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a b s t r a c t

A method for measuring the intensity distribution of a small beam spot is presented. The proposed
method involves several processes. First, an iterative phase retrieval algorithm is employed to calculate
the phase distribution from two known intensity distributions at the out-of-focus distance. Then, based
on the obtained phase distribution, the intensity distribution near the small beam spot is computed via
the Fresnel-like transform. Finally, by comparing the obtained intensity with the known intensity near
the small beam spot, we can determine the accuracy of our results. A simple model is established and the
feasibility of the proposed approach is demonstrated.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In general, a laser beam can be focused to a very small spot in a
highly concentrated area. This property makes the laser beam very
useful for many applications in physics, medicine, chemistry, and
industry. Because lasers can be used in various applications, the
measurement of the intensity distribution of a beam spot is very
important. Several methods have been proposed to measure the
intensity distribution of the beam spot. One of the traditional
methods uses a mechanical scanning device, which consists of a
rotating drum containing a knife-edge, pinhole, or slit that moves
in front of a detector. Although this traditional method can provide
excellent resolution (sometimes better than 1 μm), it works only
with a continuous wave (CW) laser and not with a pulsed laser.
Additionally, it is typically limited to two axes for measurement
and integrates the beam along those axes [1]. CCD cameras can be
used to provide whole two-dimensional laser beam measurements
and work with both pulsed and CW lasers. However, CCD cameras
require a small focused spot to be re-imaged using a microscope
objective to provide a magnified image for viewing on the camera
because the resolution is limited by the pixel size [1,2]. This
process causes a change in the actual intensity distribution in
space and introduces image aberrations that affect the measure-
ment [2]. In addition, these traditional methods cannot be used in

applications that require strict limitations for direct measurements
of the beam spot. Because there are many drawbacks in most of
the current methods, we propose an appropriate approach in this
paper to obtain the intensity distribution of a small beam spot. The
proposed method works with both pulsed and CW lasers and is
suitable for applications where direct measurements can be
challenging.

The outline of this paper is as follows. The fundamental
principle of our approach is described in Section 2. In Section 3,
we establish a simple model and apply the model to a lens of focal
length f. The corresponding results are obtained and discussed in
Section 4. We summarize our results in Section 5.

2. Fundamental principle and method

2.1. Fundamental principle

Let us assume that the intensity distribution can be readily
measured at certain locations along the direction of the beam
propagation using the method mentioned above. The phase
distribution can be obtained readily at these locations by wave-
front sensing [3]. Thus, the field distribution can be achieved at
these corresponding locations. We perform the Fresnel-like trans-
form [4] for the field distribution to obtain the intensity distribu-
tion of the small beam spot, which is difficult to measure using the
methods mentioned above. In this paper, we use the iterative
phase retrieval method [5–13] to obtain the phase distribution at
the corresponding locations.
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The concrete method is described as follows. First, an iterative
phase retrieval algorithm is used to calculate the phase distribu-
tion from two known intensity distributions at the out-of-focus
distance. Then, the Fresnel-like transform is employed to compute
the intensity distribution near the small beam spot using the
phase distribution obtained previously. Finally, by comparing the
obtained intensity with the known intensity near the small beam
spot, we determine whether the result is acceptable or not. The
whole process is shown in Fig. 1. The notations 1–5 denote five
different locations along the direction of beam propagation. The
small beam spot, which is difficult to measure with detectors, is
located at point 3. The intensity distributions at four other points
can be obtained using detectors. The five locations are separated
by free space or the complex optical system characterized by an
ABCD ray-transfer matrix. E1, E2, E3, and E4 are the optical elements
that can be represented by the ABCD ray-transfer matrices and Z1,
Z2, …, Z8 are the optical distances between the optical elements.
An iterative phase retrieval algorithm is utilized to calculate the
phase distribution at point 1 from the two known intensity
distributions at points 1 and 5. After computing the field distribu-
tion at point 1, we perform the Fresnel-like transform for the field
distribution at point 1 to compute the intensity distributions at
points 2 and 4. Finally, the obtained and known intensity distribu-
tions are compared at points 2 and 4. From this comparison, we
can determine the accuracy of our results.

2.2. Collins' formula

According to Collins [4], the Fresnel-like transform relating the
fields across the input and output planes can be expressed as
follows [14]:

Uðx; yÞ ¼ � ik
2π

ffiffiffiffiffiffiffiffiffiffi
BxBy

p expð� ikLÞ∬ dx0dy0Uiðx0; y0Þ

�exp½� ik
2Bx

ðDxx2�2xx0þAxx20Þ

� ik
2By

ðDyy2�2yy0þAyy20Þ� ð1Þ

where Ui(x0, y0) is the field at the point (x0, y0) of the input plane;
U(x, y) is the field at the point (x, y) of the output plane; k¼2π/λ is
the wavenumber; λ is the wavelength; L is the optical distance

along the axis; Ax,y, Bx,y, and Dx,y are the elements of the x- and y-
axis ray-transfer matrix.

2.3. Gerchberg–Saxton algorithm

The Gerchberg–Saxton algorithm [7] was originally developed
to solve the problem of reconstructing the phase from two
intensity measurements. The algorithm consists of the following
four steps: 1) Fourier transform an estimate g(x) of the object f(x); 2)
replace the modulus |G(u)| of the resulting computed Fourier trans-
form G(u) with the known Fourier modulus |F(u)| to form an estimate
G0(u) of the Fourier transform G(u); 3) inverse Fourier transform
the estimate G0(u) of the Fourier transform G(u); and 4) replace the
modulus |g0(x)| of the resulting computed image g0(x) with the
known object modulus |f(x)| to form a new estimate of the object
f(x) [10]. This process is depicted in Fig. 2.

The equations [10] for the kth iteration can be written as

GkðuÞ ¼ jGkðuÞjexp½iϕkðuÞ� ¼ F½gkðxÞ�

¼
Z 1

�1
gkðxÞexpð� i2πuxÞdx ð2Þ

G0
kðuÞ ¼ jFðuÞjexp½iϕkðuÞ� ð3Þ
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Fig. 1. Schematic diagram of computing process.
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Fig. 2. Schematic diagram of Gerchberg–Saxton algorithm.
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g0kðxÞ ¼ jg0kðxÞjexp½iθ
0
kðxÞ� ¼ F �1½G0

kðuÞ� ¼
Z 1

�1
G0
kðuÞexpði2πuxÞdu

ð4Þ

gkþ1ðxÞ ¼ jf ðxÞjexp½iθkþ1ðxÞ� ¼ jf ðxÞjexp½iθ0
kðxÞ� ð5Þ

where x is the two-dimensional spatial coordinate and u is the
two-dimensional spatial frequency coordinate.

3. Model

A simple model (Fig. 3) is established to demonstrate the
feasibility of our method. In our study, the beam is focused using
a lens of focal length f and the locations 1–5 in Fig. 1 are set as
follows. The point 1 is located at the plane of lens, location 2 lies in
front of the focal plane; location 3 is at the focal plane, location
4 lies at the back of the focal plane, and location 5 lies at a point
twice the focal length away from the lens. We can also use a
different optical system in place of the lens. Although complicated,
the same method is applicable, and the operation is similar.

An iterative phase retrieval algorithm is first used to calculate
the phase distribution at point 1 from the two known intensity
distributions at points 1 and 5 as described previously. In this
model, the known intensity distributions at point 1 (near-field)
and point 5 (far-field) are flat-top and super-Gaussian functions,
respectively. The objective of the phase retrieval method is to
obtain the near-field phase distribution at point 1 using the known
intensity distributions. The common phase retrieval methods are
based on the Gerchberg–Saxton theory [7]. In its basic form, the
Gerchberg–Saxton method consists of starting with an initial
distribution, propagating back and forth between the near-field
and far-field, and normalizing the intensity distribution to the
desired form at each plane before returning to the other field,
while leaving the phase unchanged.

The iterative process is depicted in Fig. 3. The known intensity
distributions in the near-field and far-field are represented by the
solid lines at notations 1 and 3, respectively. To start, we assume
the random phase (dotted line) at notation 1 and calculate the
intensity in the far-field at notation 2. The calculated intensity and
phase distribution are represented by the solid and dotted lines,
respectively. We then normalize the far-field intensity to the
desired shape (known intensity distribution in this model) and

leave the phase unchanged. This intensity distribution is indicated
in notations 2 and 3. The desired shape in both fields is repre-
sented by the dash-dotted line, which is depicted in notations
2 and 4. The beam is then back-propagated to the near-field at
notation 4. The intensity does not perfectly match the known
distribution. We normalize the near-field to the known envelope,
leaving the phase unchanged as indicated in notations 4 and 1, and
repeat the process until convergence. At convergence, the phase at
notation 1 is required to compute the intensity distribution of the
small beam spot. Using the obtained phase distribution, the field
distribution can be achieved at location 1 in Fig. 1. Finally, we
perform the Fresnel-like transform for the field distribution to
obtain the intensity distribution of the small beam spot. To
demonstrate the feasibility of our approach, the intensity distribu-
tion near the small beam spot is computed by performing the
Fresnel-like transform for the obtained field distribution. The
calculated and known intensity distributions are compared at
points 2 and 4. From the comparison, we can determine the
accuracy of our results.

4. Results and discussion

We use the following parameters: focal length f¼180 cm,
wavelength λ¼532 nm, numerical aperture NA¼0.02, distance
from location 2 to the focal plane δ1¼30 cm, distance from
location 4 to the focal plane δ2¼30 cm, distance from location
5 to the focal plane f¼180 cm, and the ray-transfer matrix of this
model

M¼
�1 360

�1=180 1

 !
ð6Þ

The known intensity distributions at locations 1 and 5 are
shown in Figs. 4 and 5, respectively. To obtain accurate results via
numerical computation, it is important to choose appropriate
mesh spacings and mesh dimensions for a given problem. Based
on a previous study [15], we choose the appropriate mesh spacings
and mesh dimensions at locations 1 and 5 to use in this model.

Based on our method, the intensity distributions at points 2, 3,
and 4 can be computed with the known intensity distributions at
points 1 and 5. If we denote the known intensity by f(x), where x is

v

v

1 2

34

Fig. 3. Diagram of iterative phase retrieval process.
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a two-dimensional vector, and the calculated intensity by g(x),
then the normalized RMS error E [10] is

E¼ ð
Z 1

�1
jgðxÞ� f ðxÞj2dx=

Z 1

�1
jf ðxÞj2dxÞ1=2 ð7Þ

We perform only 128 iterations for simplicity. The recovered
wave-front at location 1 is shown in Fig. 6, and the RMS error E at
locations 2 and 4 are depicted in Figs. 7 and 8, respectively. We
observe that the error decreases rapidly during the first few
iterations and reaches 0.0033 for location 2 and 0.0035 for
location 4 when it approaches the 128th and final iteration.

The beam width is very significant in the beam profile mea-
surement. Therefore, we calculate the beam width along with the
calculated intensity at points 2 and 4. The beam width is defined
using the encircled-energy criterion [16]. The beam width is
0.2035 cm at location 2 and 0.2239 cm at location 4 at the final
iteration (128). The practical beam widths calculated using the
known intensity at points 2 and 4 are 0.2034 cm and 0.2238 cm,
respectively. Notably, our approach is applicable and effective for
comparison with the data mentioned above.

In addition, the intensity distribution at the focal plane also
demonstrates the feasibility of our method. The corresponding
beam width at the 128th iteration is 0.0120 cm and the practical

beam width is 0.0118 cm, thus demonstrating the reliability of our
method.

According to a previous study [17], if the transformation
between two wave functions is performed using a unitary operator
and one of the wave functions is absolutely square integrable, the
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phase reconstruction from the known intensity distribution in any
two planes of an imaging system can be achieved using the
Gerchberg–Saxton algorithm. Because the model does not involve
diffraction loss (the radius of the beam is smaller than the radius
of the aperture), our choice of the distances of the intensity
measurement meets the requirement. Moreover, the results of
phase retrieval also demonstrate that the choice of distances is
correct. Although the choice of distances is feasible, it is not the
optimal solution. Because the goal of our paper is to describe an
effective method to indirectly measure the beam size of a focused
field based on the intensity distributions measured at the out-of-
focus distance, the optimal choice of distances is not the main
purpose of this study. For the best choice, other sources explain
how to choose the proper out-of-focus distance [18].

5. Conclusion

In this paper, a simple method is presented to measure the
intensity distribution of the small beam spot. The method involves
several processes. First, an iterative phase retrieval algorithm is
employed to calculate the phase distribution from two known
intensity distributions at the out-of-focus distance. Then, based on
the obtained phase distribution, the intensity distribution near the
small beam spot is computed via the Fresnel-like transform.
Finally, the obtained intensity and the known intensity near the
small beam spot are compared to determine the accuracy of the
results. The model is applied to a lens of focal length f¼180 cm.
The results demonstrate the feasibility of our approach. To obtain
the phase distribution, the Gerchberg–Saxton algorithm is selected
to accomplish the calculation in our current work. Other algo-
rithms, such as the gradient-search algorithm [9], input–output
algorithm [10], phase diversity [11,12] and genetic algorithm [13],
are also feasible. Moreover, we can utilize the wave-front sensors

to obtain the phase distribution in real-time operations [3].
Additionally, we can generalize our approach to the complex
optical systems characterized by the ABCD ray-transfer matrix.
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