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Output feedback controller design of
discrete-time linear switching systems
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Abstract
This paper presents some stability synthesis results for the discrete-time linear switching systems whose dynamics contain reset functions and are

determined by exogenous and uncontrollable events. First, for autonomous linear switching systems, conditions of stability are given in terms of a new

definition of d-controlled invariant set, and existence conditions to obtain such a set are presented. Then, under the assumption that the discrete state

is known and the continuous state is unavailable for feedback, this new result is used to find the sufficient conditions for the existence of an observer-

based stabilizing controller and dynamic output feedback controller. Such a design can be formulated in terms of linear matrix inequalities, which are

numerically feasible with commercially available software. Finally, illustrative examples are given to indicate the effectiveness of the proposed design.

Keywords
Controlled invariance, linear matrix inequality (LMI), output feedback controller design, stability, switching systems

Introduction

Switching systems are a subclass of hybrid systems (Branicky,

1998; Gollu and Varaiya, 1989), which are characterized by a

finite state machine (FSM) and a set of dynamical systems,

each corresponding to a state of the FSM. The transitions

between different modes of the FSM are determined by exter-

nal uncontrollable events, which act as discrete disturbances

and whenever a discrete transition occurs, the continuous

state is instantly reset to a new value. Because of the particu-

larity of its discrete transitions and modelling, switching sys-

tems have been receiving increasing attention from the control

community.
Much of the work in controller synthesis of switching sys-

tems is based on a full knowledge of the hybrid state, and sev-

eral controller design techniques have been developed

(Benzaouia, 2007; Fan et al., 2010, 2012; Liu et al., 2012;

Santis et al., 2006). However, in many application domains,

this unrealistic assumption is not always verified. Hence, to

make the hybrid controller synthesis relevant, the design of

the output feedback controller is an important step.

Depending on the class of hybrid systems under consideration

and on the knowledge that is assumed at the hybrid output,

different output feedback controller design methods have

been given in the literature (Deaecto and Geromel, 2009;

Molaei, 2008; Santis et al., 2009; Vidal, 2003, and references

therein).
For linear switching systems, in the case of different

assumptions, observability and observer design problem have

been extensively studied both in the continuous-time and in

the discrete-time domains. For the continuous-time linear

switching systems, Santis et al. (2003) compared some defini-

tions of observability previously offered and analysed their

drawbacks, and presented a novel definition of observability;

sufficient and necessary conditions for these properties to

hold for switching systems are also given. In Santis and

Benedetto (2005), under the assumption that the discrete state

of switching systems is known and the conditions ensuring

detectability are satisfied, a suitable Luenberger-like observer,

solving the problem of estimating the continuous component

of hybrid state, is proposed. In the discrete-time case, detec-

tion requires a finite, non-zero number of time instants, while

in continuous-time it can be achieved in an arbitrarily small

amount of time, so in Santis et al. (2007), the notion of D-

observability is introduced, and completely characterized by

computational conditions. In Caravani and Santis (2007,

2008), for linear switching systems without a reset function,

in the assumption of full information on the continuous state

and no information on the discrete state, the conditions of

stabilizability for this class of systems are given in terms of a

new definition of control invariance, and tractable parametric

procedures for controller synthesis are investigated.
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In this paper, for the discrete-time linear switching sys-

tems, under the assumption that the discrete state of switch-

ing systems is known and continuous state is not available for

feedback, the subsequent logical step-output feedback con-

troller design problem is researched. After considering the

relation between the stability and invariant set, new sufficient

conditions of stability are proposed. Based on this result,

observer-based stabilizing controller design and dynamic out-

put feedback controller design problems are discussed, and

all of those approaches can be formulated in terms of linear

matrix inequalities (LMIs).
The paper is organized as follows. The next section pro-

vides the class of hybrid systems that are considered and the

problem statement. Then, main results are presented both for

the observer-based stabilizing controller design problem and

the dynamic output feedback controller design problem. Two

numerical examples are given to illustrate the technique, and

then the paper is concluded.

Notation

The letters R,N are the sets of real and non-negative integers.

Rn is the set of all n-tuples of real numbers, Rm3n is the set of

real matrices with m rows and n columns. Given a countable

set t, the symbol card(t) denotes the cardinality of t and

int(D) is the interior of the set D. For a matrix A, the trans-

pose of A is denoted by AT and l(A) represents the eigenvalue.

The notation A . 0 (or A \ 0) means that the matrix A is pos-

itive definite (or negative definite). The identity matrix is

denoted by I with appropriate dimensions. Here, diagf�g
stands for a block-diagonal matrix, and Ø is used to notify a

matrix element that is induced by transposition.

Definitions and problem presentation

Definition 1. The discrete-time linear switching systems are a

tuple:

H =(X,U ,Y , Sd ,E, L)

where X is the hybrid state space, X=
S

i2J fqig3Rn, with

J = f1, � � � ,Mdg; Q the discrete state space and

Q= fqi, i 2 Jg; Rn the continuous state space associated with

discrete state qi; U the continuous control input space, and

U =
S

i2J Rm; Y the continuous output space, Y =
S

i2J Rp;

and Sd the finite family of modes, Si 2 Sd is a mapping that

associates a discrete-time linear system to every discrete state

qi 2 Q. Its state-space representation is described below:

x(t+ 1)=Aix(t)+Biui(t)
y(t)=Cix(t)

�
ð1Þ

where x(t) 2 Rn is the continuous state vector, ui(t) 2 Rm is the

continuous control input vector, y(t) 2 Rp is the continuous

output vector, the matrices Ai,Bi and Ci are constant ones

that have the corresponding dimensions; E the collection of

discrete transitions, and E � Q3Q; and L the reset function

L : E3X! X. When a discrete transition e=(qi, qs) 2 E

occurs for j=(qi, x) 2 X, the reset function has the following

formulation:

L(e, j)= (qs, Lisx),Lis 2 Rn3n ð2Þ

Next, some definitions that are often used to analyse and
design switching systems are given. As introduced in
Benzaouia (2007) and Fan et al. (2010), the hybrid time basis
t and the controlled execution of linear switching systems H

are given below.

Definition 2. A hybrid time basis t is an infinite or finite
sequence of sets Ij = ft : tj < t < tjg, with tj = tj+ 1 for

j 2 L= f0, . . . , lg, and if card(t)= l+ 1 \ ‘ then tl can be
finite or infinite. The times tj will be called switching times,
and the set of all hybrid time bases is denoted by T .

Definition 3. The controlled execution of linear switching sys-

tems H is a collection x =(j0, t, ui, j), where j0 =(q0, x0) is
the initial hybrid state; t 2 T is the hybrid time basis;
ui : N ! Rm is the continuous control input function; and
j : N3N ! X is defined as,

j(t0, 0)= j0 =(q0, x0)

j(t, j)= (q(j), x(t, j)), q(j)= qi

j(tj+ 1, j+ 1)=L(ej, j(tj, j))

ej =(q(j), q(j+ 1))

where q : N ! Q is a map associating to each time interval a
discrete state, x(t, j) is the unique solution at time t of linear
dynamical system Si with initial time tj, initial state x(tj, j) and
continuous control inputs ui(n), n 2 ½tj, t).

Before describing the problems in this paper, the following

assumptions are made:

1) Switching among modes is uncontrolled but can be
observed, which implies the discrete state of switching
systems is known.

2) At each discrete time-point only one member of Sd is
active.

3) The minimum dwell time d 2 N of each subsystem Si

is described below:

tj+ 1 � tj ˜ d, 8j 2 L, d ˜ 1

The existence of a minimum dwell time is a widely used
assumption in the analysis of switching systems, and
models the inertia of the system for reacting to an exter-
nal discrete input (Lygeros et al., 1999; Morse, 1996).

For the discrete-time linear switching systems H defined
above, the considered problems in this paper can be formu-
lated as follows.

Problem 1. For the discrete-time linear switching systems H ,
design a continuous state observer with the ith subsystem
described by the equation:

x̂(t+ 1)=Aix̂(t)+Biui(t)+Fi(Cix̂(t)� y(t)) ð3Þ
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and find Md system-specific observer-based feedback control

laws of the form:

ui(t)=Kix̂(t, j), tj < t \ tj, q(j)= qi ð4Þ

j= 0, � � � , l, i= 1, � � � ,Md

such that the stability of closed-loop linear switching systems

is guaranteed, where the matrices Fi and Ki have to be

designed.

Problem 2. For the discrete-time linear switching systems H ,

design a dynamic output feedback controller with the ith sub-

system described by the equation:

x̂(t+ 1)=Aicx̂(t)+Bicy(t)
ui(t)=Cicx̂(t)

�
ð5Þ

such that the stability of closed-loop linear switching systems

is guaranteed, where the matrices Aic,Bic and Cic have to be

designed.

Main results

This section will present the main results of this paper. First,

we characterize the new sufficient conditions to guarantee sta-

bility of linear switching systems. Then, this result is used to

design the observer-based stabilizing controller and dynamic

output feedback controller.
For the discrete-time linear switching systems, the stability

condition of existence of a bounded controlled invariant set is

conservative, because it requires the controlled execution of

linear switching systems is guaranteed in an invariant set at

the time interval ½tj, tj+ 1�. Considering the assumption of min-

imum dwell time d 2 N in each subsystem, in order to guaran-

tee the stability of systems, it only needs to constraint the

controlled execution of linear switching systems in an invar-

iant set at the time interval ½tj + d, tj+ 1�, in which switching

among different modes may occur (Caravani and Santis,

2008, 2007). Based on this idea, for linear switching systems

considered in this paper, first, we give the following

definitions.

Definition 4. A set c=
S

i2J qi3ci � X is called a d-con-

trolled invariant with respect to S=
S

i2J qi3Si if there

exists a control strategy f such that starting from any hybrid

state in (q(j),Si), there is

j(t, j) 2 ci,8t 2 ½tj + d, tj+ 1�, 8j 2 L

for any controlled execution of H . If c is a d-controlled invar-

iant with respect to some non-empty set S, we call the set

c d-controlled invariant.

Definition 5. A linear switching system H is d-stabilizable if

there exists a control strategy such that

8e . 0,9r . 0, j(t, j) 2 e~B,8t 2 Ij, j 2 L

for all controlled executions with initial hybrid state j0 2 r~B,
where ~B=

S
i2J qi3B is the hybrid unit ball and

B= fx 2 Rn :k x k < 1g. Moreover, for a scalar a, it has

a~B=
S

i2J qi3aB.
The existence of a bounded d-controlled invariant (con-

tractive) set is related to the d-stability (asymptotic d-stability)
of linear switching systems, and we have the following result.

Theorem 1. A linear switching system H is d-stabilizable if
and only if there exists a set c=

S
i2J qi3ci, ci bounded,

which is d-controlled invariant with respect to a set S, with

the origin in int(Si).

Proof. Necessity: assume H is d-stabilizable. Starting from
any initial state j0 2 r~B at time tj, because the discrete state is

known at all time, therefore, in the time interval
½tj + 1, tj + d�, the controlled execution of H should stay in
set eBi, because a switching may never occur from mode qi to

another mode qs. Then in the time interval ½tj + d, tj+ 1�, it
has to evolve in a subset ci of eBi, which is controlled invar-
iant for the ith subsystem. When a switching from qi to qs

occurs at time tj+ 1, in ½tj+ 1 + 1, tj+ 1 + d�, the control strat-

egy has to guarantee the continuous state stay in eBs, and
controlled invariant with respect to a subset cs of eBs in
½tj+ 1 + d, tj+ 2�, because a switching from mode qs to mode

qj maybe occur. Then, the set c=
S

i2J qi3ci is d-controlled
invariant with respect to r~B, and 0 2 int(r~B), ci is bounded.
Hence the result follows (sufficiency is obvious).

From Theorem 1, in order to guarantee the d-stability of

linear switching systems, it needs to find a bounded d-con-
trolled invariant set. In the following, we present a class of d-
controlled invariant set, which is easy to obtain its existence
conditions.

Theorem 2. The hybrid region c=
S

i2J qi3ci � X is a d-
controlled invariant one, if there exist the bounded sets

O1(0 2 int(O1)), O2 and ci, such that the following conditions
hold:

1) For any continuous state x(tj) 2 O1, it should have
x(tj +D) 2 O2 for any D= 1, 2, � � � d;

2) At the time instant tj + d, it has x(tj + d) 2 ci;
3) In the time interval ½tj + d, tj+ 1�, ci is a bounded con-

trolled invariant set for the ith subsystem;
4) At the switching time tj+ 1, the continuous state after

reset belongs to the set O1, which means Lisx 2 O1.

Proof. From Definition 4, it is easy to see that the hybrid
region c=

S
i2J qi3ci is d-controlled invariant with respect

to initial states in set O=
S

i2J qi3O1.

Remark 1. Without loss of generality, the symbols O1,O2

should be Oi1,Oi2, which have relations with the discrete state

qi; here, for the sake of computational simplicity, we consider
the common ones. The set such as the form in Theorem 2 is
one kind of d-controlled invariant set, certainly paid by cer-
tain conservatism; however, the design freedom of sets O1,O2

and ci reduces the conservatism of the conditions. The exist-
ing methods, such as common invariant set or hybrid
Lyapunov method, are particular cases of d-controlled invar-

iant set, when it has O1 =O2 =ci. Therefore, the method in
this paper is less conservative, especially in the presence of
various state constraints on the different time interval of
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Ij,8j 2 L. (Please see Figure 1 with different constraint sets
L1 and L2 as an example).

Define autonomous linear switching systems

H0 =(X,f, Sd ,E, L) with the ith subsystem below:

x(t+ 1)=Aix(t), i= 1, � � � ,Md

where the symbols X, Sd ,E,L hold as in Definition 1, and f

represents the null set.
In the following, the sets we considered are all invariant

ellipsoids. Though the solutions when sets are selected in the

family of ellipsoids are inevitably expressed by sufficient con-
dition, it is easy to obtain the tractable parametric procedures

for controller synthesis. In detail, the considered sets have the

following representations:

O1 = fx(t) : x(t)T R1x(t)< e1g
O2 = fx(t) : x(t)T R2x(t)< e2g
ci = fx(t) : x(t)T Zix(t)< 1g

where R1,R2 and Zi are positive definite matrices, e1, e2 are
positive constants. In the case of invariant ellipsoids, a pictor-

ial representation of d-controlled invariant set in Theorem 2

is shown in Figure 1.
Based on Theorems 1 and 2, the following theorem gives

the sufficient conditions to judge the d-stability of autono-

mous linear switching systems H0.

Theorem 3. The autonomous linear switching systems H0 are

d-stabilizable, if there exist the positive definite matrices

Pi1,Pi2, Zi and positive constant g ˜ 1, such that the following
conditions hold:

AT
i Pi2Ai � gPi2 < 0 ð6Þ

Pi1 � gdPi2 ˜ 0 ð7Þ

lmax(~Pi1)=lmin(~Pi2)< e2=e1 ð8Þ

R2=e2 � Zi . 0 ð9Þ

Zi � AT
i ZiAi . 0 ð10Þ

Zi � LT
isR1Lis=e1 . 0 ð11Þ

where ~Pi1 =R
�1=2
1 Pi1R

�1=2
1 , ~Pi2 =R

�1=2
2 Pi2R

�1=2
2 .

Proof. Let us assume x(tj)
T R1x(tj)< e1, we want to prove that

if conditions (6)–(8) hold, then x(t)T R2x(t)< e2 for all

t= tj + 1, � � � , tj + d, j 2 L.
From condition (6), we can obtain

x(t + 1)T Pi2x(t + 1)= x(t)T AT
i Pi2Aix(t)< gx(t)T Pi2x(t)

which are simple calculations, and using the fact that g ˜ 1,
we deduce that

x(t)T Pi2x(t)< gt�tj x(tj)
T Pi2x(tj)< gdx(tj)

T Pi2x(tj) ð12Þ

Because ~Pi1 =R
�1=2
1 Pi1R

�1=2
1 and ~Pi2 =R

�1=2
2 Pi2R

�1=2
2 , we

have

x(t)T Pi2x(t)˜ lmin(~Pi2)x(t)
T R2x(t) ð13Þ

e1lmax(~Pi1)˜ lmax(~Pi1)x(tj)
T R1x(tj)˜ x(tj)

T Pi1x(tj) ð14Þ

From condition (7), thus

x(tj)
T Pi1x(tj)� gdx(tj)

T Pi2x(tj)˜ 0 ð15Þ

Then, from (12)–(15), we have

e1lmax(~Pi1)˜ x(tj)
T Pi1x(tj)˜ gdx(tj)

T

Pi2x(tj)˜ lmin(~Pi2)x(t)
T R2x(t)

ð16Þ

Together with condition (8), it follows that

x(t)T R2x(t)< e2,8t= tj + 1, � � � , tj + d ð17Þ

Then, condition 1 in Theorem 2 is obtained. Conditions (9)–

(11) imply that an ellipsoid is contained in another one or an

ellipsoid is an invariant one, which could guarantee the condi-
tions 2–4 in Theorem 2. Therefore, the hybrid region

c=
S

i2J qi3ci is a d-controlled invariant set in Theorem 2.
From Theorem 1, the autonomous linear switching systems

H0 are d- stabilizable.

Remark 2. As a special case, when the sets O1 and O2 share

the same positive definite matrix R, also with e1 \ e2, condi-

tions (6)–(8) can be degraded to the sufficient conditions that
guarantee the finite-time stability of the ith subsystem in the

time interval ½tj, tj + d� (Amato and Ariola, 2005; Amato
et al., 2001).

Remark 3. In the case of various state constraints on Ij, 8j 2 L

(Figure 1), in order to achieve the constrained stability prob-

lem, a d-controlled invariant set that has less conservatism

can be obtained from the following steps:

1) Choose the sets O2 =ci =L2, and use Theorem 3 to
judge whether it has a feasible solution.

2) If a feasible solution is found, go to step 3, else go to
step 4.

3) Enlarge the set ci � L1, and use Theorem 3 to judge
whether a d-controlled invariant set can be found.
Repeat this process until the set ci � L1 is as large as
possible and Theorem 3 has a feasible solution. Then
a d-controlled invariant set can be obtained.

Figure 1. The d-controlled invariant set with various state constraints.
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4) Lessen the initial sets O2 =ci � L2 until Theorem 3
has a feasible solution. Then enlarge the set ci � L1

according to step 3.

Observer-based stabilizing controller design

In this section, we will use the results above to design the con-

tinuous state observer and stabilizing controller.
Next, let Ho =(X,Q,U , So

d ,E, L) be a class of linear switch-
ing systems with the ith subsystem described by the equation:

x̂(t + 1)=Aix̂(t)+Biui(t)+Fi(Cix̂(t)� Cix(t))

and the hybrid state of the system Ho is j=(q(j), x̂(t, j)).

Define error vector �e(t)= x̂(t)� x(t), together with H , let
Hc =(X,Q,U , Sc

d ,E, Lc) be the closed-loop linear switching

systems, with the ith subsystem in Sc
d described by

z(t+ 1)=Ac
i z(t), i= 1, � � � ,Md

where Ac
i , z(t) and the reset function Lc are given below:

Ac
i =

Ai +BiKi BiKi

0 Ai +FiCi

� �
, z(t)=

x(t)
�e(t)

� �

Lc(e, (q(j), z(t, j)))= (qs,
Lis 0

0 Lis

� �
z),Lis 2 Rn3n

For the closed-loop linear switching systems Hc, taking into
account its structure, in order to design a d-controlled invar-

iant set guaranteeing its stability, we consider the sets O1,O2

as follows:

O1 = fz(t) :
x(t)
�e(t)

� �T
R1 0

0 R1

� �
x(t)
�e(t)

� �
< c1g ð18Þ

O2 = fz(t) :
x(t)
�e(t)

� �T
R2 0

0 R2

� �
x(t)
�e(t)

� �
< c2g ð19Þ

Remark 4. Note that the bound in the initial condition for

x(t) of Hc is

x(t)T R1x(t)+�e(t)T R1�e(t)< c1

which implies x(t)T R1x(t)< c1=2.
Using the results in Theorem 3, for any continuous state in

set O1, in the time interval ½tj + 1, tj + d�, the controlled execu-
tion of Hc is contained in set O2, if there exist positive definite

matrices Pi1,Pi2 and positive constant g ˜ 1, such that the fol-

lowing conditions hold:

Ai +BiKi BiKi

0 Ai +FiCi

� �T

Pi2

Ai +BiKi BiKi

0 Ai +FiCi

� �
� gPi2 < 0

ð20Þ

Pi1 � gdPi2 ˜ 0 ð21Þ

lmax(~Pi1)=lmin(~Pi2)< c2=c1 ð22Þ

where ~Pi1=
R1 0

0 R1

� ��1=2

Pi1
R1 0

0 R1

� ��1=2

, ~Pi2=
R2 0

0 R2

� ��1=2

Pi2
R2 0

0 R2

� ��1=2

.

Using the method in reference Salim and Sette (2008), in
the following, we present the sufficient conditions to guaran-

tee condition (20), which is shown in the following theorem.

Theorem 4. If there exist the positive definite matrices

Qi1,Qi2, real matrices Yi1, Yi2 and positive constants

a,b, g ˜ 1 such that the following conditions hold:

�Qi1 AiQi1 +BiYi1 BiYi1

Ø �gQi1 0

Ø Ø �aI

2
4

3
5< 0 ð23Þ

Qi1 I

Ø (2b� a)I

� �
. 0 ð24Þ

�gQi2 AT
i Qi2 +CT

i Yi2 bI

Ø �Qi2 0

Ø Ø �Qi1

2
4

3
5< 0 ð25Þ

then condition (20) can be guaranteed.

Proof. The proof is similar to the one in Salim and Sette

(2008), so the detailed proof is omitted here.

Theorem 5. Inequality (22) can be guaranteed, if there exists a

positive constant l, such that the following conditions hold:

Pi1 <
R1 0

0 R1

� �
ð26Þ

Pi2 ˜ l
R2 0

0 R2

� �
ð27Þ

c1 < c2l ð28Þ

Proof. From conditions (26) and (27), we have

lmax(~Pi1)< 1, lmin(~Pi2)˜ l

Then together with (28), we deduce that

c1

lmin(~Pi2)
<

c1

l
< c2 <

c2

lmax(~Pi1)

Combing the results of Theorems 4 and 5, we have the follow-

ing theorem to guarantee conditions (20)–(22).

Theorem 6. If there exist the positive definite matrices

Qi1,Qi2, Ti1,Ti2, real matrices Yi1,Yi2 and positive constants

a,b,m,g ˜ 1 such that the following conditions hold:

�Qi1 AiQi1 +BiYi1 BiYi1

Ø �gQi1 0

Ø Ø �aI

2
4

3
5< 0 ð29Þ

Qi1 I

Ø (2b� a)I

� �
. 0 ð30Þ
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�gQi2 AT
i Qi2 +CT

i Yi2 bI

Ø �Qi2 0

Ø Ø �Qi1

2
4

3
5< 0 ð31Þ

Qi1=gd � Ti1 0

0 Ti2 � gdQi2

� �
˜ 0 ð32Þ

Ti1 � R�1
1 0

0 R1 � Ti2

� �
˜ 0 ð33Þ

Qi1 � mR�1
2 0 0

Ø �Qi2 I

Ø Ø �mR�1
2

2
4

3
5< 0 ð34Þ

mc1 � c2 < 0 ð35Þ

Then for any continuous state in set O1, the controlled execu-
tion of Hc can be guaranteed in set O2 for t 2 ½tj + 1, tj + d�,
and the gains Ki = Yi1Q�1

i1 ,Fi =Q�1
i2 Y T

i2 .

Proof. Defining the positive definite matrices

Pi1 = diag(T�1
i1 ,Ti2) and Pi2 = diag(Q�1

i1 ,Qi2), from Theorems
4 and 5, and also with Schur complement formula, sufficient

conditions (29)–(35) are easy to obtain.

Remark 5. For a fixed g ˜ 1, the above inequalities (29)–(35)
are reduced to feasibility problems involving LMIs, which are

numerically feasible with commercially available software.
Compared with the sets O1,O2, the set c=

S
i2J qi3ci has

a certain design freedom, and therefore we propose the fol-

lowing theorem.

Theorem 7. For the gains Fi =Q�1
i2 Y T

i2 and Ki =Yi1Q�1
i1

obtained from Theorem 6, if there exists the positive definite
matrix Zi such that the following conditions hold:

1

c2

R2 0

0 R2

� �
� Zi . 0 ð36Þ

Zi �
Ai +BiKi BiKi

0 Ai +FiCi

� �T

Zi
Ai +BiKi BiKi

0 Ai +FiCi

� �
. 0

ð37Þ

Zi �
1

c1

Lis 0

0 Lis

� �T
R1 0

0 R1

� �
Lis 0

0 Lis

� �
. 0 ð38Þ

Then the closed-loop linear switching systems Hc with gains
Fi =Q�1

i2 Y T
i2 and Ki =Yi1Q�1

i1 are observer-based d-stabilizable.

Proof. From Theorems 3 and 6, the d-stability of closed-loop
linear switching systems Hc can be obtained.

Based on the above analysis, a procedure for the design of

observer-based stabilizing controller can be summarized as
below.

Algorithm 1.
1) For any given positive definite matrices R1,R2 and

positive constants c1, c2,g ˜ 1, according to Theorem
6, obtain the gains Fi and Ki.

2) For the given gains Fi and Ki, if the conditions (36)–
(38) in Theorem 7 are feasible, go to step 3. Else go to
step 4.

3) The closed-loop linear switching systems Hc with gains
Fi and Ki are observer-based d-stabilizable.

4) Adjust the suitable parameters c1, c2,g ˜ 1 and
matrices R1,R2, then go to step 1.

Remark 6. Theorems 6 and 7 are based on the existence of
some matrices and positive scalars, and then Algorithm 1 is

just based on the trial-and-error method.

Dynamic output feedback controller design

In the following, we will use the results in Theorem 3 to design
the dynamic output feedback controller.

Let Hc =(X,Q,U , Sc
d ,E,L) be a class of linear switching

systems with the ith subsystem described by the equation:

x̂(t+ 1)=Aicx̂(t)+Bicy(t)
ui(t)=Cicx̂(t)

�

and the hybrid state of the system Hc is j=(q(j), x̂(t, j)).
Together with H , let Hcl =(X,Q,U , Scl

d ,E,L
cl) be the closed-

loop linear switching systems with the ith subsystem in Scl
d

described by

z(t + 1)=Acl
i z(t), i= 1, � � � ,Md

where Acl
i , z(t) and the reset function Lcl are given below:

Acl
i =

Ai BiCic

BicCi Aic

� �
, z(t)=

x(t)
x̂(t)

� �
:

Lcl(e, (q(j), z(t, j)))= (qs,
Lis 0

0 Lis

� �
z),Lis 2 Rn3n

Similarly, in order to design a d-controlled invariant set guar-
anteeing the stability of closed-loop linear switching systems
Hcl, we also consider the sets O1,O2 as follows:

O1 = fz(t) :
x(t)
x̂(t)

� �T
R1 0

0 R1

� �
x(t)
x̂(t)

� �
< c1g ð39Þ

O2 = fz(t) :
x(t)
x̂(t)

� �T
R2 0

0 R2

� �
x(t)
x̂(t)

� �
< c2g ð40Þ

Remark 7. Note that the bound in the initial condition for
x(t) of Hcl is

x(t)T R1x(t)+ x̂(t)T R1x̂(t)< c1

which implies x(t)T R1x(t)< c1.
From Theorem 3, we can obtain that, the closed-loop lin-

ear switching systems Hcl are d-stabilizable, if there exist the
positive definite matrices Pi1,Pi2, Zi and positive constant
g ˜ 1, such that the following conditions hold:

Acl
i

T
Pi2Acl

i � gPi2 < 0

Pi1 � gdPi2 ˜ 0

lmax(~Pi1)=lmin(~Pi2)< c2=c1
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1

c2

R2 0

0 R2

� �
� Zi . 0

Zi � Acl
i

T
ZiA

cl
i . 0

Zi �
1

c1

Lis 0

0 Lis

� �T
R1 0

0 R1

� �
Lis 0

0 Lis

� �
. 0

The first three conditions above can be expressed by sufficient

ones, which are shown in the following theorem.

Theorem 8. If there exist the positive definite matrices

Xi2,Yi2, Ti1,Hi1, matrices Gi1, Âic, B̂ic, Ĉic and positive con-

stants m, g ˜ 1, such that the following conditions hold:

�gYi2 �gI AiYi2 +BiĈic Ai

Ø �gXi2 Âic Xi2Ai + B̂icCi

Ø Ø �Yi2 �I

Ø Ø Ø �Xi2

2
664

3
775< 0 ð41Þ

gdXi2 � Hi1 �Hi1 � GT
i1 0

Ø �Hi1 � Ti1 � Gi1 � GT
i1 I

Ø Ø �Yi2=gd

2
4

3
5< 0 ð42Þ

Ti1 � R1 Gi1

Ø Hi1 � R1

� �
< 0 ð43Þ

�2Yi2 �I Yi2 Yi2 Yi2

Ø �Xi2 I 0 I

Ø Ø �Yi2 0 0

Ø Ø Ø �mR�1
2 0

Ø Ø Ø Ø �mR�1
2

2
66664

3
77775< 0 ð44Þ

mc1 � c2 < 0 ð45Þ

then for any continuous state in set O1, the controlled execu-

tion of Hcl can be guaranteed in set O2 for any

t 2 ½tj + 1, tj + d�, and the matrices Aic,Bic,Cic can be

obtained uniquely:

Aic Bic

Cic 0

� �
=

Y�1
i2 � Xi2 Xi2Bi

0 I

� ��1

Âic � Xi2AiYi2 B̂ic

Ĉic 0

" #
Yi2 0

CiYi2 I

� ��1

Proof. Let

Pi1 =
Ti1 Gi1

GT
i1 Hi1

� �
,Pi2 =

Xi2 Mi2

MT
i2 Vi2

� �
,P�1

i2 =
Yi2 Ni2

NT
i2 W�1

i2

� �

and it is easy to check that:

Ni2MT
i2 = I � Yi2Xi2

Pi2

Yi2

NT
i2

� �
=

I

0

� �

Therefore, take the transform as follows:

Âic =Mi2AicNT
i2 +Mi2BicCiYi2 +Xi2BiCicNi2 +Xi2AiYi2

B̂ic =Mi2Bic

Ĉic =CicNT
i2

If the matrices Mi2,Ni2 are full row rank, the matrices
Âic, B̂ic, Ĉic and Xi2, Yi2 are known, then the matrices

Aic,Bic,Cic can be calculated. Moreover, if we design the full
order output feedback controller, we can assume

Ni2 =NT
i2 =Yi2, because of Pi2P�1

i2 = I , it has:

Qi2=Y�1
i2 ,Mi2=Qi2�Xi2,Vi2= �Mi2,Wi2=Qi2�Qi2X�1

i2 Qi2

and the matrices Aic,Bic,Cic can be obtained from Âic, B̂ic, Ĉic

uniquely.
From the condition Acl

i

T
Pi2Acl

i � gPi2 < 0 and using the
Schur complement formula, it follows that

�gPi2 Pi2Acl
i

Ø �Pi2

� �
< 0

Define Pi2 =
Yi2 I

Yi2 0

� �
, and multiplying diagfPT

i2,P
T
i2g,

diagfPi2,Pi2g on both sides of above inequality, then it is

easy to obtain

�gPT
i2Pi2Pi2 PT

i2Pi2Acl
i Pi2

Ø �PT
i2Pi2Pi2

" #

=

�gYi2 �gI AiYi2 +BiĈic Ai

Ø �gXi2 Âic Xi2Ai + B̂icCi

Ø Ø �Yi2 �I

Ø Ø Ø �Xi2

2
6664

3
7775< 0

ð46Þ

If from (46), the matrices Xi2,Yi2 and Âic, B̂ic, Ĉic are calcu-
lated, then we obtain that

Aic Bic

Cic 0

� �
=

Qi2 � Xi2 Xi2Bi

0 I

� ��1

Âic � Xi2AiYi2 B̂ic

Ĉic 0

" #
Yi2 0

CiYi2 I

� ��1

From the condition Pi1 � gdPi2 ˜ 0, we have

gdXi2 � Ti1 gdY�1
i2 � gdXi2 � Gi1

Ø gdXi2 � gdY�1
i2 � Hi1

� �
< 0 ð47Þ

Multiplying
I 0

I I

� �
and

I I

0 I

� �
on both side of (47), then

gdXi2 � Ti1 Ti1 +Gi1 � gdY�1
i2

Ø gdY�1
i2 � Hi1 � Ti1 � Gi1 � GT

i1

� �
< 0 ð48Þ

By the Schur complement formula, (48) can be converted to

gdXi2�Hi1�gdY�1
i2 �Hi1�GT

i1 0

Ø �Hi1�Ti1�Gi1�GT
i1 I

Ø Ø �Yi2=gd

2
4

3
5<0

ð49Þ
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Because � (gdXi2 � Hi1 � gdY�1
i2 ). � (gdXi2 � Hi1), then one

sufficient condition of (49) is

gdXi2 � Hi1 �Hi1 � GT
i1 0

Ø �Hi1 � Ti1 � Gi1 � GT
i1 I

Ø Ø �Yi2=gd

2
4

3
5< 0

From the conditions in Theorem 5, it follows

Ti1 � R1 Gi1

GT
i1 Hi1 � R1

� �
< 0 ð50Þ

Xi2 Mi2

MT
i2 Vi2

� �
˜ l

R2 0

0 R2

� �
ð51Þ

By the Schur complement formula, (51) is equivalent to

�Xi2 Xi2 � Y�1
i2 0 I 0

Ø �Xi2 I 0 I

Ø Ø �Yi2 0 0

Ø Ø Ø �R�1
2 =l 0

Ø Ø Ø Ø �R�1
2 =l

2
66664

3
77775< 0 ð52Þ

Multiplying diagf I I

0 I

� �
, I , I , Ig and diagf I I

0 I

� �
, I , I , IgT

on both side of (52), we have

�2Y�1
i2 �Y�1

i2 I I I

Ø �Xi2 I 0 I

Ø Ø �Yi2 0 0

Ø Ø Ø �R�1
2 =l 0

Ø Ø Ø Ø �R�1
2 =l

2
66664

3
77775< 0 ð53Þ

Also, multiplying diagfYi2, I , I , I , Ig on both sides of (53), we

deduce that

�2Yi2 �I Yi2 Yi2 Yi2

Ø �Xi2 I 0 I

Ø Ø �Yi2 0 0

Ø Ø Ø �R�1
2 =l 0

Ø Ø Ø Ø �R�1
2 =l

2
66664

3
77775< 0 ð54Þ

After considering m= 1
l
, then we can obtain conditions (41)–

(45).
Also, compared with the sets O1,O2, the set

c=
S

i2J qi3ci has a certain design freedom; then we pro-

vide the following theorem.

Theorem 9. For the matrices Aic,Bic,Cic obtained from

Theorem 8, if there exists the positive definite matrix Zi such

that the following conditions hold:

1

c2

R2 0

0 R2

� �
� Zi . 0 ð55Þ

Zi �
Ai BiCic

BicCi Aic

� �T

Zi
Ai BiCic

BicCi Aic

� �
. 0 ð56Þ

Zi �
1

c1

Lis 0

0 Lis

� �T
R1 0

0 R1

� �
Lis 0

0 Lis

� �
. 0 ð57Þ

then the closed-loop linear switching systems Hcl are d-stabi-

lizable via the dynamic output feedback controller with

matrices Aic,Bic,Cic.
From Theorems 8 and 9, a procedure for the design of

dynamic output feedback controller can be summarized as below.

Algorithm 2.
1) For any given positive definite matrices R1,R2, and

positive constants c1, c2,g ˜ 1, according to Theorem
8, obtain the matrices Aic,Bic,Cic.

2) For the obtained matrices Aic,Bic,Cic, if the conditions
in Theorem 9 are feasible, go to step 3. Else go to step
4.

3) The closed-loop linear switching systems Hcl are d-sta-
bilizable via the dynamic output feedback controller
with matrices Aic,Bic,Cic.

4) Adjust the suitable parameters c1, c2,g ˜ 1 and
matrices R1,R2, then go to step 1.

Similarly, Theorems 8 and 9 are based on the existence of

some matrices and positive scalars, and Algorithm 2 is also
based on the trial-and-error method.

Numerical example

The objective of this section is to illustrate the observer-based

stabilizing controller and dynamic output feedback controller

design approaches; two numerical examples are given.

Example for observer-based stabilizing controller
design

Consider the following discrete-time linear switching system
with two subsystems. The matrices of the first and second sub-

systems are described by:

A1 =
0:2 0:3

0 1:1

� �
,B1 =

�1

�1

� �
,

C1 = �1 �1½ �,L12 =
�0:2 0:7

0:1 0:6

� �

A2 =
0:1 0:1

0 1:2

� �
,B2 =

0:5

0:2

� �
,

C2 = 0 0:5½ �,L21 =
0:1 0:2

0:1 0:65

� �

and the minimum dwell time is d= 2.
In order to design the observer-based stabilizing controller,

the considered sets O1,O2 and scalar g in step 1 of Algorithm

1 are as follows:

R1 =
1 �0:6

�0:6 1

� �
,R2 =

0:16 �0:05

�0:05 0:3

� �
,

c1 = 6, c2 = 4:6,g = 1:1

Then, use of the Matlab LMI Toolbox to check the conditions
in Theorem 6 leads to the following results:
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F1 =
0:2523

0:5859

� �
,F2 =

�0:3481

�2:4013

� �
,

K1 = ½�0:0420, 0:2915�,K2 = ½0:0783, � 1:5081�

According to step 2 of Algorithm 1, for the obtained matrices

F1,K1,F2,K2 and from Theorem 7, we have:

Z1 =

0:0274 �0:0097 0:0002 0

Ø 0:0609 0:0006 0:0001

Ø Ø 0:0297 �0:0110

Ø Ø Ø 0:0605

2
664

3
775

Z2 =

0:0157 0:0007 �0:0001 0:0007

Ø 0:0546 0:0002 �0:0009

Ø Ø 0:0260 �0:0072

Ø Ø Ø 0:0591

2
664

3
775

Therefore, from Algorithm 1, we have designed a d-controlled

invariant set, which can guarantee the d-stability of closed-

loop systems.
Here, we take the initial state ½1:5, 1�T in ellipsoid

fx : x(t)T R1x(t)< c1=2g for simulation, and consider the fol-

lowing hybrid time basis and switching strategy:

½t0 = 0, t0 = 6�, ½t1 = 6, t1 = 11�, ½t2 = 11, t2 = 14�,
½t3 = 14, t3 = 18�, ½t4 = 18, t4 = 23�,
½t5 = 23, t5 = 26�, ½t6 = 26, t6 = 31�, ½t7 = 31, t7 = 37�,
½t8 = 37, t8 = 40�, ½t9 = 40, t9 = 45�, ½t10 = 45, t10 = 49�,
½t11= 49, t11 = 52�

The initial active system is the 1th subsystem. The simulation

results are shown in Figures 2 and 3. It can be seen that the

continuous state of linear switching system is reconstructed,

and the controlled execution from the initial state ½1:5, 1�T is

asymptotically stable, independently of the external

uncontrollable events, as expected, and the observer-based

output feedback stabilization is successful.

Example for dynamic output feedback controller
design

Consider the following discrete-time linear switching system

with two subsystems. The matrices of the first and second sub-
systems are described by:

A1 =
�0:2 0

0:5 �1

� �
,B1 =

�0:6

�0:4

� �
,

C1 = �0:8 �1½ �, L12 =
0:2 0:1

�0:1 0

� �

A2 =
0:1 �0:2

0 0:6

� �
,B2 =

0:5

0:2

� �
,

C2 = 1 �0:5½ �,L21 =
�0:2 0:1

0:2 0:15

� �

and the minimum dwell time is d= 2.
In order to design the dynamic output feedback controller,

the considered sets O1,O2 and scalar g in step 1 of Algorithm

2 are as follows:

R1 =
0:8 0

0 0:5

� �
,R2 =

0:1 0

0 0:06

� �
, c1 = 2:2, c2 = 4,g = 1:1

Also, use of the Matlab LMI Toolbox to check the conditions
in Theorem 8 leads to the following results:

A1c =
�0:1612 0:2958

0:5983 �0:1083

� �
,

B1c =
0:0236

0:8553

� �
,C1c = ½0:1043, � 0:4205�

A2c =
�0:0835 �0:0243

0:1588 0:2322

� �
,B2c =

0:2030

�0:4154

� �
,

C2c = ½�0:0796, 0:0632�

According to step 2 of Algorithm 2, for the obtained matrices
A1c,B1c,C1c and A2c,B2c,C2c from Theorem 9, we have:

Figure 2. The controlled execution from the initial state ½1:5, 1�T . Figure 3. The evolution of estimation errors.
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Z1 =

0:0229 0:0017 �0:0013 0:0026

Ø 0:0113 0:0024 �0:0042

Ø Ø 0:0206 0:0048

Ø Ø Ø 0:0070

2
664

3
775

Z2 =

0:0243 �0:0002 0 0

Ø 0:0127 0 �0:0001

Ø Ø 0:0243 �0:0002

Ø Ø Ø 0:0125

2
664

3
775

Therefore, from Algorithm 2, we have designed a d-controlled

invariant set, which can guarantee the d-stability of closed-
loop systems.

In order to show the technique, consider the initial state

½�1, � 1:5�T in ellipsoid fx : x(t)T R1x(t)< c1g. For simulation,
we choose the following hybrid time basis and switching

strategy:

½t0 = 0, t0 = 5�, ½t1 = 5, t1 = 9�, ½t2 = 9, t2 = 13�,
½t3 = 13, t3 = 16�, ½t4 = 16, t4 = 20�, ½t5 = 20, t5 = 22�,
½t6 = 22, t6 = 25�, ½t7 = 25, t7 = 29�, ½t8 = 29, t8 = 32�,
½t9 = 32, t9 = 35�, ½t10 = 35, t10 = 37�, ½t11 = 37, t11 = 40�

and the initial active system is the 1th subsystem. The simula-

tion results are given in Figures 4 and 5. They show that the
controlled execution from the initial state ½�1, � 1:5�T is

asymptotically stable, independently of the external
uncontrollable events.

Conclusions

In this paper, output stabilization problem for the discrete-
time linear switching systems is considered in the framework
of invariant set theory. A new stability condition, which is

related with the existence of a d-controlled invariant set, is
proposed, and sufficient conditions to obtain such a set are

presented. Compared with the existing methods, the stability
condition in our paper is more general. Then this new result

is used to design the observer-based stabilizing controller and
dynamic output feedback controller. The proposed method

can be converted to the feasible problem of LMI, which are

numerically feasible. From the numerical examples, it is obvi-

ous that the controller obtained can stabilize the system. Our

future work is to find how to design an LMI-based output

feedback controller for the discrete-time linear switching sys-

tems in the case of no information on the discrete and contin-

uous states.
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