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Abstract: Rotatable retarder fixed polarizer (RRFP) Stokes polarimeters, 
which employ uniformly spaced angles over 180° or 360°, are most 
commonly used to detect the state of polarization (SOP) of an 
electromagnetic (EM) wave. The misalignment error of the retarder is one 
of the major error sources. We suppose that the misalignment errors of the 
retarder obey a uniform normal distribution and are independent of each 
other. Then, we derive analytically the covariance matrices of the 
measurement errors. Based on the covariance matrices derived, we can 
conclude that 1) the measurement errors are independent of the incident 
intensity s0, but seriously depend on the Stokes parameters (s1, s2, s3) and 
the retardance of the retarder δ; 2) for any mean incident SOP, the optimal 
initial angle and retardance to minimize the measurement error both can be 
achieved; 3) when N = 5, 10, 12, the initial orienting angle could be used as 
an added degree of freedom to strengthen the immunity of RRFP Stokes 
polarimeters to the misalignment error. Finally, a series of simulations are 
performed to verify these theoretical results. 
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1. Introduction 

Measurement of the state of polarization (SOP) of an electromagnetic (EM) wave is attracting 
more and more attention because it plays an important role in many regions, such as 
biomedicine [1], solar astronomy [2] and remote sensing [3]. The Stokes vector is a widely 
accepted means to describe the SOP of an incident EM wave. The simplest complete Stokes 
polarimeter is a rotatable retarder fixed polarizer (RRFP) Stokes polarimeter with a rotatable 
retarder, a fixed polarizer and a photodetector, which is shown in Fig. 1. Often, a quarter-
wave retarder is chosen in a commercial polarimeter. Its structure is simple, thus a RRFP 
Stokes polarimeter can be easily integrated in many application systems, such as imaging 
polarimeters [4], Mueller matrix polarimeters [5] and solar polarimetric telescopes [6]. 

 

Fig. 1. The schematic structure of a RRFP Stokes polarimeter. 

A RRFP Stokes polarimeter determines the four Stokes parameters of an incident EM 
wave by rotating the retarder to N (N ≥4) different angular orientations and measuring the 
corresponding optical intensities of the EM wave. There are three potential error sources in 
such measurements: first, the random noise in the measured intensity; second, deviations in 
nominal values of retardance and diattenuation of the polarization optics; and third, the 
relative angular orientation errors away from the nominal angular orientations. These three 
error sources introduce Stokes parameter errors because they all induce errors in the measured 
intensity of the incident EM wave. 

The first two error sources have been systematically investigated. The noise properties of 
RRFP Stokes polarimeters in the presence of Gaussian noise were theoretically investigated 
by Sabatke and Tyo [7, 8]. They found that a 132° retarder and an angle set of (−51.7°, 
−15.1°, 15.1°, 51.7°) can result in the largest SNR for the system. Moreover, Sabatke found 
that uniformly spaced angles over 360° are a good choice, and the practical difficulty and 
time expenditure of aligning the retarder at many different non-uniformly spaced angles is 
unnecessary [7]. Goudail looked at signal-dependent shot noise, and found that in a certain 
circumstance, the polarimeters optimal for Gaussian noise are also optimal for signal-
dependent shot noise [9]. H. Dong (2013) investigated the measurement noises of Stokes 
parameters resulted from photodetector noises in RRFP Stokes polarimeters employing 
uniformly spaced angles over 180° or 360° by theoretical analysis and simulation [10]. For 
the second source of error, such as retarder non-uniformity and low extinction ratio of a linear 
polarizer, Tyo and Wei had determined that a low extinction ratio of a linear polarizer did not 
depress the signal-to-noise ratio [11]. H. Dong (2012) studied measurement errors induced by 
retardance deviation and derived theoretically the relationship between the retarance error and 
the measurement errors in RRFP Stokes polarimeters [12]. 

However, the above mentioned studies all assumed that the optical intensities were 
measured at the ideal retarder orientation angles. In practice, there will be angular orientation 
errors of the retarder during the procedure of measurement. Further, angular orientation error 
is far more important in a RRFP imaging polarimeter [11]. Tyo studied the sensitivity of 
polarimeters to this kind of error source analytically, and discussed the relationship between 
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system condition and error minimization by means of numerical analysis [13]. But the 
analytical result presented in [13] can only be used for the case that the incident SOPs are 
uniformly distributed over the Poincaré sphere. 

In this paper, we address the third error source of RRFP Stokes polarimeters measuring 
intensities in N (N≥5) uniformly spaced angles by theoretical analysis and simulation. The 
retarder misalignment errors are treated as statistic errors, and the covariance matrices of 
measurement errors induced by the retarder misalignment errors are derived analytically. 
Based on the covariance matrices, it can be concluded that 1) the measurement errors from 
the retarder misalignment errors are independent of the incident intensity s0, but being 
dependent on Stokes parameters s1, s2, s3 under test; 2) for any incident SOP, the optimal 
configuration of a RRFP polarimeter including the initial angle and the retardance can be 
achieved; 3) for the case of N = 5, 10, 12, the effect of the retarder misalignment error has 
been remarkably weakened when an initial angle leading to the smallest WS is used; 4) the 
covariance matrix for N uniformly spaced angles over 180° has the same form as that for 2N 
uniformly spaced angles over 360°. In the end of the paper, simulations are performed to 
verify that these theoretical results agree well with the simulation results. 

2. Theoretical analysis 

RRFP Stokes polarimeters determine the Stokes vector 
→
S  of an incident EM wave by 

obtaining N (N≥4) intensity measurements 0 1( , , , )T
NI I I

→
=I   corresponding to N angular 

orientations of the retarder. Without any errors, the two vectors are related by 

 
→ →

=I W S  (1) 

 

( )
( )

( )

2 2 2
1 1 1 1

2 2 2
2 2 2 2

2 2 2

1 cos 2 cos sin 2 sin / 2 sin 4 sin sin 2

1 cos 2 cos sin 2 sin / 2 sin 4 sin sin 21

2

1 cos 2 cos sin 2 sin / 2 sin 4 sin sin 2N N N N

θ δ θ δ θ δ θ
θ δ θ δ θ δ θ

θ δ θ δ θ δ θ

 + −
 + − =  
  + − 

W
   

 (2) 

where W is the measurement matrix, T
0 1 2 3( , , , )s s s s

→
=S  is the incident Stokes vector, the 

superscript “T” denotes the transposition of a vector or a matrix, δ is the retardance of the 
retarder, θi = θ1 + (i 1)360°/N, (i = 1, 2, …, N-1, N) is the nominal angular orientation of the 
retarder when the intensity Ii is detected, and θ1 is the initial angular orientation. 

When there is only the misalignment error of the retarder, the real measurement matrix of 
the Stokes polarimeter is denoted by 'W . Supposed that ' Δ= +W W W , then the 
measurement error of the intensity induced by the misalignment error of the retarder is 
governed by 

 ( )' Δ
→ → →

Δ = − =I W W S W S  (3) 

when the angular orientation error is small enough, the approximation in Eq. (4) which is the 
first term of a Taylor-series expansion of ijW  about the nominal settings is appropriate: 

 
( ) ( ) ( )

Δ '
i

ij i i ij i ij
ij ij ij i i

i
θ

θ ξ θ θ
ξ ξ

ξ θ
+ − ∂ 

= − = ≈  ∂ 

W W W
W W W  (4) 
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where iξ  is the angular orientation error of the retarder for the ith measurement. When the 

error iξ  is less than 0.05 rad, the truncation error from the approximation in Eq. (4) is under 

1%. Consequently, the matrix ΔW  is obtained by 

 

( ) ( )
( ) ( )

( ) ( )

1 1 1 1 1 1

2 2 2 2 2 2

0 sin 4 cos 1 cos 4 cos 1 cos 2 sin

0 sin 4 cos 1 cos 4 cos 1 cos 2 sin

0 sin 4 cos 1 cos 4 cos 1 cos 2 sinN N N N N N

θ δ ξ θ δ ξ θ δξ
θ δ ξ θ δ ξ θ δξ

θ δ ξ θ δ ξ θ δξ

 − − − − 
 − − − − Δ =  
  − − − − 

W
   

 (5) 

To obtain the relationship between the intensity error 
→

Δ I and the angular orientation 

error
→
ξ , Eq. (3) is transformed as 

 
→ →

Δ =I Q ξ  (6) 

where Q is the transforming matrix, its elements are given by 

 1 2 3sin 4 (cos 1) cos 4 (cos 1) cos 2 sin , ;

0 , .
i i i

ij

s s s i j

i j

θ δ θ δ θ δ− − − − =
=  ≠

Q  (7) 

and ( )T

1 2, Nξ ξ ξ
→

=ξ   is the angular orientation error vector of the retarder in a RRFP Stokes 

polarimeter. Hence, the Stokes error vector from the angular orientation error can be derived 
as 

 ( ) 1T TΔ
→ → →−+∈ = =W I W W W Q ξ  (8) 

where W+ is the pseudo inverse matrix, which is defined by 

 ( )-1T T+ =W W W W  (9) 

and the superscript “-1” denotes the inverse of a square matrix. It is obvious that by Eq. (8), 
the error propagation relationship from the angular orientation error to the Stokes error is 
obtained. Note that the result that is similar to Eq. (8) is also presented by Tyo in [13]. 

When a RRFP Stokes polarimeter is operating, the retarder is rotated harmonically to 
modulate the incident EM wave. The angular orientation errors of the retarder arise from the 
following factors: 1) the initial angle deviation from the nominal value θ1; 2) non-harmonic 
rotation of the retarder; 3) non-uniform time intervals of intensity measurements. The sources 
of these kinds of errors are so varied that the angular orientation errors of the retarder are 
assumed to be independent of each other and obey a uniform normal distribution to simplify 
the analysis, and the standard deviation of the distribution is σ. Based on this assumption, the 

measurement error of the Stokes vector 
→
∈  consists of four random variables, and their 

variances are usually used to assess the measurement errors of Stokes parameters [7, 14]. 
From Eq. (8), the covariance matrix on Stokes parameters can be derived as 

 ( ) ( )

2
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where the <·> operator indicates the expectation value. Since we have assumed that the 

elements of the angular orientation error 
→
ξ  are independent of each other with a uniform 

standard variance σ, the covariance matrix in Eq. (10) can be expressed as 

 ( ) ( )1 12 T T 2σ σ
− −

∈ = =Γ W W Λ W W Γ  (11) 

where the matrix Λ is 

 ( )=
TT TΛ W Q W Q  (12) 

and the matrix Γ is 

 ( ) ( )1 1T T− −
=Γ W W Λ W W  (13) 

when N uniformly spaced angles θ1, θ1 + 360°/N,…, θ1 + (N-1)360°/N (N≥5) are used, the 

matrix ( ) 1T −
W W  can be given by 

 ( )
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8
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2
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sin

N

δδ δ
δ δ
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δ

δ

−

+ + + − 
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 + − − −=  
 
 
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 
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W W (14) 

when N uniformly spaced angles θ1, θ1 + 360°/N, …, θ1 + (N-1)360°/N (N = 9, 11, 13, 15, 17, 
18, 19 …∞), the matrix Λ can be given by 
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During the procedure of deriving Eq. (14) and Eq. (15), lots of trigonometric identities are 
used, which all have been validated by MATLAB programs. From Eq. (11), Eq. (14) and Eq. 
(15), when N uniformly spaced angles θ1, θ1 + 360°/N, …, θ1 + (N-1)360°/N (N = 9, 11, 13, 
15, 17, 18, 19, …,∞) are used, the matrix Γ can be given by 

 ( ) ( ) ( )
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From Eq. (11), the matrix Γ is independent of the alignment error of the retarder. Its 
diagonal elements represent gain factors in the propagation of variance from the 
measurements to the Stokes vector estimate. The off-diagonal elements indicate where 
correlations in errors in the components of the Stokes vector estimate arise [14], which have 
been derived, but are not shown here because they won’t be used in this paper. The diagonal 
elements of the covariance matrix Γ∈ denote the corresponding measurement errors of the 
four Stokes parameters. So the sum of four measurement errors of Stokes parameters 

3 2

0 ii=
∈ , which is equal to the trace of the covariance matrix Γ∈, can be used to evaluate 

the overall measurement error induced by angular orientation errors of the retarder. Based on 
Eq. (16), it is given as 
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when N = 9, 11, 13, 15, 17, 18, 19 … ∞, the six coefficients are respectively 
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From Eq. (17), it is concluded that the measurement error induced by the angular 
orientation of retarder is independent of the incident intensity s0, but seriously depends on the 
incident Stokes parameters (s1, s2, s3) and the retardance δ. The measurement error is also 
inversely proportional to N, which agrees well with the prediction in [8]. With the number of 
intensity measurement N increasing, the measurement error decreases rapidly. But when N 
exceeds some value, the change will not be obvious any more. Since the polarization degree 
of an EM wave is defined by Eq. (19), we can conclude that for the case of N = 9, 11, 13, 15, 
17, 18, 19 …∞, the higher the polarization degree of an incident EM wave is, the larger the 
measurement error is. 

 
2 2 2

1 2 3

0

s s s
PD

s

+ +
=  (19) 

The coefficients C1, C2, C3, C4, C5 and C6 can be seen as weights of contributions of 
Stokes parameters (s1, s2, s3) to the measurement error. The coefficients C1, C2 and C4 denote 
the dependence of the measurement error on the linear polarized component in the incident 
EM wave. The third coefficient C3 represents the dependence on the circular polarized 
component. The coefficients C5 and C6 indicate the dependence on the elliptical polarized 
component. The weight factors C1, C2, C3 for the case of N = 9, 11, 13, 15, 17, 18, 19 … ∞ 
are plotted in Fig. 2. Based on Fig. 2, it is found that when the incident SOPs are mostly 
distributed near the equator of the Poincaré sphere, in order to minimize the measurement 
error, the retardance of the retarder should not be larger than 130°. For example, the quarter-
wave retarder is a good choice in this instance. When the incident SOPs are mostly distributed 
over the two poles of the Poincaré sphere, the retardance of the retarder should not be smaller 
than 85°. 
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Fig. 2. The relationships between C1, C2, C3, WS1, WS2 and the retardance δ for the case of 
employing N (N = 9, 11, 13, 15, 17, 18, 19…∞) uniformly spaced angles over 360°. 

If the statistic distribution of the incident SOPs under test can be theoretically predicted or 
be known from the previous data, a figure of merit, which is based on the weights on the 
importance of the respective Stokes components to the polarimeter’s intended application, can 
be designed by composing a weight sum of the six coefficients C1, C2, C3, C4, C5 and C6 to 
evaluate the measurement error. The figure of merit is defined as the Weight Sum (WS) by 
Eq. (20). 

 
2 2 2

1 1 2 2 3 3 1 2 4 2 3 5 1 3 6WS s C s C s C s s C s s C s s C= + + + + +  (20) 

where ( )T

1 2 31, , ,s s s is the normalized mean incident Stokes vector under test. In this case, an 

optimal value of the retardance resulting in the smallest WS can be achieved to minimize the 
measurement error. For example, when the mean distribution of incident SOPs is evaluated as 

( )1,1 2 ,1 3 ,1 6
T

, the figure of merit WS1 is given by 

 31 2
1 2 3 6

CC C
WS = + +  (21) 

The relationship between WS1 and the retardance is also shown in Fig. 2. When the retardance 
δ is 99.42° for the case of N = 9, 11, 13, 15, 17, 18, 19 …∞, the measurement error reaches 
the minimum. Furthermore, in the retardance range from 92.54° to 107.24°, WS1 increases 
only by 1% of its minimum. Hence, a retarder in this retardance range can result in nearly a 
minimum measurement error for the supposed mean incident SOP. 

Again, when incident SOPs are uniformly distributed over the Poincaré sphere, it means 

that the mean incident SOP is ( )1,1 3 ,1 3 ,1 3
T

. The figure of merit WS2, which is still 

shown in Fig. 2, is given by 
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 ( )2 1 2 3

1

3
WS C C C= + +  (22) 

It can be found that when the retardence δ is 109.68°, the measurement error reaches its 
minimum. This result is coincident with that obtained by Tyo using Frobenius norm as the 
figure of merit in [13]. 

By similar methods to the above, it can be obtained that when N = 5, 7, 10, 12, 14, 16, the 
matrix Λ is a function matrix of the initial angle θ1. So the covariance matrix Γ∈ is also a 
function matrix of the initial angle θ1. These analytical results for N = 5, 7, 10, 12, 14, 16 will 
be presented in what follows. 

When N (N = 5, 10) uniformly spaced angles θ1, θ1 + 360°/N, …, θ1 + (N-1)360°/N are 
used, the corresponding matrix Γ becomes 

 

( ) ( ) ( )
( ) ( )

2 2 2 2 2 2

11 1 2 3

1 3 1 2 3 1

2 2 2 1

22 1 2 3 2 3

16 32 8 16
1 cos cos cos 1 15 12 cos 5 cos

1 cos

16 4 16 4
sin 10 sin 5 3 cos cos10 sin 5 3 cos

1 cos 1 cos

cos10 sin32 96 64 1 cos 64 64

1 cos 1 cos

s s s
N N N

s s s s
N N

s s s s s
N N N N N

Γ = + + + + − − + +
−

− − + + − +
− −

+
Γ = + + − +

− −

δ δ δ δ δ
δ

θ δ δ θ δ δ
δ δ

θ δδ

δ δ
1

1 3

2 2 2 2

33 1 2 3 2 3 1 1 3

1

2 2 2 1 1

44 1 2 3 1 3 2 3

sin 10 sin

1 cos

96 32 64 64 64
cot cos10 cot sin

2 2

10 cot
2

sin 10 sin cos10 sin16 1 cos 16 1 cos 8 16 16

1 cos 1 cos 1 cos 1 cos

s s

s s s s s s s
N N N N N

s s s s s s s
N N N N N

−

Γ = + + + −

− −
Γ = + + − +

+ + + +















θ δ

δ

δ δ
θ

δ
θ

θ δ θ δδ δ

δ δ δ δ





 (23) 

when N (N = 7, 14) uniformly spaced angles θ1, θ1 + 360°/N, …, θ1 + (N-1)360°/N are used, 
the corresponding matrix Γ becomes 

 

( ) ( ) ( )
( )

( ) ( )

2 2

2 2 2 2 2

11 1 2 3 2

2 2

1 1

2 3 1 3

2 2 2 1

22 1 2 3 2 3 1 3

sin 5cos 2 cos 14 8 2
cos 1 cos cos 1

cos 1

cos14 sin cos 1 sin14 sin cos 14 4

cos 1 cos 1

cos14 sin sin18 24 16 1 cos 16 16

1 cos 1 cos

s s s
N N N

s s s s
N N

s s s s s s s
N N N N N

+ +
Γ = + + + + +

−

+ +
+ −

− −
+

Γ = + + − +
− −

δ δ δ
δ δ δ

δ

θ δ δ θ δ δ

δ δ
θ δδ

δ δ
1

2 2 2 2

33 1 2 3 2 3 1 1 3 1

2 2 2 2 2

44 1 2 3

4 sin

1 cos

24 8 16 16 16
cot cos14 cot sin14 cot

2 2 2

4 4 2
tan tan

2 2

s s s s s s s
N N N N N

s s s
N N N

−

Γ = + + + −

Γ = + +

















θ δ

δ
δ δ δ

θ θ

δ δ

 (24) 

when N (N = 12) uniformly spaced angles θ1, θ1 + 360°/N, …, θ1 + (N-1)360°/N are used, the 
corresponding matrix Γ becomes 

(C) 2014 OSA 19 May 2014 | Vol. 22,  No. 10 | DOI:10.1364/OE.22.011869 | OPTICS EXPRESS  11877
#208137 - $15.00 USD Received 12 Mar 2014; revised 3 May 2014; accepted 5 May 2014; published 9 May 2014



 

( )[ ] ( )[ ]
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( )
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2 2 2 2
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2 2 1
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−
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

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



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θ

δ δ δ
θ θ θ

δ δ δ

(25) 

when N (N = 16) uniformly spaced angles θ1, θ1 + 360°/N, …, θ1 + (N-1)360°/N are used, the 
corresponding matrix Γ becomes 

 

( )

( ) ( )

( )

( ) ( )

2 2
11 1 1 1 1

2 2
2 1 1 1

22 2
3 1 2 1

2 2 2
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s s
N

s s s s s
N N N N
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δ
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δ
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δ δ










 −

−

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 −

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(26) 

We find that the covariance matrix for N = 5, 7, 10, 12, 14, 16 is a trigonometric function 
matrix of the initial angle θ1, and the period is 360°/N. Though the analytical results for the 
case of N = 5, 7, 10, 12, 14, 16 are relatively complex, a RRFP Stokes polarimeter, which 
employs N = 5, 7, 10, 12, 14, 16 intensity measurements, is recommended. That is because 
that when N = 5, 7, 10, 12, 14, 16, the added degree of freedom by θ1 can be used to optimize 
the configuration of a RRFP Stokes polarimeter. 
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Fig. 3. The relationship between WS and the initial orientation angle θ1 when N = 5 or 10, 7 or 
14, 12, 16. 

From Eq. (23), Eq. (24), Eq. (25), and Eq. (26), the total measurement error induced by 
the angular orientation error for the case of N = 5, 7, 10, 12, 14, 16 can also be denoted by Eq. 
(17). Hence, for N = 5, 7, 10, 12, 14, 16, the weight sum (WS) of these six corresponding 
coefficients C1, C2, C3, C4, C5, and C6 can still be used to evaluate the measurement error 
induced by the misalignment error of the retarder. When the mean incident SOP is assumed as 

( )1,1 2 ,1 3 ,1 6
T

, the figure of merit WSs for the case of N = 5, 7, 10, 12, 14, 16 are 

plotted in Fig. 3. It is obvious that the measurement error is a cosine function of the initial 
angle. As illustrated in Fig. 3, the amplitude for N = 7, 14, 16 is too small but that for N = 5, 
10, 12 is large enough to optimize θ1. RRFP Stokes polarimeters which use N (N = 5, 10, 12) 
uniformly spaced angles are recommended because an additional parameter of the initial 
angle θ1 can be utilized to optimize their configuration. The optimal initial angle for the case 
of N = 5 or 10 is 12.89° + M·36°, while that for the case of N = 12 is 21.74° + M·30°. M is an 
arbitrary positive integer. 

When the mean incident SOP is supposed as ( )1,1 2 ,1 3 ,1 6
T

, all of these 

coefficients and WSs for the case N = 5 or 10, 7 or 14, 12, 16 are plotted in Fig. 4. It is not 
difficult to find that there must be an optimal retardance resulting in the smallest 
measurement error for all of N. The optimal initial angles and retardances for all of N 
discussed above are listed in Table 1. 

(C) 2014 OSA 19 May 2014 | Vol. 22,  No. 10 | DOI:10.1364/OE.22.011869 | OPTICS EXPRESS  11879
#208137 - $15.00 USD Received 12 Mar 2014; revised 3 May 2014; accepted 5 May 2014; published 9 May 2014



 

Fig. 4. The coefficients and WSs for N = 5 or 10, 7 or 14, 12, 16 at the respective optimal 

initial angle when the mean incident SOP is ( )1,1 2 ,1 3 ,1 6
T

. 

Table 1. Optimal Initial Angle and Retardance for the Incident SOP 

( )1,1 2 ,1 3 ,1 6
T

 

N 5, 10 7, 14 12 16 9, 11, 13, 15, 17, 
18, 19, …, ∞ 

Optimal initial angle 
Optimal retardance 

12.89°
100.58° 

22.23°
95.01° 

21.74°
104.54° 

4.89°
96° 

arbitrary value 
99.42° 

In addition, when employing N (N = 4, 6, 8) uniformly spaced angles over 360°, the 
measurement matrix W is a singular matrix. In this case, the RRFP polarimeter cannot 
determine all of Stokes parameters, which has no practical significance for a generalized 
RRFP Stokes polarimeter because a RRFP polarimeter is usually used as a complete 
polarimeter. So the cases of N = 4, 6, 8 are not covered in our discussion. 

Although the discussion above is performed for the case of N uniformly spaced angles 
over 360°, it is easy to prove that the covariance matrix for N uniformly spaced angles over 
180° has the same form as that for 2N uniformly spaced angles over 360°. It means that in the 
case of 180°, N can be any integer larger than 4. Furthermore, the results are different 
between 180° and 360° only when N is 10, 12, 14 and 16, which are illustrated in Fig. 5. It is 
observed that when N = 14 and 16, N uniformly spaced angles over 180° are better to 
minimize the measurement error. When N = 12, 360° is a better choice. There is no quite 
obvious difference between 180° and 360° for N = 10. 
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Fig. 5. The comparison of WSs for N (N = 10, 12, 14, 16) uniformly spaced angles over 
between180 °and 360 °. 

3. Simulation verification 

In order to verify the theoretical results in Eq. (16), Eq. (23), Eq. (24), Eq. (25) and Eq. (26), a 
series of simulations are performed in this section. These simulations are performed with the 
following procedures: 1) use MATLAB to generate 104 random angular orientation errors, 
which obey the same normal distribution; 2) calculate the measurement errors with 
→ → →

+∈ = −W W S S  for each angular orientation error; 3) calculate the variance 2
i∈ of the four 

components of 
→
∈ ; 4) use Eq. (16), Eq. (23), Eq. (24), Eq. (25) and Eq. (26) to calculate the 

theoretical result of the corresponding measurement error components. These simulations are 
carried out in the retardance range from 20° to 160° for 112 different incident SOPs, which 
are uniformly distributed over the whole Poincaré sphere. Here, only the two typical SOPs 

( )1,1 3 ,1 3 ,1 3
T

 and ( )1,1 2 ,1 3 ,1 6
T

 are shown in Fig. 6 and Fig. 7, 

respectively. The first SOP is measured using an initial angle θ1 = 9° and σ = 0.05, while the 
second SOP is measured using an initial angle θ1 = 13° and σ = 0.02. Both the simulation 
results and theoretical results are illustrated in the same figure to compare, where the real line 
“-” represents the simulation result while the star “*” denotes theoretical result. It can be 
clearly observed that, the theoretical results agree well with the simulation results for the 
measurement errors of all of the four Stokes parameters for all cases. The small deviation 
between the two results mostly derives from the truncation error induced by the 
approximation in Eq. (4). 
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Fig. 6. Simulation and theoretical results of 
2

, 0,1, 2, 3
i

i∈ =  at the SOP 

( )1,1 3 ,1 3 ,1 3
T

and the initial angle 1 9θ = 
with σ = 0.05. The real line “-” 

represents the simulation result while the star “*” denotes theoretical result. 
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Fig. 7. Simulation and theoretical results of 
2

, 0, 1, 2, 3
i

i∈ =  at the SOP 

( )1,1 2 ,1 3 ,1 6
T

and the initial angle 
1

13θ = 
 with σ = 0.02. The real line “-” 

represents the simulation result while the star “*” denotes theoretical result. 

4. Conclusion 

For a RRFP Stokes polarimeter, which employs N (N≥5) uniformly spaced angles over 180° 
or 360°, the measurement error induced by the angular orientation error of the retarder is 
investigated by theoretical analysis and verified by simulation. We assume that the angular 
orientation errors are random variables which obey a uniform normal distribution. The 
covariance matrices of the measurement errors are derived analytically for the misalignment 
errors of the retarder. Based on the covariance matrices, we conclude that 1) the measurement 
errors of Stokes parameters are independent of the incident intensity s0, but depend heavily on 
the incident Sstokes parameters (s1,s2,s3) and the retardance of the retarder δ; 2) whatever the 
incident SOP is, the optimal initial angle and retardance both can be obtained by the 
analytical results presented above; 3) for the cases of N = 5, 7, 10, 12, 14, 16, the 
corresponding covariance matrices are different and heavily depend on the initial angle θ1, 
and the measurement errors are cosine functions of the initial angle θ1; 4) the covariance 
matrix for N uniformly spaced angles over 180° has the same form as that for 2N uniformly 
spaced angles over 360°. Except N = 10, 12, 14, 16, there is nearly no difference between 
180° and 360° for the same N. Further, RRFP Stokes polarimeters, which employ N (N = 5 or 
10) uniformly spaced angles over 360° or N (N = 5) uniformly spaced angles over 180°, have 
stronger immunity to the misalignment error of the retarder when the appropriate initial angle 
is chosen. 
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