþ lyÞndxdy ð8Þ
where m and n are positive integers, l is any unit pure quaternion, for example: l ¼ i; l ¼ j; l ¼ k, or l ¼ ðiþ jþ kÞ=
ffiffiffi
3
p

,
and so on.

If we set l ¼ i, and f ðx; yÞ represents a real-valued function in Eqs. (6)–(8), then the proposed quaternion moments will be
reduced to the complex moments. The advantage of quaternion moments is that it can not only process color image but also
grayscale one.

In this paper, we will use left-side quaternion moments to construct the invariants, similar results can also be easily ex-
tended to the other two types of quaternion moments. From now on, and without loss of generality, we will assume that the
quaternion moments refers to left-side one. We specify the unit pure quaternion as l ¼ ðiþ jþ kÞ=

ffiffiffi
3
p

.
The discrete form of quaternion moments are given by
Q ½ f ðx; yÞ�ðm;nÞ ¼
XM

x¼1

XN

y¼1

ðx� lyÞmðxþ lyÞnf ðx; yÞ ð9Þ
where M and N are the rows and columns of an image, respectively.

2.3. Quaternion moment similarity invariants

The similarity invariants of image moments are an important issue in pattern recognition. This subsection constructs the
similarity invariants for color images based on quaternion moments.

The similarity transform of a color image consists of translation, rotation and uniform scale transforms. Let f ðx0; y0Þ is the
transformed version of original image f ðx; yÞ. We can use the following matrix equation to represent a similarity transform
x0

y0

� �
¼ a

cos u � sinu
sin u cos u

� �
x

y

� �
þ

Dx

Dy

� �
ð10Þ
where a is scale factor with a > 0; u is rotation angle, Dx and Dy are the translational components along x and y axes,
respectively.

In the derivation of similarity invariants, we first represent the quaternion moments in polar coordinate through
coordinate transformations
QL½ f ðr; hÞ�ðm;nÞ ¼
Z 1

r¼0

Z 2p

h¼0
rmþnþ1elðn�mÞhf ðr; hÞdrdh ð11Þ
where f ðr; hÞ ¼ fRðr; hÞiþ fGðr; hÞjþ fBðr; hÞk represents a RGB color image defined in polar coordinates. The transformation
process using the Euler’s formula of quaternion (Eq. (4)) and following formulae
x ¼ r cosðhÞ; y ¼ r sinðhÞ ð12Þ
Let f ðr; hþuÞ denotes the rotation change of a color image f ðr; hÞ by an angle u, then quaternion moments (Eq. (11)) of
f ðr; hþuÞ and f ðr; hÞ have the following relations
QL½f ðr; hþuÞ�ðm;nÞ ¼
Z 1

r¼0

Z 2p

h¼0
rmþnþ1elðn�mÞhf ðr; hþuÞdrdh ¼ elðm�nÞu

Z 1

r¼0

Z 2p

h¼0
rmþnþ1el ðn�mÞhf ðr; hÞdrdh

¼ elðm�nÞuQ L½ f ðr; hÞ�ðm;nÞ ð13Þ
Taking the norm on both sides of Eq. (13), we have
Q L½ f ðr; hþuÞ�ðm;nÞk k ¼ elðm�nÞu Q L½ f ðr; hÞ�ðm;nÞ
�� �� ¼ Q L½ f ðr; hÞ�ðm;nÞk k ð14Þ
So, the rotation invariance can be achieved by taking the norm of the color images’ quaternion moments. In other words,
Um;n ¼ kQ ½��ðm;nÞk are invariant with respect to rotation transforms.

Suppose f ðar; hÞ represents the color image expanded by the scale factor a, substitute f ðar; hÞ into Eq. (11), then the
following equation holds
QL½ f ðar; hÞ�ðm;nÞ ¼
Z 1

r¼0

Z 2p

h¼0
rmþnþ1elðn�mÞhf ðar; hÞdrdh ¼ a�ðmþnþ2Þ

Z 1

r¼0

Z 2p

h¼0
rmþnþ1elðn�mÞhf ðr; hÞdrdh

¼ a�ðmþnþ2Þ QL½ f ðr; hÞ�ðm; nÞ ð15Þ
Set m ¼ n ¼ 0 in Eq. (15), we have
QL½ f ðar; hÞ�ð0;0Þ ¼ a�2Q L½ f ðr; hÞ�ð0;0Þ ð16Þ
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Divide Eq. (15) by Eq. (16), we have
1 The
Thus, w

2 We
Q L½ f ðar; hÞ�ðm;nÞ
Q L½ f ðar; hÞ�ð0;0Þð Þ

mþnþ2
2

¼ Q L½ f ðr; hÞ�ðm;nÞ
QL½ f ðr; hÞ�ð0; 0Þð Þ

mþnþ2
2

ð17Þ
Through Eq. (17), the scale factor a was eliminated. Therefore, the scale invariants can be constructed as follows
Uðm;nÞ ¼ Q L½ f ðr; hÞ�ðm;nÞ
Q L½ f ðr; hÞ�ð0; 0Þð Þ

mþnþ2
2

ð18Þ
We can also construct scale invariants as follows
Uðm;nÞ ¼ QL½ f ðr; hÞ�ðm; nÞ
Q L½ f ðr; hÞ�ðm; 0Þð Þ

mþnþ2
mþ2

ð19Þ

Uðm;nÞ ¼ Q L½f ðr; hÞ�ðm; nÞ
Q L½f ðr; hÞ�ð0;nÞð Þ

mþnþ2
nþ2

ð20Þ
We derived the rotation and scale invariants of quaternion moments by virtue of the polar coordinate. In other words, the
rotation and scale parameters can be easily eliminated in polar coordinate. From Eq. (18), the rotation and scale moment
invariants in Cartesian coordinates can be constructed as follows
Uðm;nÞ ¼ Q L½ f ðx; yÞ�ðm; nÞ
QL½ f ðx; yÞ�ð0;0Þð Þ

mþnþ2
2

�����
����� ð21Þ
The translation invariance can be achieved by putting the origin of coordinates at the color image centroid. The centroid
ð�x; �yÞ of a color image f ðx; yÞ are defined as follows
�x ¼
PM

x¼1

PN
y¼1x � f ðx; yÞPM

x¼1

PN
y¼1f ðx; yÞ

�����
�����; �y ¼

PM
x¼1

PN
y¼1y � f ðx; yÞPM

x¼1

PN
y¼1f ðx; yÞ

�����
����� ð22Þ
In the computation of quaternion moment similarity invariants of a color image f ðx; yÞ, we should first put the origin of
Cartesian coordinates at the color image centroid, then calculate the similarity invariants using Eq. (21). The above deriva-
tion is also suitable for right-side and two-side quaternion moments.

Without loss of generality, the quaternion moment invariants (QMIs) are constructed by the left-side moments. In the
appendix, we give an experimental result to validate the following fact: the discrimination power was almost unchanged
whether the QMIs are constructed by left-side, right-side or two-side quaternion moments.
3. Experimental results and comparisons

In this section, experimental results are provided to validate the theoretical framework developed in the previous sec-
tions. The CMIs, QZMIs, QMIs are evaluated and compared in the context of color object classification.1 We first demonstrate
the performance of the proposed quaternion moment invariants by classifying the similarity transformed color objects. Then we
test the robustness to different kinds of noises for the proposed descriptors. Next, we discuss the computation complexity of
different kinds of invariant features. Last, we carried out an experiment on the classification of textured color images.

3.1. Testing and training data sets

The experiments are carried out on the selected thirty color images, as shown in Fig. 1, from the Columbia university
image library database (Coil-100 color images) [30]. It is shown in Fig. 1 that (a1–a10) are the different types of car images,
(b1–b10) are the different types of cup images and (c1–c10) are the different types of bottle images.

We use the color images shown in Fig. 1 to generate the testing image sets for color object classification experiments. To
obtain the testing set, each car image in Fig. 1 (a1–a10) was translated with translation offsets ðDx;DyÞ 2 fð10;6Þ; ð2;12Þg,2
thus creating 10� 2 ¼ 20 samples. Then the above translated samples was rotated with rotation angle u 2 fk � 30� j k ¼ 1;2;
. . . ; 11g, thus creating 10� 2� 11 ¼ 220 translated and rotated samples. Finally, scaled the above samples with scaling factors
from 0.5 to 2 at an increment of 0.25, creating altogether 10� 2� 11� 7 ¼ 1540 samples as the final testing car image set.

To obtain the training set, we select 5 sample images in the testing set for different types of car images, then forming a set
of 10� 5 ¼ 50 samples for the SVMs to get the training parameters. With this approach, we can obtain the testing and train-
ing image sets for the cup and bottle images in Fig. 1.
re are many algorithms designed to serve this purpose, such as [36,18,45,1]. However, it is assumed that the background is uniform in our experiments.
e have decided not to compare our proposals with local methods for color object classification.
can also use other translation parameters.



Fig. 1. Thirty images selected from the Coil-100 image database for color object classification. (a1–a10) are the different types of car images; (b1–b10) are
the different types of cup images; and (c1–c10) are the different types of bottle images.
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3.2. Support vector machines

In the past decade, support vector machines (SVMs) and related kernel methods have become one of the powerful tools to
learn from examples with potential applications in computer vision and pattern recognition. The SVMs were proposed by
Vlapnik [52], and were originally introduced within the context of statistical learning theory and structural risk
minimization.

The central idea of SVMs is that they map the input vector nonlinearly into a higher dimensional feature space via a kernel
function, and construct a optimal geometric hyperplane with the maximum margin to separates the data into classes. A de-
tailed analysis of the SVMs is presented in [52,40,3]. In this paper, we use support vector machine with Gaussian RBF (radial
basis function) kernel as classifier for color object classification.

The experiments in this section were carried out in the Matlab environment, and use the statistical pattern recognition
toolbox for Matlab (abbreviated STPRtool) which was developed by Franc and Hlaváč [11]. The SVMs algorithm was achieved
by using ‘bsvm2’, ‘svmclass’ and ‘cerror’ functions in the STPRtool.

The ‘bsvm2’ function trains the multi-class SVM classifier based on BSVM formulation (bias added to the objective func-
tion) and L2-soft margin penalization of misclassifications. The ‘‘options’’ parameters are set as follows: options.ker = ‘rbf’;
options.arg = 1; options.C = 10. The ‘svmclass’ function classifies input vectors into classes using the multi-class SVM classi-
fier. The ‘cerror’ function Computes classification error. This function considers only labels, and the cross validation was not
used in its. The detailed information can be found in the STPRtool [11].

3.3. Performance comparison of the proposed invariants with other invariants

The experimental results obtained by Chen et al. [4] indicated that quaternion Zernike moment invariants (QZMIs)
perform better than some competing descriptors in the aspect of color object recognition. Those descriptors are traditional
Zernike moment invariants, the affine invariants proposed by Suk and Flusser [47], the generalized affine color moment
invariants [25], and the quaternion Fourier–Mellin moment invariants [15].

Due to a better performance of the QZMIs, we just give a comparison of the QZMIs with the proposed quaternion moment
invariants (QMIs) in our experiments. Besides, the traditional complex moment invariants (CMIs) for grayscale image are
also considered in the experiments to verify the importance of the color information for pattern recognition tasks. Note that
in order to compress the data range, we perform the logarithm log10ð�Þ on the CMIs, QZMIs and QMIs, separately.

In the following experiments, we demonstrate the effectiveness of the proposed invariant features in terms of color object
classification.

3.3.1. Experiment on the noise-free image sets
The generic schematic diagram for the color object classification experiments using moment invariants and the SVMs is

given in Fig. 2. First, the training process for the SVMs is performed. The complex moment invariants were computed on the
training car images to form the CMIs descriptor set. Next, using the CMIs as the input vector and training the SVMs to get the
related parameters such as the support vectors, weights and threshold. Then the CMIs descriptor set of the testing car images
were computed, and classified the objects by the SVMs. Last, the above procedures were carried out for the QZMIs and the
QMIs, respectively, to get the corresponding classification results. Similar procedures were implemented separately for the
cup and bottle image sets.



Fig. 2. Block diagram of the color object classification experiments. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Table 1
Classification accuracies (%) of different moment invariants without noise.

Number of invariants Average classification accuracy (%)

Car images Cup images Bottle images

CMIs QZMIs QMIs CMIs QZMIs QMIs CMIs QZMIs QMIs

5 43.42 81.32 83.90 65.14 92.37 97.15 47.08 88.83 91.54
6 45.49 85.69 89.48 66.89 95.69 98.46 48.15 92.71 95.14
7 47.93 87.57 92.70 68.64 96.92 98.82 48.81 95.08 96.78
8 50.97 87.79 93.77 70.91 97.27 100.00 50.06 96.56 97.53
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The QZMIs descriptor set fj �u1
1;1 j; j �u0

2;0 j; j �u2
2;2 j; j �u1

3;1 j; j �u3
3;3 j; j �u0

4;0 j; j �u2
4;2 j; j �u4

4;4 jg in our experiments, containing 8
invariants with order from 1 to 4, is selected from Table 1 of Ref. [4]. The QMIs descriptor set containing 8 invariants with
order from 1 to 4: fUð1;0Þ;Uð0;1Þ;Uð2;0Þ;Uð0;2Þ;Uð2;1Þ;Uð3;0Þ;Uð2;2Þ;Uð3;1Þg is computed by Eq. (21). The CMIs
descriptor set uses the same order as that of QMIs, also containing 8 invariants.

In our experiments, we use different numbers of moment invariants as the input vectors for the SVMs to validate the
description power of the CMIs, QZMIs and QMIs. For example, we select 5 different invariants arbitrarily in the QMIs descrip-
tor set as input vectors of the SVMs for color object classification. The input vectors can be selected as
fUð1;0Þ;Uð0;1Þ;Uð2;0Þ;Uð0;2Þ;Uð2;1Þg or fUð0;2Þ;Uð2;1Þ;Uð3;0Þ;Uð2;2Þ;Uð3;1Þg and so on. Next we obtained a classifica-
tion rates for each input vector and have Cð8;5Þ ¼ 56 results.3 Then we compute the average classification rate in the condition
of 5 invariants as color object descriptor for the testing car, cup and bottle image sets, separately. The similar procedure is per-
formed using CMIs and QZMIs descriptor sets, separately, and gets the average classification rate for the corresponding image
sets. The experimental results can be found in the first line of Table 1.

As we can see from the first line of Table 1, the quaternion-based moment invariants (QZMIs and QMIs) perform better
than the CMIs no matter whether from the car, cup or bottle image set. The average classification rates using QZMIs and
QMIs are much better than the CMIs. This is mainly caused by the graying process for the color image when computing
the CMIs, where the color information can enhance the recognition rate. This is also validated by Tanaka and Presnell in
Ref. [50] and Gepperth et al. in [12]. Besides, we can see that the description power of proposed moment invariants were
better than the QZMIs.

The data in the second, third and fourth lines of Table 1 are, respectively, the average classification rate for different num-
bers of invariants from 6 to 8. The results indicate that the more invariants were selected, the higher classification rates were
obtained. The above experiments on the noise-free image sets show that the proposed descriptors perform best in terms of
the classification accuracy.
3.3.2. Experiment on the noised image sets
In the next two experiments, we investigate the robustness of the proposed QMIs to additive noise (Gaussian white noise

and Salt and Pepper noise were used in our experiments). Fig. 3 demonstrate the corrupted image by different noise, where
3 In this paper, the number of k-combinations from a given set of n elements is denoted by Cðn; kÞ, and the number of Cðn; kÞ is computed by
Cðn; kÞ ¼ n!=ðk! ðn� kÞ!Þ.
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a1 is the original color image; a2 and a3 are the Gaussian noised color images of variance 0.01 and 0.03, respectively; a4 and
a5 are the Salt and Pepper noised color images with noise density 0.03 and 0.05, respectively.

In the first experiment, the training and testing color image were corrupted by Gaussian noise with different variance
(0.01 and 0.03). We validated the robustness against those noises for the proposed invariants by means of classification accu-
racy. The experimental results are listed in Tables 2 and 3.

As we can see from the above two tables, the classification accuracy of the noise corrupted images was lower than the
noise-free one (compared with Table 1), and the classification accuracy decreases with the increase of noise. However,
the proposed approach performs better than the CMIs and the QZMIs in terms of the classification accuracy.

The second experiment demonstrates the robustness of the QMIs against the Salt and Pepper noise. Tables 4 and 5 are the
classification results on the Salt and Pepper noised color objects with different noise density (0.03 and 0.05). The experimen-
tal results show that the proposed QMIs are robust to Salt and Pepper noise, and the classification accuracy is better than the
CMIs and QZMIs.
3.3.3. Computation complexity of different kinds of invariants
Last, we give a comparison of different moment invariants in the aspect of Computational complexity. In the above exper-

iments, the order of moment invariants (CMIs, QZMIs and QMIs) in the descriptor sets is from 1 to 4. A detailed description of
the average computation times of different invariants on the testing image sets (car, cup and bottle image) are listed in Table 6.

The data in the first line of Table 6 are the average computation time for different kinds of invariants on the noise-free car,
cup and bottle images. The data from second to fifth line are the average computation time for different kinds of invariants
on the noisy corrupted image sets. The data in the last line are the mean values of each column.

From the last line of Table 6 we can see that the average computation time for CMIs were shortest of all, the proposed
QMIs were second short and the QZMIs were the most time-consuming. In more detail, the computation of one lower order
complex moment invariants for car image needs about 0.0194 s, 0.3239 s for the quaternion Zernike moment invariants, and
0.0640 s for the proposed invariants.

In comparison with the CMIs, the computation time of CMIs approximately 3.3 times faster than the proposed QMIs.
However, the CMIs deal with the grayscale image whereas the QMIs deal with the color image. The amount of data for color
image is 3 times larger than the grayscale one. In consideration of the quantity of data, the average computation times of the
lower order QMIs are similar to the CMIs. Therefore, the proposed QMIs have certain superiority.

In comparison with the QZMIs, the average computation time of lower order QMIs approximately 5 times faster than the
QZMIs. This is mainly caused by the following facts. The quaternion Zernike moments are defined in the polar coordinate and
the coordinate conversion should be performed for the computation of QZMIs. Besides, the kernel function of quaternion
Zernike moments is a set of Zernike polynomials. The realization of QZMIs is much more time-consuming whether the coor-
dinate transformation or the computation of Zernike polynomials. Therefore, the proposed QMIs perform better than the
QZMIs in the aspect of computation complexity.
Table 2
Classification accuracies (%) of different moment invariants with Gaussian noise (variance = 0.01).

Number of invariants Average classification accuracy (%)

Car images Cup images Bottle images

CMIs QZMIs QMIs CMIs QZMIs QMIs CMIs QZMIs QMIs

5 31.14 60.91 64.46 60.75 83.08 91.26 42.96 76.80 79.76
6 31.07 64.69 69.39 62.54 87.30 94.10 44.01 82.42 85.69
7 30.59 67.05 73.26 64.13 89.85 95.85 43.82 86.23 89.18
8 30.32 68.38 76.36 65.97 92.08 97.79 44.42 88.83 91.36

Fig. 3. The image corrupted by different noise. (a1) is the original image; (a2) is the image with gaussian noise (variance = 0.01); (a3) is the image with
gaussian noise (0.03); (a4) is the image with Salt and Pepper noise (noise density = 0.03); and (a5) is the image with Salt and Pepper noise (0.05).



Table 3
Classification accuracies (%) of different moment invariants with Gaussian noise (variance = 0.03).

Number of invariants Average classification accuracy (%)

Car images Cup images Bottle images

CMIs QZMIs QMIs CMIs QZMIs QMIs CMIs QZMIs QMIs

5 27.80 49.47 58.10 53.09 78.40 86.02 36.70 66.85 69.75
6 27.81 52.29 63.09 53.93 84.03 90.51 37.05 72.10 74.54
7 27.70 54.14 67.11 54.20 87.95 93.13 37.19 76.01 77.66
8 27.01 55.26 70.58 53.64 90.71 94.74 38.31 78.80 79.68

Table 4
Classification accuracies (%) of different moment invariants with Salt and Pepper noise (noise density = 0.03).

Number of invariants Average classification accuracy (%)

Car images Cup images Bottle images

CMIs QZMIs QMIs CMIs QZMIs QMIs CMIs QZMIs QMIs

5 28.17 56.15 60.92 60.29 81.47 90.60 38.07 72.84 79.73
6 28.13 59.75 65.85 62.27 86.25 93.54 38.51 77.29 85.51
7 28.87 62.09 69.66 63.81 89.66 94.98 39.24 80.80 89.32
8 29.55 63.25 73.18 64.29 92.66 95.45 40.78 83.38 92.01

Table 5
Classification accuracies (%) of different moment invariants with Salt and Pepper noise (noise density = 0.05).

Number of invariants Average classification accuracy (%)

Car images Cup images Bottle images

CMIs QZMIs QMIs CMIs QZMIs QMIs CMIs QZMIs QMIs

5 29.85 51.56 53.62 58.48 78.92 87.82 35.99 70.52 73.17
6 29.97 54.76 57.57 61.12 84.23 91.07 36.06 75.30 78.75
7 30.06 56.87 60.62 62.99 88.06 92.61 36.17 78.34 83.07
8 30.06 58.38 62.60 64.48 90.65 93.70 36.49 79.81 85.91

Table 6
Computation times (s) of different moment invariants.

Different image sets Average computation times (s)

Car images Cup images Bottle images

CMIs QZMIs QMIs CMIs QZMIs QMIs CMIs QZMIs QMIs

Noise-free 0.0185 0.3180 0.0622 0.0184 0.3261 0.0641 0.0182 0.3244 0.0642
GN (0.01) 0.0192 0.3236 0.0636 0.0202 0.3268 0.0658 0.0208 0.3292 0.0650
GN (0.03) 0.0197 0.3249 0.0642 0.0211 0.3326 0.0653 0.0210 0.3299 0.0647
S&P (0.03) 0.0198 0.3257 0.0647 0.0203 0.3329 0.0657 0.0203 0.3293 0.0651
S&P (0.05) 0.0201 0.3273 0.0650 0.0206 0.3332 0.0710 0.0204 0.3300 0.0652

Mean 0.0194 0.3239 0.0640 0.0201 0.3303 0.0664 0.0201 0.3285 0.0649
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3.3.4. Experiment on the textured color image sets
Texture is an important feature of objects in an image. Texture classification is a fundamental problem in computer vision

and pattern recognition tasks [2,57,7,56,31,49,23,21,19,22,29]. The objective of the following experiments is to verify the
performance of the proposed QMIs for the textured color image sets. In this experiment, we also investigate the robustness
of the proposed QMIs to additive noise. The experiments are carried out on the selected twenty color images, as shown in
Fig. 4, from the Vision Texture homepage [34].

With the same method in Subsection 3.2, we obtained the testing and training image sets for color texture classification
experiments. From Fig. 4 we are creating altogether 3080 samples as the final testing textured image set, and forming a train-
ing set of 100 samples for the SVMs to obtain the related parameters. The classification results using different moment
invariants are listed in Table 7. It can be observed from this table that the proposed QMIs work better than the CMIs and
the QZMIs in terms of color texture classification.

Next, we present an object classification experiment with more complex scenes. The experiment is carried out on a set of
multiple colored objects as shown in Fig. 5, where each image contains four different color textures from the Vision Texture
homepage.



Fig. 4. Twenty images selected from the Vision Texture homepage for color object classification. (t1–t20) are the different textured color images. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 7
Classification accuracies (%) of different moment invariants for the textured color objects.

Number of invariants Average classification accuracy (%)

Noise-free GN (0.01) S&P (0.03)

CMIs QZMIs QMIs CMIs QZMIs QMIs CMIs QZMIs QMIs

5 62.04 90.20 92.68 46.92 68.40 69.86 43.44 61.32 64.95
6 65.51 93.81 94.85 49.23 72.69 73.73 45.43 65.30 69.53
7 67.91 95.83 95.61 51.09 75.31 76.43 46.48 68.19 72.37
8 70.06 96.75 96.36 52.40 77.05 78.18 47.24 70.68 73.96

Fig. 5. Twenty images for multiple colored object classification. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Table 8
Accuracies (%) of different moment invariants for multiple colored object classification.

Number of invariants Average classification accuracy (%)

Noise-free GN (0.01) S&P (0.03)

CMIs QZMIs QMIs CMIs QZMIs QMIs CMIs QZMIs QMIs

5 57.06 86.03 92.41 47.87 78.81 84.50 50.36 76.58 80.92
6 60.71 91.08 96.13 50.76 84.64 89.38 53.45 82.31 85.91
7 62.84 93.66 97.82 52.48 87.98 92.44 55.57 85.57 89.10
8 65.06 95.10 98.60 53.83 89.48 94.58 57.08 87.24 91.43
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In this multiple colored object classification experiments, the testing and training image sets are generated from Fig. 5.
We obtained altogether 3080 samples as the final testing image set, and formed a training set with 100 samples for the
SVMs. The robustness of the proposed QMIs to additive noise is also considered in this experiment. The experimental results
using different moment invariants for the multiple color objects classification are listed in Table 8. The experimental results
show that the proposed QMIs are robust to similarity transform under the conditions of noise-free, Gaussian white noise and
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Salt and Pepper noise. It can be observed from Table 8 that the proposed QMIs perform better than the CMIs and the QZMIs in
terms of multiple colored texture classification.

The experimental results in the previous subsection show that the proposed QMIs perform best from either classifying the
noise-free color images or the noise corrupted images. Although the CMIs have the lowest computation complexity, how-
ever, they cannot classify the color objects well. In addition, the average computation times of lower order QMIs are similar
as CMIs, and all faster than the QZMIs. In summary, we can arrive at a conclusion that the proposed QMIs are more robust to
additive noise and have more discrimination power than the representative moment-based methods proposed in
[47,25,15,4].

4. Conclusion and future work

In this study, the quaternion moments for color image are proposed. We show that the quaternion moments are the gen-
eralization of traditional complex moments. The advantages of the proposed moments are threefold. First, the proposed mo-
ment function are implemented in the Cartesian coordinate, which can not only save more computation time than the
quaternion Zernike moments defined in the polar coordinate but also improve the numerical stability; second, it can not only
process color image but also grayscale one; Last, it can process color image in a holistic manner, and parallel process R, G, and
B components without losing color information.

The similarity invariants based on quaternion moment are constructed for color image. The QMIs combined with the
SVMs for color objects classification is investigated in our experiments. The experimental results show that the classification
accuracy of the proposed invariants is better than the other competing moment-based methods. The study reveals that the
proposed quaternion moment invariants are potentially useful as feature descriptor in the fields of color image processing
and object recognition.

The limitation of moment-based invariants is its global property, that is, all the information including background and
objects within the image are considered in the calculation. The second experiment in Section 3.3.4 is to verify the classifi-
cation accuracy of multiple colored objects. However, the computation of moment invariants in this experiment was still
from a global perspective. Our future work will be focused on the construction of local moment-based invariants. Besides,
the color scene classification using moment-based invariants is also worth studying.
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Appendix A

We use left-side, right-side and two-side moment function, respectively, to construct the QMIs descriptor set
fUð1;0Þ;Uð0;1Þ;Uð2;0Þ;Uð0;2Þ;Uð2;1Þ;Uð2;2Þ;Uð3;0Þ;Uð3;1Þg. Then we compute the above invariants on the testing image
set (containing 1540 images). The experimental results are listed in Table 9. The numerical stability of the QMIs were eval-
uated by the r=l index, where r denotes the standard deviation of the invariants, and l the mean value. The smaller r=l
indicates better numerical stability.
Table 9
The r=l of the different QMIs for the testing bottle set with 1540 images.

Uð1;0Þ Uð0;1Þ Uð2;0Þ Uð0;2Þ Uð2;1Þ Uð2;2Þ Uð3;0Þ Uð3;1Þ

Left-side 0.1039 0.1048 0.0584 0.0590 0.0401 0.0444 0.0366 0.0369
Right-side 0.1048 0.1039 0.0590 0.0584 0.0395 0.0444 0.0370 0.0382
Two-side 0.1039 0.1039 0.0584 0.0584 0.0405 0.0444 0.0366 0.0384

Table 10
Left-side based QMIs with different unite pure quaternion for the testing set of 1540 images.

Uð1;0Þ Uð0;1Þ Uð2;0Þ Uð0;2Þ Uð2;1Þ Uð2;2Þ Uð3;0Þ Uð3;1Þ

l ¼ i 0.1034 0.1071 0.0592 0.0580 0.0392 0.0444 0.0357 0.0378
l ¼ j 0.1062 0.1051 0.0624 0.0565 0.0427 0.0444 0.0388 0.0382
l ¼ k 0.1064 0.1060 0.0565 0.0640 0.0401 0.0444 0.0357 0.0370

l ¼ ðiþ jþ kÞ=
ffiffiffi
3
p

0.1039 0.1048 0.0584 0.0590 0.0401 0.0444 0.0366 0.0369
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In Table 9, the ‘‘Uð�; �Þ’’ in each column is constructed by left-, right-, and two-side moment function, respectively. It can be
observed that the r=l values are almost unchanged for each column. That is to say, the choices of different types of moment
function have little influence on the discrimination power for the QMIs.

In the second experiments, we verified that the choices of different unite pure quaternion cannot significantly influence
the discrimination power of the QMIs. We set l ¼ i; l ¼ j; l ¼ k and l ¼ ðiþ jþ kÞ=

ffiffiffi
3
p

in the left-side moment function,
separately, to compute the QMIs descriptor set. The results can be found in the following table.

We can also find in each column of Table 10 that the r=l values are almost unchanged for different ‘‘l’’. The above two
experiments indicate that the discrimination power almost unchanged whether we use different types of moment function
or select different unite pure quaternion.
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