
Quaternion higher-order spectra and their invariants for color
image recognition

Xiaoning Jia a,n, Hang Yang b, Siliang Ma a, Dongzhe Song a

a College of Mathematics, Jilin University, Changchun, Jilin Province 130012, China
b Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science, Changchun 130033, China

a r t i c l e i n f o

Article history:
Received 13 February 2013
Received in revised form
9 December 2013
Accepted 9 January 2014
Available online 29 January 2014

Keywords:
Color image recognition
Quaternion
Bispectrum
Higher-order spectra invariant
Quaternion principal component analysis

a b s t r a c t

This paper describes an invariants generation method for color images, which could be a useful tool in
color object recognition tasks. First, by using the algebra of quaternions, we introduce the definition of
quaternion higher-order spectra (QHOS) in the spatial domain and derive its equivalent form in the
frequency domain. Then, QHOS invariants with respect to rotation, translation, and scaling transforma-
tions for color images are constructed using the central slice theorem and quaternion bispectral analysis.
The feature data are further reduced to a smaller set using quaternion principal component analysis. The
proposed method can deal with color images in a holistic manner, and the constructed QHOS invariants
are highly immune to background noise. Experimental results show that the extracted QHOS invariants
form compact and isolated clusters, and that a simple minimum distance classifier can yield high
recognition accuracy.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A major issue in visual pattern recognition is to extract features
that are invariant to geometric transformations, such as rotation,
translation, and scaling (RTS), and have high noise immunity. The
problem of invariant feature extraction for robust pattern recogni-
tion is complex and difficult [1]. Various techniques have been
proposed in the literature to deal with it. For example, the fre-
quency domain methods based on the Fourier descriptors [2–5]
can maintain local information well, but some useful information
contained in the phase component of the Fourier transform is
ignored. The moment invariants methods [6–9] are also usually
used owing to their image description capability and invariance
property. However, they are vulnerable to background noise.

Higher-order spectra (HOS) [10–12] have been introduced as
spectral representation of stochastic and deterministic signals. The
use of HOS for feature extraction is motivated by the following:
(1) HOS retain both amplitude and phase information about the
Fourier coefficients of a signal and the Fourier phase contains
important shape information; (2) HOS are translation invariant
and it is also easier to define features from HOS that satisfy other
desirable invariance properties; (3) HOS are zero for Gaussian

noise and, thus, provide high noise immunity to features; and
(4) multidimensional signals can be decomposed into 1-D projec-
tions, then HOS features derived from the projections can be used
to derive invariant features for the multidimensional signals. As a
result, HOS, in particular the third-order spectra (bispectra), have
been extensively used for signal detection and object identification
[13–16]. However, HOS are mainly used to deal with gray-level
images in those papers.

With the development of image acquisition devices, almost all
images acquired are chromatic nowadays. In general, there are two
approaches to processing color images. The first one transforms
the color image into gray-scale one, which may lose some
significant color information. The second one decomposes the
color image into three channels, and then processes each channel
separately, which may ignore the vectorial nature of color images.
These problems have not been solved until quaternions, formally
introduced by Hamilton in 1843 [17], are introduced to represent
color images by Ell and Sangwine [18–20]. The main advantage of
the use of quaternion-type representation is that an RGB image
can be treated as a vector field by encoding its three channel
components on the three imaginary parts of a pure quaternion
and, thus, can be processed holistically. Recently, some traditional
moment functions are generalized to quaternion algebra, such as
quaternion Fourier–Mellin moments (QFMMs) [21] and quater-
nion Zernike moments (QZMs) [22], and then a set of quaternion
moment invariants with respect to RTS transformations are con-
structed for color images. Although good performance is obtained,
when the number of invariant features increases, the invariants
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are vulnerable to background noise, especially for the higher-order
moment invariants.

Ell [18] introduced quaternion Fourier transforms (QFTs). Since
then, QFTs have been successfully applied in color image registra-
tion [23], watermarking [24], motion estimation [25] and texture
analysis [26]. Enlightened by the definition of QFTs, we generalize
the traditional HOS from real numbers to quaternion algebra.
Quaternion higher-order spectra (QHOS) are introduced and a set
of QHOS invariants with respect to RTS transformations are
constructed for color images. The derived QHOS invariants are
highly immune to symmetrically distributed background noise,
such as white Gaussian and uniform noise. The remaining parts of
this paper are organized as follows. Section 2 introduces the
definition of QHOS and derives its equivalent form in the
frequency domain. Section 3 proposes the RTS invariants genera-
tion algorithm using the central slice theorem, quaternion bispec-
tra, and quaternion principal component analysis. Experimental
results are presented and discussed in Section 4. Section 5
provides the concluding remarks.

2. Quaternion higher-order spectra

2.1. QHOS in the spatial domain

Readers unfamiliar with quaternions and QFTs may wish at this
point to read Appendix A, where a review of their mathematical
concepts pertinent to this paper is given. For a more detailed
treatment, the book by Ward [27] is recommended.

Let f ðtÞ be a real-valued, zero-mean 1-D signal, the traditional
third-order spectrum, called bispectrum, of f ðtÞ is defined as

Bðω; νÞ ¼
Z 1

�1

Z 1

�1
Mðx; yÞe� iðωxþ νyÞdxdy; ð1Þ

where Mðx; yÞ is the third-order moment of f ðtÞ given by

Mðx; yÞ ¼
R1
�1 f ðtÞf ðtþxÞf ðtþyÞdt; for deterministic process;

E½f ðtÞf ðtþxÞf ðtþyÞ�; for stationary random process:

(
ð2Þ

When the signal f ðtÞ is corrupted by additive, independent and
identically distributed (i.i.d.), symmetrical noise, its third-order
moment Mðx; yÞ remains unchanged [28]. Combined with the 2-D
QFTs, the traditional bispectra defined above can be generalized to
quaternion algebra.

Definition 1. Let f ðtÞ be a quaternion-valued, zero-mean 1-D
signal, the right-side quaternion bispectrum of f ðtÞ is given by

BRðω; νÞ ¼
Z 1

�1

Z 1

�1
Mðx; yÞe�μðωxþ νyÞdxdy; ð3Þ

where μ is a unit pure quaternion, and Mðx; yÞ is the third-order
moment of f ðtÞ defined in the same way as Eq. (2). It is straightfor-
ward to demonstrate that the third-order moment Mðx; yÞ of a
quaternion-valued signal f ðtÞ also remains unchanged when it is
corrupted by additive, i.i.d., symmetrical noise.

Based on the discrete 2-D QFTs, we have the following discrete
form of the right-side quaternion bispectrum for a deterministic
signal f ðtÞ:

BRðω; νÞ ¼ ∑
N�1

x ¼ �Nþ1
∑

N�1

y ¼ �Nþ1
∑

N�1

t ¼ 0
f ðtÞf ðtþxÞf ðtþyÞe�μ2πððωxþνyÞ=ð2N�1ÞÞ;

ð4Þ

where N is the sequence length of f ðtÞ.

Similar as the definition of QFTs, we can define the left-side and
two-side quaternion bispectra as

BLðω; νÞ ¼
Z 1

�1

Z 1

�1
e�μðωxþ νyÞMðx; yÞdxdy; ð5Þ

BRLðω; νÞ ¼
Z 1

�1

Z 1

�1
e�μ1ωxMðx; yÞe�μ2νydxdy: ð6Þ

where μ1 and μ2 are two unit pure quaternions that are orthogonal
to each other. The corresponding discrete forms are

BLðω; νÞ ¼ ∑
N�1

x ¼ �Nþ1
∑

N�1

y ¼ �Nþ1
∑

N�1

t ¼ 0
e�μ2πððωxþνyÞ=ð2N�1ÞÞf ðtÞf ðtþxÞf ðtþyÞ;

ð7Þ

BRLðω; νÞ ¼ ∑
N�1

x ¼ �Nþ1
∑

N�1

y ¼ �Nþ1
∑

N�1

t ¼ 0
e�μ12πðωx=ð2N�1ÞÞf ðtÞf ðtþxÞf ðtþyÞe�μ22πðνy=ð2N�1ÞÞ:

ð8Þ
In this paper, the quaternion bispectra refer to the right-side

quaternion bispectra and denoted as Bðω; νÞ:

2.2. QHOS in the frequency domain

The traditional bispectra, defined by Eq. (1), can be rewritten
directly in the frequency domain as

Bðω; νÞ ¼ FðωÞFðνÞFðωþνÞ; ð9Þ
where FðU Þ is the Fourier transform of f ðtÞ. As the multiplication of
quaternions is not commutative, Eq. (9) cannot be generalized to
quaternion algebra directly. However, by doing a suitable decom-
position to the quaternion-valued function f ðtÞ , we can still
redefine the quaternion bispectra directly in the frequency
domain.

Suppose that the unit pure quaternion μ¼ μiiþμjjþμkk, then,
we can rewrite a quaternion-valued signal f ðtÞ ¼ f rðtÞþ f iðtÞiþ f jðtÞj
þ f kðtÞk as

f ðtÞ ¼ f rðtÞþ f 0ðtÞμþ f 1ðtÞμ1þ f 2ðtÞμ29 f aðtÞþ f bðtÞμ1; ð10Þ
where μ1 ¼ μ1iiþμ1jjþμ1kk; μ2 ¼ μμ1 ¼ μ2iiþμ2jjþμ2kk are two unit
pure quaternions, both of which are orthogonal to μ; and f aðtÞ ¼
f rðtÞþ f 0ðtÞμ; f bðtÞ ¼ f 1ðtÞþ f 2ðtÞμ. The relation between f 0ðtÞ, f 1ðtÞ,
f 2ðtÞ and f iðtÞ, f jðtÞ, f kðtÞ is

f 0ðtÞ
f 1ðtÞ
f 2ðtÞ

0
B@

1
CA¼

μi μ1i μ2i
μj μ1j μ2j
μk μ1k μ2k

0
B@

1
CA

�1 f iðtÞ
f jðtÞ
f kðtÞ

0
B@

1
CA: ð11Þ

Theorem 1. The quaternion bispectra Bðω; νÞ in Eq. (3) can be
redefined as

Bðω; νÞ ¼ Fað�ω�νÞFaðωÞFaðνÞþFbðωþνÞμ1FaðωÞFaðνÞ
þFaðωþνÞFbð�ωÞμ1FaðνÞþFbð�ω�νÞμ1Fbð�ωÞμ1FaðνÞ
þFaðωþνÞFað�ωÞFbð�νÞμ1
þFbð�ω�νÞμ1Fað�ωÞFbð�νÞμ1
þFað�ω�νÞFbðωÞμ1Fbð�νÞμ1
þFbðωþνÞμ1FbðωÞμ1Fbð�νÞμ1; ð12Þ

where FaðU Þ and FbðU Þ are the 1-D QFTs of f aðtÞ and f bðtÞ in Eq. (10),
respectively.

Proof. To prove Eq. (12), we need to use the following properties
of μ and μ1:

eμtðaþbμÞ ¼ ðaþbμÞeμt ;
μμ1 ¼ �μ1μ;

μ1eμt ¼ e�μtμ1;

8><
>: ð13Þ
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where a and b are real numbers. Eq. (13) can be demonstrated by
simple calculations.

By substituting f ðtÞ ¼ f aðtÞþ f bðtÞμ1 and using Eq. (13), Eq. (3)
can be rewritten as

Bðω; νÞ ¼
Z 1

�1

Z 1

�1

Z 1

�1
½f aðtÞþ f bðtÞμ1�½f aðtþxÞþ f bðtþxÞμ1�½f aðtþyÞ

þ f bðtþyÞμ1�e�μðωxþ νyÞdtdxdy

¼
Z 1

�1

Z 1

�1
½f aðtÞþ f bðtÞμ1�½f aðtþxÞþ f bðtþxÞμ1�Z 1

�1
½f aðtþyÞe�μνðtþyÞ þ f bðtþyÞeμνðtþyÞμ1�dyeμνte�μωxdtdx

¼
Z 1

�1

Z 1

�1
½f aðtÞþ f bðtÞμ1�½f aðtþxÞþ f bðtþxÞμ1�½FaðνÞ

þFbð�νÞμ1�eμνte�μωxdtdx

¼
Z 1

�1
½f aðtÞþ f bðtÞμ1�f½FaðωÞþFbð�ωÞμ1�FaðνÞþ½Fað�ωÞ

þFbðωÞμ1�Fbð�νÞμ1geμðωþνÞtdt
¼ Fað�ω�νÞFaðωÞFaðνÞþFbðωþνÞμ1FaðωÞFaðνÞ

þFaðωþνÞFbð�ωÞμ1FaðνÞþFbð�ω�νÞμ1Fbð�ωÞμ1FaðνÞ
þFaðωþνÞFað�ωÞFbð�νÞμ1þFbð�ω�νÞμ1Fað�ωÞFbð�νÞμ1
þFað�ω�νÞFbðωÞμ1Fbð�νÞμ1þFbðωþνÞμ1FbðωÞμ1Fbð�νÞμ1:

ð14Þ

3. QHOS invariants for color images

In this section, we describe an invariants generation method for
2-D color images, which is based on the Radon transform or the
central slice theorem, quaternion bispectra, and quaternion prin-
cipal component analysis. The derived invariants are proved to be
independent of image rotation, translation, and scaling.

3.1. The Radon transform and the central slice theorem

Let f ðx; yÞ ¼ f Rðx; yÞiþ f Gðx; yÞjþ f Bðx; yÞk represents an RGB
image, the Radon transform, denoted by Rðs; θÞ, is the 1-D projec-
tion of f ðx; yÞ at the angle θ, which is also a pure-quaternion-valued
function, given by

Rðs; θÞ ¼
Z 1

�1
f ðs cos θ�t sin θ; s sin θþt cos θÞdt;

�1oso1;0rθoπ: ð15Þ
The Radon transform has useful properties about image rota-

tion, translation, and scaling as follows:

translation : f ðx�x0; y�y0Þ3Rðs�x0 cos θ�y0 sin θ; θÞ; ð16Þ

scaling : f ðax; ayÞ3 1
jajRðas; θÞ; a is real and aa0; ð17Þ

rotation : f pðr; ρþαÞ3Rðs; θþαÞ; ð18Þ

where f pðr; ρÞ is the polar coordinate representation of f ðx; yÞ.
The existence of the central slice theorem (also called the

central projection theorem) enables the implementation of the
Radon transform efficient by using the Fast Fourier Transform
(FFT) algorithm. It can be seen from the definition of QFTs that the
central slice theorem still holds in quaternion algebra.

Proposition 1. (The central slice theorem) Let f ðx; yÞ be a pure-
quaternion-valued RGB image, the 1-D QFT of its Radon transform
Rðs; θÞ with s being a variable and θ being a parameter, denoted by
Fsðω; θÞ, is equal to the central slice at the angle θ of its 2-D QFT,

denoted by Fx;yðω cos θ;ω sin θÞ, that is
Fsðω; θÞ ¼ Fx;yðω cos θ;ω sin θÞ: ð19Þ

3.2. The QHOS invariants generation scheme

According to the definition given by Eqs. (3) and (12), the
quaternion bispectrum of a 1-D sequence is a 2-D function, and
the bispectrum of a 2-D image is a 4-D function. To avoid the
computational complexity, the original 2-D RGB image f ðx; yÞ is
first reduced to a set of 1-D functions, which can be implemented
directly in the spatial domain via the Radon transform or indirectly
in the frequency domain via the central slice theorem. In the
spatial domain, the quaternion bispectrum of the Radon transform
Rðs; θÞ of f ðx; yÞ, denoted by Bθðω; νÞ, can be computed using

Bθðω; νÞ ¼
Z 1

�1

Z 1

�1

Z 1

�1
Rðs; θÞRðsþx; θÞRðsþy; θÞe�μðωxþ νyÞdsdxdy:

ð20Þ
If rewriting f ðx; yÞ ¼ f aðx; yÞþ f bðx; yÞμ1 by Eqs. (10) and (11), as

mentioned in Section 2.2, according to Theorem 1 and the central
slice theorem, the quaternion bispectrum Bθðω; νÞ in Eq. (20) can be
computed directly in the frequency domain using

Bθðω; νÞ ¼ Fa;θð�ω�νÞFa;θðωÞFa;θðνÞþFb;θðωþνÞμ1Fa;θðωÞFa;θðνÞ
þFa;θðωþνÞFb;θð�ωÞμ1Fa;θðνÞ
þFb;θð�ω�νÞμ1Fb;θð�ωÞμ1Fa;θðνÞ
þFa;θðωþνÞFa;θð�ωÞFb;θð�νÞμ1
þFb;θð�ω�νÞμ1Fa;θð�ωÞFb;θð�νÞμ1
þFa;θð�ω�νÞFb;θðωÞμ1Fb;θð�νÞμ1
þFb;θðωþνÞμ1Fb;θðωÞμ1Fb;θð�νÞμ1; ð21Þ

where Fa;θðUÞ and Fb;θðUÞ are the central slices at the angle θ of the
2-D QFTs of f aðx; yÞ and f bðx; yÞ, respectively. If we rewrite
Rðs; θÞ ¼ Raðs; θÞþRbðs; θÞμ1,Fa;θðU Þ and Fb;θðUÞ are actually the 1-D
QFTs of Raðs; θÞ and Rbðs; θÞ with s being a variable and θ being a
parameter. In this paper, Eq. (21) is applied for the implementation
of the proposed QHOS invariants generation method.

Theorem 2. Let

ΦðθÞ ¼
R1
�1

R1
�1 Bθðω; νÞdωdν

‖
R1
�1

R1
�1 Bθðω; νÞdωdν‖

; ð22Þ

then, ΦðθÞ is invariant to image translation and scaling.

Proof. Let f ðx�x0; y�y0Þ be a shifted version of f ðx; yÞ, according
to Eq. (16), the resultant Radon transform R0ðs; θÞ of f ðx�x0; y�y0Þ
becomes Rðs�s0; θÞ; where s0 ¼ x0 cos θþy0 sin θ. Then, the qua-
ternion bispectrumB0

θðω; νÞ of R0ðs; θÞ is given by

B0
θðω; νÞ ¼

Z 1

�1

Z 1

�1

Z 1

�1
R0ðs; θÞR0ðsþx; θÞR0

ðsþy; θÞe�μðωxþνyÞdsdxdy

¼
Z 1

�1

Z 1

�1

Z 1

�1
Rðs�s0; θÞRðs�s0þx; θÞR

ðs�s0þy; θÞe�μðωxþνyÞdsdxdy

¼
Z 1

�1

Z 1

�1

Z 1

�1
Rðs; θÞRðsþx; θÞRðsþy; θÞe�μðωxþνyÞdsdxdy

¼ Bðω; νÞ: ð23Þ

Therefore, ΦðθÞ defined by Eq. (22) is translation invariant.

Let f ðax; ayÞ be a scaled version of f ðx; yÞ, where aa0, according
to Eq. (17), the resultant Radon transform R0ðs; θÞ of f ðax; ayÞ is
Rðas; θÞ=jaj. Then, the corresponding quaternion bispectrum

X. Jia et al. / Optics and Lasers in Engineering 57 (2014) 28–3930



B0
θðω; νÞ becomes

B0
θðω; νÞ ¼

Z 1

�1

Z 1

�1

Z 1

�1
R0ðs; θÞR0ðsþx; θÞR0

ðsþy; θÞe�μðωxþ νyÞdsdxdy

¼ 1
jaj3

Z 1

�1

Z 1

�1

Z 1

�1
Rðas; θÞRðasþax; θÞR

ðasþay; θÞe�μðωxþ νyÞdsdxdy

¼ 1
a6

Z 1

�1

Z 1

�1

Z 1

�1
Rðs; θÞRðsþx; θÞR

ðsþy; θÞe�μðððω=aÞxÞþ ððν=aÞyÞÞdsdxdy

¼ 1
a6
B

ω

a
;
ν

a

� �
: ð24Þ

Thus,
R1
�1

R1
�1 B0

θðω; νÞdωdν¼ a�4
R1
�1

R1
�1 Bθðω; νÞdωdν: When

computing Φ0ðθÞ; the constant multiplier a�4 will be cancelled out,
which means that ΦðθÞ is scaling invariant.

According to the periodicity and symmetry of the Radon
transform, we have

Rðs; θÞ ¼
Rðs; θþ2nπÞ;
Rð�s; θþð2nþ1ÞπÞ;

(
ð25Þ

where n is an integer. Thus, ΦðθÞ ¼Φðθþ2nπÞ: Rð�s; θþð2nþ1ÞπÞ
can be seen as a special case of Eq. (17), where a¼ �1 and the
Radon transform is done at the angle θþð2nþ1Þπ: Then, using
Theorem 2, ΦðθÞ ¼Φðθþð2nþ1ÞπÞ: Therefore, we have

Corollary 1. ΦðθÞ is periodic with period π, i.e., ΦðθÞ ¼ΦðθþnπÞ:
If the original image is rotated by an angle θ0; using Eq. (18), the

Radon transform R0ðs; θÞ of the rotated image can be written as
R0ðs; θÞ ¼ Rðs; θþθ0Þ; which implies that the rotation of the image
leads to a cyclically shifted ΦðθÞ by an amount θ0 in the cycle
period ½0; πÞ. Several techniques can be used to eliminate the effect
of cyclic shift. In this paper, a reference angle of ΦðθÞ, denoted by θ,
is defined as

θ¼ 1
2
angle

R π
0 ei2θjjΦðθÞjj1dθR π

0 jjΦðθÞjj1dθ

 !
; ð26Þ

where angleðU Þ is the phase angle of a complex number, and jjU jj1
is the sum of the absolute value of each component for a
quaternion. If Φðθ0Þ is a cyclically shifted version of ΦðθÞ, where
θ0 ¼ θþθ0; by Eq. (26), the reference angle θ0 of Φðθ0Þ is

θ0 ¼ 1
2
angle

R π
0 ei2θjjΦðθþθ0Þjj1dθR π

0 jjΦðθþθ0Þjj1dθ

 !

¼ 1
2
angle e� i2θ0

R π
0 ei2θjjΦðθÞjj1dθR π

0 jjΦðθÞjj1dθ

 !

¼ θ�θ0: ð27Þ
Thus, Φðθ0 þθ0Þ ¼ΦðθÞ: Then, we can obtain the rotation invar-

iants by cyclically shifting the sequence ΦðθÞ in ½0; πÞ to the
reference angle θ.

3.3. Feature reduction using quaternion principal component
analysis (QPCA)

In general, the number of features may be large at the feature
generation stage. The main task of feature reduction is to reduce
the redundant information contained in each pair of different
features by removing the correlation between them and select
features with large interclass separation, both of which can be
achieved through QPCA [29].

Suppose that we have M number of image classes and Nm

number of sample images for the mth image class. The L�D
feature vector generated using the QHOS invariants algorithm for
each sample is denoted by Φm

n (n¼ 1;…;Nm; m¼ 1;…;M). The

feature covariance matrixCin the feature space is defined by

C ¼ 1
M

∑
M

m ¼ 1
ðΦm�ΦÞðΦm�ΦÞH ; ð28Þ

where H denotes the conjugate transpose operation, and Φ
m, Φ are

given by

Φ
m ¼ 1

Nm
∑
Nm

n ¼ 1
Φm

n ; ð29Þ

Φ¼ 1
M

∑
M

m ¼ 1
Φ

m
: ð30Þ

Since C is an L� L self-conjugate symmetric matrix, it possesses
L real eigenvalues. Then, feature reduction can be achieved by
projecting each feature vector Φm

n from the L�D space onto an
l�DðloLÞ space using the Hotelling transform as follows:

Vm
n ¼ UHðΦm

n �ΦÞ; ð31Þ
where U is an L� l matrix consisting of the eigenvectors corre-
sponding to the first l largest eigenvalues of C in descending order.

4. Experiments

This section is intended to test the invariance property of the
proposed quaternion higher-order spectra invariants (QHOSIs) to
various geometric transformations and their robustness to differ-
ent types of noises. In the following subsections, the unit pure
quaternions μ¼ ðiþ jþkÞ=

ffiffiffi
3

p
and μ1 ¼ ðiþ j�2kÞ=

ffiffiffi
6

p
are chosen to

compute QHOSIs, and the central slice is computed at the angle
varying from 61 to 1801 every 61. The Quaternion Toolbox for
Matlab [30] is used in implementing the quaternion arithmetic.

4.1. Test of invariance to RTS transformations

We first validate the performance of the proposed QHOSIs with
respect to RTS transformations. The standard color Lena and
Peppers images of size 128�128 were undergone different geo-
metric transformations. In order to contain the entire transformed
standard color images, the actual size of the original images
(without any geometric transformations) is changed into
208�208 by adding some background pixels around the standard
color images. Then each image was translated with ΔxAf�29;
�27;…;29g, ΔyAf�29; �27;…;29g, rotated with αAf01;121;…;

3481g, and scaled with scaling factor λAf0:1;0:2;…;3g, forming
four sets of 30 images for Lena and Peppers, respectively. Fig. 1
shows some examples of the transformed images.

The proposed QHOSIs defined in Eq. (22) are calculated for each
transformed image. Figs. 2 and 3 show the second and fourth
components of the calculated QHOSIs at the reference angle θ for
the Lena and Peppers images, respectively, from which we can see
that excellent results have been obtained. Table 1 shows the
absolute values of s=ε to indicate the stability of the invariants
in Figs. 2 and 3, where s and ε denote the standard deviation and
mean of the invariants, respectively. It can be seen from Table 1
that most of the values of js=εj are less than 2%. Therefore, the
QHOS invariants derived in this paper could be a useful tool in
color image recognition tasks that require invariance to RTS
transformations.

4.2. Test of robustness against background noise

In this subsection, our purpose is to test the robustness of the
proposed QHOSIs against some frequently encountered additive
noise, including white Gaussian, uniform and exponential noise.
The original images are the standard color Barbara and Boats
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images of size 128�128. Each type of noise mentioned above with
different standard deviations (STDs) was added to the original
images. Examples of the corrupted images and experimental
results are shown in Fig. 4 and Tables 2 and 3, respectively.

To quantify the robustness of our proposed QHOSIs, a com-
parative test is also conducted involving the quaternion Fourier–

Mellin moment invariants (QFMMIs) method [21]. The experiment
described above is repeated using QFMMIs and the corresponding
results are depicted in Tables 4 and 5. It can be concluded from
Tables 2–5 that the QHOSIs remain almost unchanged (js=εjr2%)
and perform better than the QFMMIs (js=εjr16%) in the presence
of each type of noise.

Fig. 1. Examples of the standard color Lena and Peppers images with different geometric transformations. (a) Original image. (b) Δx=�15, (c) α = 601, (d) λ = 0.8, (e) original
image, (f) Δy= �15, (g) α = 3001 and (h) λ=1.2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. The second and fourth components of the QHOS invariants at the reference angle θ for the standard color Lena image under different geometric transformations:
(a) translated along the x-axis with ΔxAf�29; �27;…;29g; (b) translated along the y-axis with ΔyAf�29; �27;…;29g; (c) rotated with αAf01;121;…;3481g; (d) scaled with
λAf0:1;0:2;…;3g. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. The second and fourth components of the QHOS invariants at the reference angle θ for the standard color Peppers image under different geometric transformations:
(a) translated along the x-axis with ΔxAf�29; �27;…;29g; (b) translated along the y-axis with ΔyAf�29; �27;…;29g; (c) rotated with αAf01;121;…;3481g; (d) scaled with
λAf0:1;0:2;…;3g. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
The absolute values of s/ε (%) to indicate the stability of the QHOSIs in Figs. 2 and 3.

9s/ε9 (%) Fig. 2(a) Fig. 2(b) Fig. 2(c) Fig. 2(d) Fig. 3(a) Fig. 3(b) Fig. 3(c) Fig. 3(d)

ΦiðθÞ 0.3066 0.4540 0.0018 0.1183 1.5546 0.4945 0.0025 0.0162

ΦkðθÞ 0.6043 1.2776 0.0079 0.4897 2.0217 3.2981 0.0055 0.0282

Fig. 4. Examples of the standard color Barbara and Boats images corrupted by additive Gaussian, uniform and exponential noise with STD¼15. (a) Original image,
(b) gaussian noise (STD=15), (c) uniform noise (STD=15), (d) exponential noise (STD=15), (e) original image, (f) gaussion noise (STD=15), (g) uniform noise (STD=15) and
(h) exponential nosie (STD=15). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 2
The second and third components of the QHOS invariants at the reference angle θ for the standard color Barbara image corrupted by additive Gaussian, uniform and
exponential noise with different STDs.

Gaussian noise Uniform noise Exponential noise

ΦiðθÞ ΦjðθÞ ΦiðθÞ ΦjðθÞ ΦiðθÞ ΦjðθÞ

STD¼35 �0.6831 �0.5325 �0.6724 �0.5395 �0.6588 �0.5463
STD¼30 �0.6839 �0.5325 �0.6752 �0.5380 �0.6617 �0.5448
STD¼25 �0.6829 �0.5337 �0.6761 �0.5372 �0.6654 �0.5431
STD¼20 �0.6846 �0.5331 �0.6774 �0.5374 �0.6699 �0.5409
STD¼15 �0.6845 �0.5339 �0.6792 �0.5363 �0.6732 �0.5400
STD¼10 �0.6850 �0.5338 �0.6813 �0.5351 �0.6770 �0.5372
STD¼5 �0.6847 �0.5333 �0.6829 �0.5344 �0.6807 �0.5358
STD¼0 �0.6847 �0.5335 �0.6847 �0.5335 �0.6847 �0.5335
s/ε (%) �0.1173 �0.1034 �0.6118 �0.3687 �1.3630 �0.8252

Table 3
The second and third components of the QHOS invariants at the reference angle θ for the standard color Boats image corrupted by additive Gaussian, uniform and
exponential noise with different STDs.

Gaussian noise Uniform noise Exponential noise

ΦiðθÞ ΦjðθÞ ΦiðθÞ ΦjðθÞ ΦiðθÞ ΦjðθÞ

STD¼35 �0.6359 �0.5476 �0.6304 �0.5508 �0.6242 �0.5550
STD¼30 �0.6354 �0.5478 �0.6323 �0.5500 �0.6258 �0.5536
STD¼25 �0.6351 �0.5476 �0.6326 �0.5503 �0.6277 �0.5526
STD¼20 �0.6357 �0.5476 �0.6327 �0.5505 �0.6292 �0.5526
STD¼15 �0.6362 �0.5476 �0.6339 �0.5494 �0.6297 �0.5520
STD¼10 �0.6358 �0.5481 �0.6343 �0.5492 �0.6328 �0.5501
STD¼5 �0.6360 �0.5481 �0.6351 �0.5488 �0.6344 �0.5489
STD¼0 �0.6357 �0.5483 �0.6357 �0.5483 �0.6357 �0.5483
s/ε (%) �0.0532 �0.0524 �0.2729 �0.1632 �0.6519 �0.4215

Table 4
QFMM invariants for the standard color Barbara image corrupted by additive Gaussian, uniform and exponential noise with different STDs.

Gaussian noise Uniform noise Exponential noise

Φ1;1 Φ1;2 Φ1;1 Φ1;2 Φ1;1 Φ1;2

STD¼35 0.0089 0.0309 0.0059 0.0267 0.0063 0.0245
STD¼30 0.0082 0.0320 0.0070 0.0283 0.0068 0.0244
STD¼25 0.0069 0.0319 0.0071 0.0278 0.0059 0.0262
STD¼20 0.0068 0.0297 0.0069 0.0281 0.0070 0.0264
STD¼15 0.0057 0.0305 0.0062 0.0289 0.0061 0.0261
STD¼10 0.0061 0.0304 0.0061 0.0296 0.0067 0.0287
STD¼5 0.0065 0.0301 0.0064 0.0300 0.0067 0.0294
STD¼0 0.0063 0.0306 0.0063 0.0306 0.0063 0.0306
s/ε (%) 15.5837 2.6742 6.9603 4.4710 6.0911 8.4694

Table 5
QFMM invariants for the standard color Boats image corrupted by additive Gaussian, uniform and exponential noise with different STDs.

Gaussian noise Uniform noise Exponential noise

Φ1;1 Φ1;2 Φ1;1 Φ1;2 Φ1;1 Φ1;2

STD¼35 0.0530 0.0381 0.0500 0.0381 0.0398 0.0317
STD¼30 0.0548 0.0396 0.0495 0.0396 0.0421 0.0316
STD¼25 0.0529 0.0396 0.0520 0.0395 0.0439 0.0334
STD¼20 0.0550 0.0414 0.0521 0.0411 0.0480 0.0357
STD¼15 0.0567 0.0429 0.0547 0.0416 0.0501 0.0372
STD¼10 0.0574 0.0441 0.0559 0.0429 0.0534 0.0405
STD¼5 0.0581 0.0445 0.0569 0.0438 0.0553 0.0426
STD¼0 0.0585 0.0451 0.0585 0.0451 0.0585 0.0451
s/ε (%) 3.9567 6.2152 6.1760 5.7007 13.6501 13.6581
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4.3. Color object recognition

To further evaluate the performance of the proposed QHOSIs to
RTS transformations and their robustness against noise, color
object recognition procedure was conducted. Twelve images with
size 128�128 selected from the public Columbia Object Image
Library (COIL) database [31] were used as the training set, meaning
that one sample image per image class. The actual size of all the
original images is 208�208 by adding a black background (Fig. 5)
and a real-word background (Fig. 6), respectively. Then each image
was translated with Δx¼ 8; Δy¼ 6, rotated with angle αAf0;30;
…;150g; and scaled with scale factor λAf0:5;0:75;…;2:0g; forming
42 realizations per image class. A testing set of 504 images was
obtained by adding a white Gaussian noise, a uniform noise or an
exponential noise with different STDs to those realizations men-
tioned above. First, a 30-D feature vector for each transformed and
corrupted image was generated using the QHOSIs generation
method. Then, the feature reduction algorithm was applied with
different values of l (the number of features derived using QPCA).
At last, the minimum Euclidean distance was used as the classifier.

The resultant recognition rates for the images in Fig. 5 with
different values of l under additive white Gaussian noise are listed
in Table 6, which shows that the best performance is obtained
when l¼ 3: Fig. 7 illustrates an example of scatter plots of the
first QHOSI derived at l¼ 3 for the images in Fig. 5 corrupted
by Gaussian noise with different STDs. As can be observed,

the derived features are consistent with human0s visual perception
in the sense that the distance between the feature vectors of two
visually similar images is smaller than the distance between those
of the dissimilar images.

In order to compare the recognition efficiency of our QHOSIs,
the experiments described above are also repeated using the
quaternion Zernike moment invariants (QZMIs) method proposed
in [22]. The resultant recognition rates using QHOSIs and QZMIs
under additive white Gaussian, uniform and exponential noise
with different STDs are summarized in Tables 7 and 8 for images in
Figs. 5 and 6, respectively. It can be concluded from these results
that: (1) the performance of QHOSIs in the presence of uniform
noise is comparable with that obtained for white Gaussian noise;
(2) the QHOSIs do not have the same success for exponential noise,
because the distribution of such noise is not symmetrical; (3) the
recognition rates for objects in Fig. 5 are generally higher than
those in Fig. 6, because RTS transformations lead to more changes
in real-word backgrounds; and (4) the performance of QHOSIs is
better than the QZMIs in the presence of each type of noise,
especially in the presence of noises with high STDs.

4.4. Noisy color texture recognition

Noisy texture recognition is more difficult due to the fact that
detailed texture structure is more vulnerable to background noise.
However, most denoizing methods for texture images make the

Fig. 5. Twelve color objects with a black background selected from the Columbia University Image Library database. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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resultant images lose the textural structure. In our study, it has
been shown that QHOSIs are robust to different types of noises. In
addition, due to the use of the Radon transform, QHOSIs contain
inner structural details about a given image. Thus, we expect that
the proposed invariants generation method can be extended to
noisy color texture recognition. By proceeding in a similar way as
that described in Section 3 for color images, we can also derive the
HOSIs for each channel of an RGB image (denoted hereafter by
DHOSIs) and the gray-scale image obtained by image graying
(denoted hereafter by GHOSIs). In order to compare the proposed

QHOSIs with DHOSIs and GHOSIs in terms of recognition accuracy,
we use the values of l (the number of features derived using PCA)
with the best performances in all experiments.

Sixteen color texture images with size 128�128 (Fig. 8)
selected from the VisTex database [32] were used. Each image
was transformed with the same transformations as those pre-
sented in Section 4.3. This was followed by adding a white
Gaussian noise, a uniform noise or an exponential noise with
different STDs. The recognition results are shown in Table 9. We
can conclude that the QHOSIs yield good performance for noisy

Fig. 6. Twelve color objects with a real-word background. (For interpretation of the references to color in this figure legend, the reader is referred to theweb version of this article.)

Table 6
Recognition rates (%) using QHOS invariants under additive Gaussian noise with different STDs. l is the number of derived quaternion-valued features.

l¼1 l¼2 l¼3 l¼4 l¼6 l¼30

STD¼1 100.00 100.00 100.00 100.00 100.00 100.00
STD¼3 100.00 100.00 100.00 100.00 100.00 100.00
STD¼5 100.00 99.80 99.80 100.00 99.60 99.21
STD¼7 98.81 99.60 99.60 99.60 99.21 97.42
STD¼10 95.63 97.82 97.82 95.63 94.44 87.90
STD¼15 91.67 93.45 93.45 87.90 85.32 80.56
STD¼20 78.57 84.13 83.93 83.53 79.56 78.57
STD¼25 76.39 83.13 83.53 83.53 78.57 77.58
Average rate 92.63 94.74 94.77 93.77 92.09 90.15
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color texture recognition without employing noise reduction
procedure and perform much better than the other two methods,
especially than GHOSIs. The reason is that graying loses some color
information, which may be important in color texture recognition.

5. Conclusions

In this paper, we have extended the conventional higher-order
spectra from real numbers to quaternion algebra. Quaternion

Fig. 7. Cluster plots of the second (horizontal axis) and third (vertical axis) components of the first QHOS invariant for the twelve color objects in Fig. 5 corrupted by
Gaussian noise with different STDs: (a) STD¼0; (b) STD¼5; (c) STD¼10; (d) STD¼15.

Table 7
Recognition rates (%) using QHOS invariants and QZM invariants for color objects with a black background under additive Gaussian, uniform and exponential noise with
different STDs.

Gaussian noise Uniform noise Exponential noise

QHOSIs QZMIs QHOSIs QZMIs QHOSIs QZMIs

STD¼1 100.00 100.00 100.00 100.00 100.00 100.00
STD¼3 100.00 95.67 100.00 95.04 92.86 88.04
STD¼5 99.80 86.72 99.80 85.91 84.33 78.91
STD¼7 99.60 82.59 99.40 83.33 82.33 76.33
STD¼10 97.82 80.99 97.62 80.16 75.00 73.16
STD¼15 93.45 62.96 96.23 62.70 66.67 55.70
STD¼20 83.93 46.62 95.04 47.42 58.13 40.42
STD¼25 83.53 38.25 93.25 38.69 49.40 31.69
Average rate 94.77 74.22 97.67 74.16 76.09 68.03

Table 8
Recognition rates (%) using QHOS invariants and QZM invariants for color objects with a real-word background under additive Gaussian, uniform and exponential noise with
different STDs.

Gaussian noise Uniform noise Exponential noise

QHOSIs QZMIs QHOSIs QZMIs QHOSIs QZMIs

STD¼1 100.00 100.00 100.00 100.00 100.00 100.00
STD¼3 100.00 90.13 100.00 91.64 85.32 84.06
STD¼5 99.21 81.83 99.60 81.20 80.16 74.13
STD¼7 97.42 79.26 98.21 79.18 77.98 71.40
STD¼10 87.90 74.47 96.43 76.99 69.44 67.12
STD¼15 80.95 58.64 92.06 59.28 65.08 51.12
STD¼20 79.17 43.33 91.07 44.34 60.52 35.85
STD¼25 78.17 33.66 87.50 35.00 49.01 26.88
Average rate 90.35 70.17 95.61 70.95 73.44 63.82
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Fig. 8. Sixteen color texture images selected from the VisTex database. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Table 9
Recognition rates (%) using QHOS invariants, DHOS invariants and GHOS invariants under additive Gaussian, uniform and exponential noise with different STDs.

Gaussian noise Uniform noise Exponential noise

QHOSIs DHOSIs GHOSIs QHOSIs DHOSIs GHOSIs QHOSIs DHOSIs GHOSIs

STD¼1 100.00 99.01 80.80 100.00 99.40 80.36 100.00 98.60 72.17
STD¼3 100.00 96.61 69.05 99.70 95.68 68.15 84.32 81.55 48.07
STD¼5 96.88 92.49 52.08 98.07 93.01 55.95 78.16 71.28 33.93
STD¼7 95.20 86.93 48.96 97.02 86.90 51.79 72.98 68.75 30.21
STD¼10 85.08 83.64 40.03 94.35 82.14 41.82 65.44 54.14 23.36
STD¼15 78.39 71.88 32.14 90.33 72.77 31.85 53.08 47.35 22.77
STD¼20 77.29 58.01 27.53 87.50 67.26 26.93 49.52 39.80 21.43
STD¼25 72.17 55.48 24.70 84.38 60.27 25.74 41.01 31.25 17.56
Average rate 88.13 80.50 46.91 93.92 82.18 47.82 68.06 61.59 33.69
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higher-order spectra invariants (QHOSIs) with respect to RTS
transformations have been constructed. The generated QHOSIs
are further reduced to a smaller set by means of quaternion
principal component analysis. The proposed PR system based on
QHOSIs has been tested against color objects and textures. It has
been shown that QHOSIs are more robust to background noise,
especially to symmetrically distributed ones. Further, by means of
quaternion principal component analysis, the reduced feature set
contains no redundant information in the sense that feature
elements are uncorrelated with each other. Therefore, the pro-
posed method has more discriminative power than the existing
methods. The feature vector is computed only once for each image
class in the training process and stored along with the model
image for later classification, which keeps the computational
complexity of the integrated algorithm reasonable for many
practical applications. Our future work will focus on studying the
potential symmetry of QHOS to further reduce the amount of
calculation and constructing QHOS invariants with respect to other
geometric transformations such as shearing and perspective.
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Appendix A

QUATERNIONS A quaternion q is a 4-D number, having one real
part and three imaginary parts, which can be written as

q¼ qrþqiiþqjjþqkk; ðA1Þ
where qr ; qi; qj; qk are real, and i; j; k are complex operators obeying
the following rules:

i2 ¼ j2 ¼ k2 ¼ �1; ij¼ � ji¼ k; jk¼ �kj¼ i; ki¼ � ik¼ j: ðA2Þ
It can be seen from Eq. (A2) that the multiplication of

quaternions is not commutative. When qr ¼ 0; q is referred to as
a pure quaternion.

The conjugate and norm of a quaternion are respectively
defined as follows:

q¼ qr�qii�qjj�qkk; ðA3Þ

jjqjj ¼
ffiffiffiffiffiffi
qq

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2r þq2i þq2j þq2k

q
: ðA4Þ

when jjqjj ¼ 1; q is called as a unit quaternion.
Euler0s formula holds for quaternions, that is

eμφ ¼ cos φþμ sin φ; ðA5Þ
where μ is a unit pure quaternion.

Let f ðx; yÞ be a 2-D quaternion-valued function, due to the
noncommutative property of quaternion multiplication, there are
three different definitions of 2-D quaternion Fourier transforms
(QFTs) as follows:

FRðω; νÞ ¼
Z 1

�1

Z 1

�1
f ðx; yÞe�μ1ðωxþ νyÞdxdy; ðA6Þ

FLðω; νÞ ¼
Z 1

�1

Z 1

�1
e�μ2ðωxþ νyÞf ðx; yÞdxdy; ðA7Þ

FRLðω; νÞ ¼
Z 1

�1

Z 1

�1
e�μ2ωxf ðx; yÞe�μ1νydxdy; ðA8Þ

where μ1 and μ2 are two unit pure quaternions that are orthogonal
to each other, and FRðω; νÞ, FLðω; νÞ and FRLðω; νÞ are called right-
side, left-side and two-side QFTs, respectively.
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