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As a wavefront sensor, the Shack–Hartmann wavefront sensor plays an important role in the wavefront measurement
of human eyes. However, the low measurement accuracy and the small dynamic range of Shack–Hartmann wavefront
sensor limit its application. In this paper, we present a matched-filter algorithm to improve the measurement accuracy
by more than an order of magnitude. Moreover, we also introduce a new algorithm to extend the dynamic range of
Shack–Hartmann wavefront sensor. With this method, the recorded spots of Shack–Hartmann wavefront sensor are not
constrained to stay in the corresponding pixel area of the microlens. The result shows that the dynamic range can be
extended from 57.1 to 160% for the first 24 items of Zernike wavefronts, respectively. The improvement by our
methods makes the Shack–Hartmann more suitable for the measurement of highly aberrated eyes.

Keywords: Shack–Hartmann wavefront sensor; matched filter; ocular aberrations

1. Introduction

There is a long and storied history about the measure-
ment of optical wavefronts. Classical interferometry
requires a reference beam to measure a wavefront, while
phase-retrieval methods learn as much as possible from
one or more measurements of optical irradiance to recon-
struct a wavefront [1,2]. Recently, various wavefront
sensing techniques have been imposed on systems for
ocular wavefront measurement [3–6]. Wavefront sensor
plays an important role in understanding the optical qual-
ity of human eye and developing advanced visual correc-
tion techniques, such as adaptive optics, customized laser
refractive surgery and customized contact lenses [7]. The
laser ray-tracing technique, the spatially resolved refrac-
tometer and the Shack–Hartmann wavefront sensor are
the most commonly used wavefront sensors [8–10]. The
Shack–Hartmann wavefront sensor has proved to be reli-
able for ocular aberrations measurement [11]. Hence, the
Shack–Hartmann wavefront sensor has a large number of
ophthalmic applications, some of which have a great
influence on the diagnosis of diseases [12–14].

The most important characteristics of Shack–Hartmann
wavefront sensors are its measurement accuracy and
dynamic range [15]. However, the classical centroiding
algorithm has a poor precision and the dynamic range has
also been questioned by other authors [16,17]. Generally,
the noise without any significant information will corrupt
the data recorded by the Shack–Hartmann wavefront sen-

sor. Especially in the applications of ocular aberrations
measurement, the multi-layer reflection of the eye leads to
a complicated uneven background in the CCD data and
makes it difficult to estimate the centroid positions. To
overcome this obstacle, various methods have been intro-
duced. These methods mainly consist of thresholding the
data and applying a “software window” or Gaussian
weighting function [18–20]. However, the threshold and
the window size of these methods, which are adopted
experientially, will also eliminate some significant infor-
mation. This will bias the estimated centroid positions to
some extent. In this paper, a matched filter algorithm is
introduced to estimate the centroid positions without
thresholding the CCD data. Since matched filter algorithm
is more linear and less sensitive to noise than classical
centroiding algorithm, the measurement accuracy of
Shack–Hartmann wavefront sensor will be significantly
improved by the matched filter algorithm [21–23].

On the other hand, the dynamic range of
Shack–Hartmann wavefront sensor is limited by the
parameter of microlens array. The classic methods
require that the spots focused by the microlens must
locate in the corresponding area of the CCD pixels. To
extend the dynamic range, various algorithms are intro-
duced, such as modified unwrapping algorithm and max-
imum likelihood methods [24–26]. In this paper, we also
propose a new algorithm to extend the dynamic range of
Shack–Hartmann wavefront sensor. This algorithm can
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effectively detect the spots which locate out of the
corresponding area of the CCD pixels. Even if there are
two spots locating in the same corresponding area of the
CCD pixels, this algorithm still works well.

This paper is organized as follows: In Section 2, we
discuss the techniques and methods of Shack–Hartmann
wavefront sensor and its limits. Then we introduce the
new algorithm to improve the measurement accuracy and
the algorithm to extend the dynamic range of Shack–
Hartmann wavefront sensor in Sections 3 and 4. In
Section 5, we compare the result of new algorithms with
that of classical methods. At last, we conclude this paper
in Section 6.

2. Shack–Hartmann wavefront sensor and its limits

The Hartman wavefront sensor was first introduced in
1900. It consists of an opaque screen containing an array
of holes and a detector placed behind the screen. The
beam is sampled by the array screen and the transmitted
beamlets are collected by the detector. The local aberra-
tions of the beam cause a shift of the beamlets at the
detector plane. By measuring the shifts in the x and y
directions, the slope of the local wavefront can be deter-
mined. However, the measure accuracy of Hartmann
wavefront sensor is very low and the loss of the light
energy is very high. Hence, this kind of Hartmann is not
suitable for measuring ocular aberrations. To solve this
problem, R. Shack proposed a modified Hartmann wave-
front sensor called Shack–Hartman wavefront sensor in
1971 [27]. In order to achieve smaller spot on the detec-
tor plane and increase the accuracy of wavefront mea-
surement, the hole array screen is replaced by an array
of microlens. All the microlenses of the array have the
same diameter and the same focal length. As shown in
Figure 1, the light reflected from the eye is distorted by
the ocular aberrations. Then, the reflected light is sam-
pled by the microlens array and forms a spot array in the
focal plane of the microlens. The spot array is recorded
by the CCD, which is placed at the focal plane of the
microlens array, for wavefront reconstruction.

As for the aberration-free case, the spots located at
the focus of each microlens are shown in Figure 2(a).

However, the ocular aberrations in the emergent
beam cause a measurable shift of the spots at the CCD
plane, as shown in Figure 2(b). Moreover, the multi-
layer reflection of the eye adds a complicated uneven
background to the spot array. The electronic noise with-
out any significant information also corrupts the data.

The measurable shift of the spot from its aberration-
free location is proportional to the slope of the local
wavefront. Generally, the wavefront is expressed as a
combination of Zernike polynomials:

uðx; yÞ ¼
XN
k¼1

ak � zkðx; yÞ þ u0 (1)

where φ(x, y) is the wavefront at coordinate (x, y), zk(x, y)
is the kth item of the Zernike polynomials and ak is the
kth coefficient of the Zernike polynomials. Since φ0 is
the constant item of the wavefront, the wavefront can be
determined by the coefficient ak.

On the other hand, the slope of the local wavefront
can be expressed as:

Gi;x ¼ 2p
k � f � ðxi � xi;cÞ

Gi;y ¼ 2p
k � f � ðyi � yi;cÞ

(2)

where Gi,x, Gi,y are the x and y components of the slope
of the local wavefront in the ith microlens, respectively.
(xi,c, yi,c) is the centroid position of the aberration-free
wavefront in the ith microlens while (xi, yi) is the cen-
troid position of the local wavefront with ocular aberra-
tions in the ith microlens. k; f are the wavelength of the
beam and the focal length of the microlens, respectively.

Gi,x, Gi,y can also be expressed by:

Gi;x ¼
XN
k¼1

ak � @zkðxi; yiÞ
@x

Gi;y ¼
XN
k¼1

ak � @zkðxi; yiÞ
@y

(3)

where @zkðxi;yiÞ
@x ; @zkðxi;yiÞ@y are the x and y components of the

derivative of Zernike polynomials. Hence, the ocular
aberrations can be determined by calculating the centroid
position of each spot in the spot array.

Generally, the centroid positions are calculated with a
centroiding algorithm:

Xc ¼
PM

i¼1

PN
j¼1 xiIðxi; yjÞPM

i¼1

PN
j¼1 Iðxi; yjÞ

;

Yc ¼
PM

i¼1

PN

j¼1
yjIðxi;yjÞPM

i¼1

PN

j¼1
Iðxi;yjÞ

(4)

where (Xc, Yc) is the centroid position of the spot. I(xi, yi)
is the intensity of the beam at coordinate (xi, yi). M, N is

Figure 1. Schematic diagram of the principle of
Shack–Hartmann wavefront sensor. (The colour version of
this figure is included in the online version of the journal.)
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Figure 2. (a) Spot array of aberration-free eye; (b) Spot array of real eye.

Figure 3. The same asymmetrical spot with different threshold. (a) t = 0.1; (b) t = 0.3; (c) t = 0.5; (d) t = 0.7.
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Figure 4. The effect of the noise level and the threshold. (The colour version of this figure is included in the online version of the
journal.)

Figure 5. The effect of the Gaussian mask. (a) the centroid deviation; (b) the wavefront caused by the constant deviation. (The
colour version of this figure is included in the online version of the journal.)
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the size of the “software window” containing the spot.
However, this algorithm is sensitive to noise and the back-
ground light. With the existence of noise and background
light, this centroiding algorithm leads to a biased estima-
tion of the centroid position towards the centre of the
“software window”. To solve this problem, a threshold is
always introduced to suppress the noise and the back-
ground light:

T ¼ 2a

3
� b

� �
� t þ b (5)

where T is the adaptive threshold. a, b are the maximum
and the minimum of the local intensity, respectively. t is
an experiential factor. It is introduced by Leroux C [28]
to calculate the threshold for suppressing the background
of spot array. The classical threshold algorithms always
adopt an empirical threshold, which is relevant to the
illumination and CCD performance. Expression (5) is a
reasonable expression about the threshold algorithm. The
a and b are the maximum and minimum of the local
intensity, respectively. And t is an empirical factor
between 0 and 1. When t = 0, T = b, there is no effective
threshold of the spot array. On the other hand, when
t = 1, T = 2a/3, it will suppress most of the background
and the noises as well as some useful information. The
Expression (5) assumes that 2a/3 > b. This assumption
will be met in most conditions. This threshold works
well when the intensity of the incident beam is high
enough. However, the intensity of the incident beam for
ocular aberration measurement is very low because of
the restriction of the secure exposure. Hence, the noise
and the background light still corrupt the spot array
data. Moreover, the spot of the ocular wavefront is
asymmetrical as shown in Figure 3.

Because of the low intensity of the incident light,
there is no significant boundary between the spot and the
background light. Therefore, if the threshold is not high
enough to effectively suppress the noise and the back-
ground light, the noise and background light will lead to
a deviation from the real centroid position and increase
the error of wavefront measurement. On the contrary, if
the threshold is high enough to suppress the noise and
the background light completely, it will increase the risk
of losing the low-intensity pixels with significant infor-
mation. This also increases the error of wavefront mea-
surement. This effect of the threshold in centroid

calculation is shown in Figure 4. The same asymmetrical
spot is calculated by the centroiding algorithm with dif-
ferent noise levels and different thresholds. �, ∗, Δ cor-
respond to the experiential factor of the threshold t = 0.3,
0.5, 0.7, respectively. With the same experiential factor t,
different noise levels lead to different deviations. With
the same noise level, different values of the experiential
factor t also lead to different deviations. Hence, the cen-
troiding algorithm is sensitive to noise and background
light. The measurement accuracy of centroiding algo-
rithm is not satisfactory.

3. Matched filter algorithm

The matched filter algorithm evaluates the correlation
between the spot array and the matched filter mask. The
coordinate, which maximizes the local correlation of the
spot array with the matched filter mask, denotes the cen-
troid position of each spot. Generally, the matched filter
mask, which has the same frequency information of the
target in Fourier domain, will easily detect the target.
However, the frequency information of the target is not
available in practice. Since Gaussian can maintain the
low frequency information, which denotes the significant
information, and suppress the high frequency informa-
tion, which denotes the noise, Gaussian distribution mask
may be a reasonable choice.

If the spot is asymmetrical, the coordinate (the blue
circle in the figure) that maximizes the local correlation
of the spot array with the Gaussian mask deviates the
real centroid (the red triangle in the figure) of the spot
by a constant distance as shown in Figure 5(a).

Since the deviation is caused by the difference
between the asymmetrical spot and the Gaussian mask
rather than the noise and the background light, the devia-
tion is constant for each spot. The constant deviation of
each spot just leads to an extra tilt in the wavefront as
shown in Figure 5(b). However, the first three items of
the Zernike polynomials (piston, x-tilt and y-tilt) are gen-
erally not taken into account (The coefficients of these
items are always set zero.) when measuring the ocular
aberrations. Therefore, the constant deviation caused by
Gaussian mask does not affect the ocular wavefront.

The correlation of the spot array with the Gaussian
mask can be expressed as:

CRðx; yÞ ¼ FT�1fFTfIðx; yÞg � FTfGðx; yÞgg (6)

where CR(x, y) is the correlation at coordinate(x, y). I
(x, y) is the spot array data while G(x, y) denotes the
Gaussian mask. Then, the coordinate that maximizes
the correlation of the spot array with the Gaussian
mask can be determined:

ðxi; yiÞ ¼ argmaxCRðx; yÞ (7)

Table 1. Detailed parameters of the Shack–Hartmann
wavefront sensor in the numerical simulation.

Size of microlens 0.3 mm
Focal of microlens 7.318 mm
Pixel size 2.5 μm
Number of microlenses 207
Wavelength of the beam 550 nm

Journal of Modern Optics 707
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As soon as one centroid position of spot is found, the
local circular area of this spot in the correlation matrix
CR(x, y) is set zero. Then another centroid position of
spot is calculated until all N centroids of the spot array
are found. N is the number of microlenses.

This algorithm calculates the centroid positions of the
spot array in the whole array data rather than in the
corresponding pixel area of the microlens. Even if one
spot locates out of the corresponding pixel area of the mi-
crolens, this algorithm can calculate the centroid position

Figure 6. The accuracy of the matched filter algorithm and centroiding algorithm at different noise levels. (The colour version of
this figure is included in the online version of the journal.)

Figure 7. The number of the microlenses in the array.
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of this spot correctly. Hence, this algorithm can also be
used to extend the dynamic range of the Shack–Hartmann
wavefront sensor. We will discuss a novel algorithm based
on this algorithm to extend the dynamic range of the
Shack–Hartmann wavefront sensor in detail in Section 4.

To illustrate the improvement of the measurement
accuracy of Shack–Hartmann wavefront sensor, we pres-
ent numerical simulations of the performances of this
matched filter algorithm and the centroiding algorithm.
The main parameters of this numerical simulation are
summarized in Table 1.

The matched filter algorithm is sensitive to sampling
frequency, so the pixel size should be small enough to
maintain the accuracy and the linearity of this algorithm.
If the pixel size is too big, the quantization error will cor-
rupt the accuracy and the linearity of the matched filter
algorithm. In this case, the centroid position of the spot
should be determined by weighing the correlation
response in a small window (3 × 3 pixels, for example)
around the maximum of the correlation response. We
compare the matched filter algorithm with the centroiding
algorithm at different noise levels. The result is shown in

Figure 8. The process to relate the centroid array to the microlens array. (The colour version of this figure is included in the online
version of the journal.)
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Figure 6. The intensity of the spot array data ranges from
1 to 255. In this case, the noise level is about 30 in prac-
tice. The total wavefront RMS is the sum of the RMS
across the whole wavefront (200 × 200 pixels).

From Figure 6, we can find that there is no signifi-
cant difference between the two algorithms when the
noise level is low (less than 5). However, when the noise
level gradually increases, the performance of the centro-
iding algorithm degrades sharply. This is because the
threshold cannot distinguish the noise from the low-
intensity signal in the spot array. On the other hand, the
matched filter algorithm performs better than the
centroiding algorithm by an order of magnitude, which
is consistent with the conclusion of C. Leroux [28]. We
can also find that the experiential factor impacts the per-
formance of the centroiding algorithm. If the experiential
factor is too small to suppress the noise (t = 0.3), the
residual noise still corrupts the spot array data and leads
to a bigger RMS than the case t = 0.5. On the contrary, if
the experiential factor is too big (t = 0.7), the threshold
will truncate the spot data and lead to loss of significant
information. The total wavefront RMS of this case
(t = 0.7) is also bigger than the case t = 0.5. Hence, the
matched filter algorithm is more robust and accurate than
the centroiding algorithm.

4. A novel algorithm to extend the dynamic range

As discussed in Section 3, the matched filter algorithm
calculates the centroids of the spot array in the whole
array data rather than in the corresponding pixel area of
the microlens. By making use of this advantage, we
introduce a novel algorithm to extend the dynamic range
of Shack–Hartmann wavefront sensor in this section.

The main purpose of this algorithm is to relate the
centroid array with the microlens array. First of all, all
the microlenses in the array should be numbered (by col-
umn or by row) as shown in Figure 7. The centroid posi-
tions of spots, which are calculated by the matched filter
algorithm, should also be ordered by coordinate. Then
the reference point of the ith microlens can be calculated
as follows:

xi;r ¼ xi;c þ 0:5r;
yi;r ¼ yi;c þ 0:5r

(8)

where (xi,r, yi,r) is the coordinate of the reference point.
(xi,c, yi,c) is the coordinate of the centre of the ith micro-
lens. r is the radius of the microlens.

The distance from the reference point to each of the
centroid position is calculated as follows:

Di;j;r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi;r � x0jÞ2 þ ðyi;r � y0jÞ2

q
(9)

where Di,j,r is the distance from the reference point of
the ith microlens to the jth centroid position. ðx0j; y0jÞ is
the coordinate of the jth centroid position. Then, the first
N centroids, which minimize the distance Di,j,r, are the
potential centroids of the ith microlens. If ðx0j; y0jÞ is the
last centroid position in the row, N = 1, otherwise, N = 3.

If there is a crossover between two adjacent cen-
troids, the wavefront cannot be reconstructed by just one
picture of spot array. Therefore, we assume that there is
no crossover between these centroids. The centroid posi-
tion of the spot, which is focused by the ith microlens,
can be determined as follows:

ðxi; yiÞ ¼ argminfx0j; x0j 2 ðx0j; y0jÞg (10)

where (xi, yi) is the coordinate of the spot centroid,
which is focused by the ith microlens. By repeating these
calculations for every microlens, the centroid array can
be related to the microlens array.

As shown in Figure 8, the blue cross denotes the ref-
erence point of the first microlens. The green spot is the
centroid calculated by the matched filter algorithm. The
first three centroids, which minimize the formula (9),
are shown in Figure 8(b) as red square. According to the
Equation (10), the centroid in the top left corner has the
minimum abscissa. Hence, this centroid is the centroid
of the spot focused by the first microlens. By repeating
these processes, all of the centroids can be related to the
microlens array as shown in Figure 8(c). Therefore, the
wavefront can be reconstructed correctly.

5. Result

The dynamic range of the sensor is expressed as the
largest RMS (Root Mean Square) of the wavefront,
which can be measured correctly by this sensor. Since

Figure 9. The dynamic range of the algorithms. (The colour
version of this figure is included in the online version of the
journal.)
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the RMS of the wavefront is proportional to the coeffi-
cient of the Zernike polynomials and the items of
Zernike polynomials are orthogonal to each other [29],
we can measure the dynamic range by increasing the
coefficient of each item of Zernike polynomials while
the coefficients of the other items remain zero. In the
numerical calculation given, the real wavefront can be
calculated from the coefficient of Zernike polynomials.
And the spot array (without any noise) can be calculated
from the coefficient of Zernike polynomials either. Then
we reconstruct the wavefront with the spot array using
both the classical algorithm and the proposed algorithm.
We calculate the deviation between the reconstructed

wavefront and the real wavefront. We increase the coeffi-
cient of Zernike polynomials until the deviation is above
a given threshold (1% for example), then the dynamic
range is exceeded. We regard the largest RMS of the real
wavefront, the deviation between which and the recon-
structed wavefront falls below the threshold, as the
dynamic range of the sensor in the case of a single
Zernike wavefront. The improvement of the dynamic
range is calculated as:

Improvement ¼ RMSnoval � RMSclassical
RMSclassical

(11)

Figure 10. Z1,0 (a) Spot array (b) Reference wavefront (c) Wavefront reconstructed without our algorithm (d) Wavefront
reconstructed with our algorithm. (The colour version of this figure is included in the online version of the journal.)
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where RMSnoval and RMSclassical are the largest RMS of
the real wavefront, which can be correctly measured by
the proposed algorithm and classical algorithm,
respectively.

The dynamic ranges for the first 24 items of Zernike
polynomials (without piston and tilt) are calculated with
and without the novel algorithm. The result is shown in
Figure 9. The improvement of the dynamic range for
different items of Zernike polynomials ranges from 57.1
to 160% comparing to the classical algorithm.

The result of Z1,0 and Z3,3 are shown in Figures 10
and 11, respectively. From the spot array, we can find
that some of the spots (the green dot in Figures 10(a)
and 11(a)) are out of the corresponding pixel area of the
microlens (the red circle in Figures 10(a) and 11(a)). In
this case, the wavefront reconstructed by the classical
algorithm is incorrect. Because the classical algorithm
cannot relate the spot, which is out of the corresponding
pixel area of the microlens, to the microlens, which
focuses the spot. However, our algorithm can relate the

Figure 11. Z3,3 (a) Spot array (b) Reference wavefront (c) Wavefront reconstructed without our algorithm (d) Wavefront
reconstructed with our algorithm. (The colour version of this figure is included in the online version of the journal.)
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spot array to the microlens array in this case. Even if
there are spots locating in the same microlens (as shown
in Figure 11(a)), our algorithm can reconstruct the

wavefront correctly. The error between the reconstructed
wavefront and the reference wavefront is less than 10−12

wavelength.

Figure 12. Limitations of the proposed algorithm: (a) the distribution of the microlens and spots; (b) there is no improvement when
D locates at the second quadrant; (c) the improvement is moderate when D locates at the first quadrant; (d) the improvement is
moderate when D locates at the third quadrant; (e) the improvement is large when D locates at the fourth quadrant. (The colour
version of this figure is included in the online version of the journal.)
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Although the proposed algorithm can significantly
improve the dynamic range of the Shack–Hartmann
wavefront sensor, there are still some disadvantages: one
of them is that, the spots should be bright enough to be
visible and detectable. If there are some missing spots,
the algorithm will fail. However, we can solve this prob-
lem by comparing the quantity of the microlens with that
of spots. If the quantity of spots is not equal to that of
microlens, there should be some missing spots and then
another spot array will be acquired for calculation. It
may cost a little extra time to acquire another spot array.
But it is negligible when comparing to the calculation
time.

The second disadvantage is that, even if there is no
crossover in the spot array, this algorithm fails under
some special conditions. As show in Figure 12(a), R is
the reference point of the first microlens. A, B, C, D are
the spots. Because there is no crossover in the spot array,
the vertical coordinate of B is smaller than those of both
C and D. The horizontal coordinate of C is smaller than
those of both B and D. Now we think about the extreme
case, B and C are too close to D, and they can be
approximately regarded as one point. If the spot A is
determined as potential centroid, then the algorithm
works. Because there is no crossover between these
spots, the horizontal coordinate of A is of course the
minimum of those spots and will be determined by
Expression (10). However, if the spot A is not regarded
as potential centroid, the algorithm fails. In this case, the
distance between A and R is longer than that between D
and R. To illustrate this problem, we draw a circle with
R as the centre. The radius is the distance between D
and R. If A is outside the circle, the algorithm fails.
Therefore, A must be inside the circle. On the other
hand, both the horizontal coordinate and the vertical
coordinate of A are smaller than those of D. Because
there is no crossover between these spots. Therefore, A
must locate at the second quadrant in the coordinate sys-
tem with D as origin point. When D is located at a dif-
ferent quadrant of the coordinate system with R as origin
point, the potential location of A is different and is
shown in Figure 12(b)–(e), respectively (yellow area
inside the circle).

From the figure, we can find that: (1) When D
locates at the second quadrant of the coordinate system
with R as origin point (as the yellow point shown in
Figure 12(b)), the area of the potential location of A is
zero, that is the algorithm will definitely fail in this case.
(2) When D locates at the first or the third quadrant of
the coordinate system with R as origin point (as the yel-
low point shown in Figure 12(c) and (d)), the area of the
potential location of A is moderate, that is the proposed
algorithm can improve the dynamic range of the sensor
to some extent. (3) When D locates at the fourth quad-
rant of the coordinate system with R as the origin point

(as the yellow point shown in Figure 12(e)), the area of
the potential location of A is large, that is the proposed
algorithm can improve the dynamic range of the sensor
significantly. Because the reference point R locates at the
top left direction of the microlens, which generates the
spot D, the normal case is case (3). This is consistent
with the numerical result. The improvement of the
dynamic range is up to 160%. The case (2) sometimes
happens, this is why the improvements of different items
of Zernike polynomials are different from each other.
The case (1) rarely happens, in this case spot B, C and
D all locate at the top left of the microlens, which gener-
ates the spot A. In the case of ocular aberration measure-
ment, local wavefront tilt would not be so large. There
must be a global tilt in the wavefront, because all of the
spot B, C and D are shifted significantly to the same
direction. The global tilt can be compensated by tilt mir-
ror. An easier way is to neglect the global tilt item of the
Zernike polynomials. As discussed above, even if when
there is a large local wavefront tilt, the proposed algo-
rithm fails, the improvement of the dynamic range is sig-
nificant when the local wavefront tilt is moderate. The
defocus and global tilt items of the Zernike polynomials
are compensated by lens. Therefore, this algorithm works
well in our system in the case of ocular aberration
measurement.

6. Conclusion

The Shack–Hartmann wavefront sensor has a large num-
ber of applications. However, the measurement accuracy
and the dynamic range of the Shack–Hartmann wave-
front sensor have been questioned by many other
authors. In this paper, we have introduced a novel algo-
rithm to estimate the centroid positions. This algorithm
is based on matched filter algorithm. As shown in the
experimental results, the measurement accuracy of our
algorithm is better than the classical centroiding algo-
rithm by an order of magnitude. Our algorithm is less
sensitive to noise and more robust than the classical
algorithm. Basing on the novel centroiding algorithm,
we have also introduced an algorithm to extend the
dynamic range of the Shack–Hartmann wavefront sensor.
The classical centroiding algorithm calculates the cen-
troid positions of the spots only in the corresponding
pixel area of each microlens. Hence, if there is any spot
locating out of the corresponding pixel area of the micro-
lens, the reconstructed wavefront will be incorrect. How-
ever, our algorithm calculates the centroids of the spot
array in the whole array data and can effectively relate
the spot array to the microlens array. As shown in the
experimental results, the dynamic ranges of the Shack–
Hartmann wavefront sensor for the first 24 items of
Zernike polynomials are significantly improved by our
algorithm. The improvement of the dynamic range
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ranges from 57.1 to 160% for different items of Zernike
polynomials. Even if there are two or more spots locat-
ing in the corresponding pixel area of the same micro-
lens, our algorithm works correctly. The error between
the reconstructed wavefront and the reference wavefront
is less than 10−12 wavelength.

The algorithms proposed in this paper also have some
shortcomings: First of all, our algorithms are more compli-
cated than the classical algorithms. Hence, they will cost
more time to reconstruct the wavefront. However, this
problem can be solved by improving the property of the
computer. Secondly, if there is a crossover between two
spots in the spot array, our algorithm cannot detect the
crossover and may reconstruct the wavefront incorrectly.
This problem cannot be solved only by a picture of spot
array. To overcome this obstacle, a series of spot arrays
before and after the crossover should be acquired.

Although our algorithms have these drawbacks, the
experimental results show that the measurement accuracy
and the dynamic range of the Shack–Hartmann wave-
front sensor are both improved significantly. Thus, our
algorithms should be effective enough to measure the
aberrations of highly aberrated eyes.
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