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Abstract: We propose a novel method for object reconstruction of ghost 
imaging based on Pseudo-Inverse, where the original objects are 
reconstructed by computing the pseudo-inverse of the matrix constituted by 
the row vectors of each speckle field. We conduct reconstructions for binary 
images and gray-scale images. With equal number of measurements, our 
method presents a satisfying performance on enhancing Peak Signal to Noise 
Ratio (PSNR) and reducing computing time. Being compared with the other 
existing methods, its PSNR distinctly exceeds that of the traditional Ghost 
Imaging (GI) and Differential Ghost Imaging (DGI). In comparison with the 
Compressive-sensing Ghost Imaging (CGI), the computing time is 
substantially shortened, and in regard to PSNR our method exceeds CGI on 
grayscale images and performs as well as CGI visually on binary images. The 
influence of both the detection noise and the accuracy of measurement matrix 
on PSNR are also presented. 

©2014 Optical Society of America 

OCIS codes: (110.1650) Coherence imaging; (110.2990) Image formation theory; (270.5290) 
Photon statistics. 
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1. Introduction 

Ghost imaging (GI), also known as correlated imaging, is a newly developed imaging method, 
emerging an extensive application prospect [1–28]. Being different from the traditional 
methods, it has achieved the separation between detecting and imaging, so that it is possible to 
reconstruct the objects in more complex environments. The traditional ghost imaging system 
consists of an object arm which measures the total light intensity modulated by the object and a 
reference arm which measures directly the light intensity from the source. The imaging process 
is accomplished by the correlated operation of the two results. At the beginning, it was believed 
that ghost imaging could only be accomplished with spatially entangled photon pairs [1–3]. 
Subsequently, with the discovery that ghost imaging with pseudo thermal light source also 
performed well in experiments [4–6], the ghost imaging technology transformed from a 
theoretical assumption to a practical technique and brought out many applications [7–28], such 
as remote sensing [8], biomedical imaging [9,19], optical encryption [10] and so on. However, 
being restricted by hardware conditions and external interference including background 
thermal noise, atmosphere turbulence [17,18], scattering media [9,19] and so on, the PSNR of 
the reconstructions was still unsatisfying. This has been a long-standing obstacle for 
researchers to make further progress. 

In recent years, many modified methods to improve the imaging quality have been 
proposed, including DGI [11,12], CGI [22], Normalized Ghost Imaging (NGI) [13] and so on. 
In the DGI method a new differential bucket signal was adopted that was sensitive only to the 
alternating component of the transmission factor in the object arm. Meanwhile, the speckle 
field in the reference arm was measured as well as its total light intensity. The results came out 
with an obvious improvement in PSNR for objects with high grade of transparency. Sun B et al. 
proposed NGI [13], another modified method based on GI, in which the total light intensity of 
each individual measurement as well as the running average were normalized, according to the 
speckle field detected by reference arm. The normalizing process brought out a better approach 
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in order to deal with time varying noise sources so that the NGI method could present a higher 
PSNR than GI. Combined with the recently popular compressive sensing theory [22–25], 
Compressive Ghost Imaging (CGI) was proposed and brought out better reconstructions even 
using the measurement far below Nyquist limit [21,22,24]. The new theory relied on the 
accuracy of measurement matrix, namely the difference between the speckle field on the object 
plane and that on the reference (CCD) plane. In addition, some experimental schemes other 
than the two-arm ghost imaging setup were proposed. For example, a spatial laser modulator 
(SLM) was used as the virtual arm instead of the reference arm to achieve single arm ghost 
imaging [22,23]. However, although the CGI method has reduced much of the necessary 
number of measurements, the complexity of the algorithm still greatly increased the time cost 
to reconstruct the target. This disadvantage has been a major barrier for the theory to be applied, 
so it will be very utility to find an alternative method that not only improves the imaging result 
but also shortens the computing time to fit practical applications. 

Pseudo-inverse has been widely applied in the field of signal processing [29,30]. In 
comparison with other methods, it has various advantages such as being simpler, faster and 
capable of bringing out better reconstructions. Here, we propose the method to apply 
pseudo-inverse in ghost imaging (we call it PGI) to reconstruct the object. The speckle field of 
each measurement is permutated into a row vector, and all the vectors constitute a matrix and 
then the reconstruction can be accomplished by computing its pseudo-inverse, and the PGI 
method performs satisfying both on binary images and grayscale images. In the circumstance 
with 1100 measurements and computations, when reconstructing binary images, the PGI 
method presents PSNR much higher than GI and DGI, and when it comes to grayscale images, 
the PSNR enhancement of PGI reaches 7.1 and 7.6dB more than GI, and 4.2 and 5.1 dB more 
than DGI for two different images separately, where the improvement of visual effects is even 
more obvious. 

2. Method 

The schematics are shown as Fig. 1, where Figs. 1(a) and 1(b) represent the traditional GI and 
PGI, respectively. Usually, a laser through a rotating ground glass is used as pseudo-thermal 
source and creates a constantly changing speckle field which is divided into an object arm 
(transmission beam) and a reference arm (reflection beam) by a 50:50 beam splitter prism. The 
transmission beam is modulated by the object with transmission coefficient ( , )T x y , and then 

measured by the bucket detector. The result of the nth measurement is recorded as nB . At the 

same time, a charged couple device (CCD) is placed at the same distance to the prism to collect 
the reflection beam. The speckle field of the nth measurement is recorded as ( , )nI x y . When 

the condition of 1 2z z=  is satisfied [28], the result of GI method ( , )GIT x y  can be calculated 

by the correlated operation of nB  and ( , )nI x y  as shown in Eq. (1) [22]. 

Pseudo-thermal
source

௡ܤ
OBJ

ଵݖ

ଶݖ
,ݔ௡ሺܫ ሻݕ

Tሺݔ, ሻݕ

ܶீ ூ
CCD

(a)

REF

Bucket
detector

Pseudo-thermal
source

௡ܤ
OBJ

REF

ଵݖ

ଶݖ
,ݔ௡ሺܫ ሻݕ ࢶ 	றࢶ

࡮
௉ܶீூ

Tሺݔ, ሻݕ

CCD

Bucket
detector

(b)  

Fig. 1. Schematics of GI and PGI systems. (a) traditional GI method; (b) PGI method; OBJ: 
Object Arm; REF: Reference Arm z1: the distance between pseudo-thermal source and the 
object plane z2: the distance between pseudo-thermal source and the reference CCD plane. 
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where 
1
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n

B B
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  =  is the average quantity of ( , ) ( , )n nB I x y T x y dxdy=  , the total 

light intensity in the nth measurement. 
Through the former discussion of the GI method, we know that imaging process of tradition 

GI method can be expressed as a series of matrix operations. If the transmission coefficient is a 
p p× matrix and the CCD detected a p p×  speckle field ( , )nI x y , the ( , )nI x y  can be 

permutated into a 21 p×  row vector. Then we can get a 2N p×  measurement array recorded 

as Φ . 

 

1 1 1

2 2

(1,1) (1,2) ( , )

(1,1) ( , )

(1,1) (1, 2) ( , )N N N

I I I p p

I I p p

I I I p p

… 
 
 =
 
 

… 


 

Φ  (2) 

Likewise, the N results from the bucket detector can be permutated into a N 1×  column 
vector B. So the process of modulating in the object arm can be indicated as the matrix 
multiplication as below 
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At last, ( ),GIT x y , the estimated value of ( , )T x y  is computed by correlated operation of 

the column vector and the detected speckle field as below 
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Combining Eq. (3) with Eq. (4), we can get 
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where 
1

1
( , ) ( , )

N

n n
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I x y I x y
N =

  =   indicates the average light intensity on pixel ( , )x y  of the 

N speckle fields. The information effective for the reconstruction exists in the first term in Eq. 
(5), and the second term represents the background. Judging from Eq. (5), only when TΦ Φ  
were a diagonal matrix whose elements on the diagonal were identical, would the transmission 
coefficient be perfectly restored. In conclusion, the proximity between ( , )GIT x y  and ( , )T x y  

relies on how close TΦ Φ is to a scalar matrix, so we extract matrix TΦ Φ to simplify our 
analysis as below 
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where 

 ( ) ( ) ( )2 2 2

1 1 1

[ 1,1 , 1, 2 , ]
N N N

n n n
n n n

diag I I I p p
= = =

=   s  (7) 

 

( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

1 1

1

1

1 1

0 1,1 1,2 1,1 ,

1, 2 1,1

, 1 ,

, 1,1 , , 1 0

N N

n n n n
n n

N

n n N
n

n n
n

N N

n n n n
n n

I I I I p p

I I

I p p I p p

I p p I I p p I p p

= =

=

=

= =

 
 
 
 
 =  − 
 
 −  

 




 










n (8) 

Theoretically, vector T can be perfectly restored from GIT when TΦ Φ  is a scalar matrix. 

From Eq. (6) we can see that matrix s, the diagonal elements of TΦ Φ , is effective for the 
restoration and matrix n, which we call the disturbance term, is the main factor which make the 
reconstructed image fuzzy. Usually the interference from n can be weakened by abundantly 
enlarging the number of measurements, but the measuring and computing time will also 
increase in direct proportion. We consider how to make the TΦ Φ  closer to a scalar matrix so 
that the influence of the disturbance term can be reduced or eliminated, so the PGI method is 
proposed. 

In our method, we use Moore–Penrose pseudo-inverse to acquire the pseudo-inverse matrix 
of Φ , recorded as † Φ . Instead of TΦ Φ , we use † Φ Φ in the correlated operation to 
reconstruct the object, so we call the method as pseudo-inverse ghost imaging(PGI). The 
process can be expressed by Fig. 1(b) and as below 

 ( ) [ ]† † 
1 2, (1,1), (1,2) )

1 1
( ,PGI

TT

NB B B T T
N N

T p p= = T Φ Φ Φ  (9) 

Matrix † Φ  is subjected to the following four Moore–Penrose equations as Eq. (10) [31] 
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=
=
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=
=
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XΦX X

ΦX ΦX

XΦ XΦ
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where matrix X  is the pseudo-inverse of Φ , recorded as † Φ which can be acquire by 
singular value decomposition(SVD), as shown below 

 
0

0 0

 
=  

 
HΣ

Φ U V  (11) 

 
1

† 0

0 0

− 
=  

 
HΣ

Φ V U  (12) 

where U is an N N× unitary matrix, Σ  is a diagonal matrix and V is a 2 2p p× unitary 

matrix. 
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In a similar way as Eq. (6), we can decompose † Φ Φ  into two matrixes by separating the 
elements on the diagonal from others, which is shown as below 

 † ' '= +Φ Φ s n  (13) 

where 's is consist of the elements on diagonal, and 'n is the disturbance term. According to 

the former equations, if † Φ Φ is closer to a scalar matrix than TΦ Φ , ( ),PGIT x y  will be more 

proximate to ( , )T x y  than ( ),GIT x y , so that the reconstructed image will be more similar to 

the original image of the object. 
It is crucial for building the measurement matrix to obtain the speckle pattern which is 

correlated with that on the object plane. In some experiments, two-arm ghost imaging setups 
have been verified effective [5,6,20,21]. In addition, experiment schemes with virtual reference 
arm using SLM [13,22,23] can also be taken into consideration. 

3. Experimental results 

For Fig. 1, we use a semiconductor laser generator with wavelength 635nmλ =  as light 
source, and the laser beam is projected on a rotary ground glass to generate different speckle 
fields. 1100 speckle images are acquired by a CCD (pixelfly, PCO, Germany), where the 
distance z1 is about 500.0mm; the transverse size of the laser on the rotating ground glass, 
recorded as D, is about 4.0 mm. In order to verify the feasibility of PGI, we capture 64 64×  
pixels from the same position of each speckle field and permutate them line by line into a row 
vector of matrix Φ . Afterward we compute TΦ Φ , † Φ Φ  and then normalize the values into 
0~255 gray scale. The results can be shown as Fig. 2, where the insets are the 2D grayscale 
images of the matrixes, x and y represent the row and column coordinates of their elements. In 
Fig. 2(a), the diagonal part is corresponding to matrix s in Eq. (6), and the rest is corresponding 
to the disturbance term n. In Fig. 2(b), they are respectively corresponding to matrix 's and the 
disturbance term 'n in Eq. (13). 

From Fig. 2, we can see that s fluctuates fiercely, which causes the elements in transmission 
coefficient, vector T, are amplified in different ratios during the process of restoration and it 
eventually leads to the distortion in the reconstruction. However, 's is far more consistent than 
s, and the elements on the diagonal of 's are almost equal except for those few near both ends, 
which means that the distortion caused by 's is far lower than s during the restoration process. 
Moreover, we can also observe that the values of n are significantly larger than those of 'n , 
especially for those near the diagonal, which indicates that the interference caused by 
disturbance term 'n  to the reconstruction is much weaker than n. Meanwhile, from the insets 

it is also exhibited that † Φ Φ  is closer to a scalar matrix than TΦ Φ . Therefore, we initially 
think PGI is theoretically feasible. 
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Fig. 2. Comparison of 
TΦ Φ  and 

† Φ Φ  x: row coordinate of the matrixes y: column 
coordinate of the matrixes. 

In order to verify the effectiveness of PGI, we conduct the follow-up numerical experiments 
with Matlab to compare PGI’s reconstruction performance with GI and other two methods 
(DGI and CGI) which effectively improve the reconstruction quality. 

We choose four images with 128 128×  pixels as the target objects, including two grayscale 
images (lena, cat) and two binary images (‘ji’, dotarray), and the reconstructions are shown in 
Fig. 3 and Fig. 4, where the number of measurements for each method is 1000. The GI method 
is based on Eq. (1), the DGI method is based on equations in [12], and in CGI we use the typical 
two-dimensional discrete cosine transform (DCT) basis to sparsify the original signal and 
Orthogonal Matching Pursuit (OMP) for the reconstruction. Figures 3(a) and 3(f) are the 
original images, Figs. 3(b) and 3(g) are the results of GI, Figs. 3(c) and 3(h) are the results of 
DGI, Figs. 3(d) and 3(i) are the results of CGI, and Figs. 3(e) and 3(j) are the results of PGI. 
Figures 4(a) and 4(f) are the original images, Figs. 4(b) and 4(g) are the GI results, Figs. 4(c) 
and 4(h) are the DGI results, Figs. 4(d) and 4(i) are the CGI results, and Figs. 4(e) and 4(j) are 
the PGI results. 

 

Fig. 3. Comparison of results by GI, DGI, CGI and PGI for grayscale images: (a) (f) original 
image; (b) (g) GI method; (c) (h) DGI method; (d) (i) CGI method; (e) (j) PGI method. 
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Fig. 4. Comparison of results from GI, DGI, CGI and PGI for binary images: (a) (f) original 
image; (b) (g) GI method; (c) (h) DGI method; (d) (i) CGI method; (e) (j) PGI method 

From Fig. 3, we can see that results of GI, DGI, CGI and PGI are successively improved. GI 
performs poorly, as the images are almost drenched in noise, and the results of DGI are 
relatively improved, but only a vague profile can be seen. Although the CGI method surpass GI 
and DGI substantially, it is obvious that PGI has made a further progress on clarity. 

From Fig. 4, we can observe that PGI is of much higher fidelity than GI and DGI, and 
visually performs as well as CGI. The improvement of DGI is feeble to GI, for it is difficult for 
DGI to retrieve binary images which are quasi-transparent [12]. PGI does not show 
overwhelming superiority to CGI on binary images, which is because the sparseness of binary 
images is much higher than grayscale images. 

In order to further analyze the performance of the four methods above, we use PSNR to 
quantify all the reconstruction quality. The definition of PSNR is as below 

 
2

10

(2 1)
10 log [ ]

m

PSNR
MSE

−= ×  (14) 

where MSE represents the mean square error of the original image and reconstruction image 
and for a 0~255 grayscale image 8m = . At different numbers of measurements from 100 to 
1100, the PSNR results are shown in Fig. 5 and Fig. 6. 

In Figs. 5(a) and 5(b) are the results of two grayscale images (lena and cat), and in Figs. 6(a) 
and 6(b) are the results of two binary images (‘ji’ and dotarray). Generally, it is obvious that all 
the curves increase along with the growth of the number of measurements, which is especially 
typical in the PGI curves while other curves show slight fluctuation. 

 

Fig. 5. The PSNR curves of the grayscale images: (a) lena; (b) cat 
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Fig. 6. The PSNR curves of the binary images: (a) ’ji’; (b) dotarray 

From Fig. 5, we can see that for the grayscale images, PSNR of PGI always precedes the 
others and with only 1100 measurements, the PNSR of PGI already reaches over 20dB, up to 
7.1 and 7.6dB higher than GI, 4.2 and 5.1dB higher than DGI, 2.7 and 2.8dB higher than CGI 
respectively. From Fig. 6, we can find that for binary images, the PSNR of PGI and CGI are 
comparative and so are the PSNR of GI and DGI, but the former two are distinctly higher than 
the latter two, up to 4.3 and 9.4dB for the two images separately with 1100 measurements. 
These features above are coherent to the visual effect (Fig. 3 and Fig. 4). The results indicate 
that the PGI method has made an effective progress on enhancing the PSNR, especially when 
constructing complex grayscale images. In regard to binary images, the PGI method performs 
almost as well as the CGI method. 

Judging from the former analysis, PGI has its advantages to the other methods on PSNR, 
but similar to Fig. 5, the superiority to CGI is not presented distinctly when it comes to binary 
images. This phenomenon can be explained from the perspective of signal sparsity. As we 
know, the binary images are already highly-sparse, and after DCT the sparseness can be further 
increased, so that with a small number of measurements the reconstruction of binary image is 
certainly better than that of grayscale image. Theoretically, when the time of measurements N 

exceeds a certain number, i.e.
2

2log ( )
p

N K
K

≥ , where K is the sparsity of the signal, the 

original image can be perfectly reconstructed [22,24,32]. 
In practical applications, noise and inaccuracy is inevitable. In order to compare the 

influence of the noise on the four methods, we add Additive White Gaussian Noise (AWGN) to 
vector B, taking ‘lena’ ( 128 128× pixels) as reconstruction target. The curves of the 
reconstructed images’ PSNRs versus the signal to noise ratios (SNR) of B with 1100 
measurements are shown in Fig. 7(a). We can see that under relatively low range of SNR the 
four methods’ PSNR are unsatisfactory, and DGI shows slight advantages. However, the PSNR 
of PGI accelerates the most rapidly with SNR growing, and under higher SNR, PGI start to 
show its superiority, so reducing the ground noise of the bucket detector is one of the important 
factors to enhance PGI’s PNSR. 

The numerical analysis above are all under the condition 1 2z z= , under which the speckle 

pattern on the object plane can be accurately acquired so that the measurement matrix can be 
built accurately. But considering the hardware conditions, it is necessary to analyze the 
influence of the measurement matrix inaccuracy caused by the difference between the speckle 
pattern on the object and that on the CCD plane to PGI. So we explore the relation between the 
PSNR and the depth deviation 2 1z z−  in a proper range [28], where the speckle is numerically 

generated with 635nmλ = , 1 39z mm=  and the speckle radius is as close to the speckle size 

above as possible. With z1 fixed and z2 changed, the curves of the PSNRs versus z2-z1 are 
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demonstrated in Fig. 7(b). Here, the number of measurements is 1000 and reconstruction target 
is “lena” (100 100× pixels). As we can see, in Fig. 7(b) the PSNR of PGI decreases faster with 
the deviation growing, while GI, DGI and CGI show a stronger robustness to the deviation, 
which indicates that they rely less on the measurement matrix. Therefore, PGI has a higher 
request for the accuracy of the measurement matrix. 
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Fig. 7. Comparison of the four methods’ reconstructions with deviation z2-z1 (a) The PSNRs of 
reconstructed images versus SNR of B (b) curves of the PSNRs versus z2-z1 

However, another crucial standard whether a technique is suitable for applications is its 
computing time, so we record the reconstruction time of each method at different numbers of 
measurements (Computer configuration: Intel(R)Core(TM) i3-2120CPU@3.30GHz; 
RAM:10.0GB) and here the reconstruction time for grayscale image (lena) and binary image 
(‘ji’) are shown in Fig. 8. We can see that the time costs of DGI are almost equal to GI and 
approximately accelerate linearly with N growing, while CGI demonstrates a huge and rapid 
increasement on time cost. For PGI, time costs are relatively longer than GI and DGI but a lot 
shorter than CGI, and the difference between PGI and CGI accelerates rapidly with the number 
of measurements growing. 
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Fig. 8. The comparison of computing time by the four methods for grayscale and binary images: 
(a)lena; (b)’ji’. 

To sum up, for grayscale images the PGI method precedes the CGI method on PSNR, visual 
effect and computing time, and for binary images it provides visual effect and PSNR similar to 
CGI but costs a lot less time. Therefore, the PGI method has a promising prospect in real 
applications. 
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4. Conclusion 

We propose a novel method applying pseudo-inverse in ghost imaging. We first verify its 
feasibility from the perspective of scalar matrix. In numerical experiments, the four methods 
(GI, DGI, CGI, PGI) are tested and compared separately on two grayscale images and two 
binary images, where the PSNR, visual effect and computing time all indicate that our PGI 
method provides an effective improvement to GI, DGI and CGI. These advantages are 
especially distinct when processing grayscale images and since it is grayscale images that exist 
most broadly in the daily life, the PGI method is utility and valuable for applications. 
Undeniably, among the existing reconstruction methods, we believe that PGI offers a novel 
thought and a practical solution. 
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