
Interpretation of visible moiré between repetitive
periodic-like gratings in the image domain

Lei Yu,* Shu-Rong Wang, and Guan-Yu Lin
Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

*Corresponding author: top1gods@mail.ustc.edu.cn

Received 11 June 2014; revised 10 August 2014; accepted 11 August 2014;
posted 12 August 2014 (Doc. ID 213704); published 2 December 2014

An image domain approach to the interpretation of visible moiré phenomena in repetitive grating multi-
plicative superposition has been proposed. The local frequencymethod provides the instantaneous period
and orientation of generated moiré. These parameters of the moiré have been sorted into real and pseudo
patterns by the Fourier expansions analysis. With the combination of these two steps, the concept “equiv-
alent period contribution threshold” has been introduced. It is found that different thresholds bring dif-
ferent integral domains and results for the calculation of average intensities of generated moiré
waveforms. This proves that different thresholds would introduce different average intensity distribution
(macrostructure effects) in different moiré patterns. With the local intensity variation (microstructure
effects), the human eye would confuse different macrostructure effects but only consider them the same.
The interpretation is that the macrostructure versus microstructure effects garble discernment of the
human eye and result in different visible moiré phenomena. This is significant for visible moiré effects
in various repetitive grating (both of cosinusoidal and binary patterns) superpositions in the image
domain. It also presents and summarizes the coexistence of real and pseudo moirés in repetitive,
periodic-like layer superposition. © 2014 Optical Society of America
OCIS codes: (120.4120) Moiré techniques; (070.0070) Fourier optics and signal processing;

(050.2770) Gratings.
http://dx.doi.org/10.1364/AO.53.008197

1. Introduction

The moiré phenomenon was first discovered in
France. The first scientific research was made by
Lord Rayleigh [1]. Generally, the superposition of
two or more periodic (or quasi-periodic) structures
leads to a coarser structure, which is the appearance
of interfering patterns named moiré pattern or moiré
fringe [2,3]. There are two aspects, moiré pattern
analysis and moiré pattern synthesis, in modern
moiré research [4–6].

A phenomenon called pseudo moiré is one that the
human eye can receive, but Fourier theory hardly
captures. Amidror presented a combination of points
in the theoretical prediction of visible moiré effects

[7]. Kong et al. [8] interpreted the phenomenon with
the consideration of illusional contrast of human vis-
ual systems. Patorski et al. [9] used the concept of
biased and unbiased frequency pairs to interpret
the real and pseudo moiré in the Fourier domain
based on the notion of detectable intensity modula-
tions. Yu et al. [10] presented a visible moiré explan-
ation both for cosinusoidal and binary gratings in the
multiplicative and additive superpositions. These
studies mainly focus on the superposition of periodic
straight gratings but not the repetitive, periodic-like
layers.

Visible moiré is not limited to the superposition of
periodic layers, and indeed often occurs between
other types of repetitive structures (namely, geomet-
rically transformed periodic layers). Amidror [11]
has studied the moiré patterns qualitatively as well
as quantitatively with various mathematical tools,
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both in the image and the Fourier spectral domain.
In the application, three main types of periodic-
like, repetitive layer structures are usually used
as coordinate-transformed structures, profile-
transformed structures, and coordinate- and profile-
transformed structures. As their names indicate,
such structures can be obtained from a certain initial
periodic structure by the application of a coordinate
transformation (as in the case of a curvilinear gra-
ting), a profile transformation (as in the case of a
screen gradation), or a combination of both.

In Section 2, the local frequency method is intro-
duced first to obtain the instantaneous periods and
orientations of the generated moiré. This solves
the problem that the moiré in repetitive layer super-
position is hard to present in mathematical forms.
Then Fourier analysis is utilized to express the
new generated terms for moiré; it presents the abece-
darian distinction of real and pseudo moiré. With
these two methods, the real and pseudo moiré are
made distinct by different parameters, and the con-
cept of “equivalent period contribution threshold”
has been provided in the calculation in Section 2.C.
The concept of thresholds is a novelty and helps us to
calculate the average intensity of the generated
moiré. The problem introduced by the variation of
periods of moiré, that the average moiré intensity
is difficult to calculate, has been solved by the thresh-
old concept. By this calculation and the analysis in
this work, the interpretation of visible moiré in
periodic-like, repetitive grating superposition in the
image domain is obtained such that the interaction of
average intensity variation (macrostructure effects)
and local intensity variation (microstructure effects)
under different “thresholds” produces the generation
of visible real and pseudo moiré. Sections 3 and 4
present the example of cosinusoidal grating and
binary grating superposition to prove our interpreta-
tion. These two sections also prove the coexistence of
two moiré patterns. In general, the mathematical
method in our research has never been used in the
generated moiré in repetitive, periodic-like grating
superposition, and it proves that the method would
be suitable for interpreting real and pseudo moiré
patterns.

2. Interpretation of the Multiplicative Superposition of
Cosinusoidal Repetitive, Periodic-like Gratings

As referred to in the preceding section, the
coordinate-transformed structures present special
interest in the engineering application. Therefore, we
will mainly discuss the superposition of co-ordinate-
transformed structures in the following sections. To
simplify the research, the repetitive, periodic-like

grating can be expressed in the simple case of
coordinate-transformed structures, that of curvilin-
ear gratings. Let r�x; y� be the curvilinear grating
which is obtained by bending the 2D one-fold periodic
grating p�x0� by replacing x0 with the function
g�x; y�:r�x; y� � p�g�x; y��. Without loss of generality,
the grating p�x0� is made as the 2D cosinusoidal gra-
ting for the sake of convenience in the application.
Namely, the grating can be expressed as r�x; y� �
p�g�x; y�� � cos�2πf g�x; y��.
A. Calculation of Parameters of the Moiré in the Image
Domain

Our analysis is based on the local frequency method,
which only involves the image domain. The indicial
equations method [12] hardly obtains the period and
orientation of moiré in the repetitive, periodic-like
grating superposition for the variation of them.
Therefore, the local frequency method will be uti-
lized. It is based on considering each of the super-
posed structures as locally straight and locally
periodic in every infinitesimally small region, and
studying the locally straight, periodic moirés that
are generated in each such region. In other words,
each curvilinear grating is approximated in any
infinitesimally small region by the straight, periodic
grating which is tangential to it and which has the
same periodic profile. The local frequency vector at
any point (x, y) of r�x; y� is given by the gradient
as the method shows:

f
⇀
�x; y� �

�
f
∂
∂x

g�x; y�; f ∂
∂y

g�x; y�
�
: (1)

The local frequency vectors of the two superposed
gratings r1 and r2 will be given by

8<
: f

⇀

1 � �
f 1

∂
∂x g1�x; y�; f 1 ∂

∂y g1�x; y�
�

f
⇀

2 � �
f 2

∂
∂x g2�x; y�; f 2 ∂

∂y g2�x; y�
� : �2�

The local frequency vector of the generated (k1,
�k2) moiré in the multiplicative superposition of r1 ×
r2 is

f
⇀

k1;�k2 �
�
k1f 1

∂
∂x

g1�x;y��k2f 2
∂
∂x

g2�x;y�;k1f 1
∂
∂y

g1�x;y�

�k2f 2
∂
∂y

g2�x;y�
�
: (3)

The local frequency vector can be exchanged into
the local period vector expression as

T
⇀

k1;�k2 �
�

T1T2

k1T2
∂
∂x g1�x; y� � k2T1

∂
∂x g2�x; y�

;
T1T2

k1T2
∂
∂y g1�x; y� � k2T1

∂
∂y g2�x; y�

��
T1 � 1

f 1
; T2 � 1

f 2

�
: (4)
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The local parameters will also be called instantaneous parameters. Themodulus of the instantaneous period
of moiré is

jTk1;�k2 j �
T1T2��������������������������������������������������������������������������������������������������������������������������������������������������������������������

k1T2
∂
∂x g1�x; y� � k2T1

∂
∂x g2�x; y�

�
2 �

�
k1T2

∂
∂y g1�x; y� � k2T1

∂
∂y g2�x; y�

�
2

r : (5)

We can also obtain the expression of the instantaneous orientation of the moiré,

cos γ �
k1T2

∂
∂y g1�x; y� � k2T1

∂
∂y g2�x; y���������������������������������������������������������������������������������������������������������������������������������������������������������������������

k1T2
∂
∂x g1�x; y� � k2T1

∂
∂x g2�x; y�

�
2 �

�
k1T2

∂
∂y g1�x; y� � k2T1

∂
∂y g2�x; y�

�
2

r : (6)

B. Discrimination of Generated Moiré by the Fourier Series Expansion

For the symmetry of r�x; y� � p�x0� � cos�2πf g�x; y��, the Fourier series expansion of it becomes

p�x0� � a0

2
�

X∞
n�1

an cos
2nπx0

T
: (7)

The coefficients are	a0 � 1

an � 4
T

R T
2
0 p�x0� cos 2nπx0

T dx0 � 4
T

R T
2
0 cos

�
2π
T x0

�
cos 2nπx0

T dx0�n � 1; 2; 3;…� : �8�

We replace x0 in the Fourier series with the func-
tion g�x; y�, which defines the curvilinear behavior
of the grating r�x; y� throughout the plane. Expres-
sions of two superposed cosinusoidal curvilinear
gratings are

(
r1�x; y� � a10

2 �P∞
m�1 a

1
m cos 2mπg1�x;y�

T1

r2�x; y� � a20
2 �P∞

n�1 a
2
n cos 2nπg2�x;y�

T2

; �9�

with the same coefficients an as Expression (8).
The multiplicative superposition r1�x; y� × r2�x; y�

can be expressed as

r1 × r2 �
1
2



a1
0a

2
0

2
� a1

0

X∞
n�1

a2
n cos

2nπg2�x; y�
T2

�a2
0

X∞
m�1

a1
m cos

2mπ1g1�x;y�
T1

�
X∞
m�1

X∞
n�1

a1
ma2

n

×cos 2π
�
mg1�x;y�

T1
� ng2�x; y�

T2

�

�
X∞
m�1

X∞
n�1

a1
ma2

n cos 2π
�
mg1�x; y�

T1
−

ng2�x;y�
T2

��
:

(10)

The partial sum which corresponds to the (k1,�k2)
moiré consists of all the terms of this multiple sum
whose indices are n0k1, �n0k2, namely

mk1;�k2�
1
2

X∞
m�1

X∞
n�1

a1
ma2

ncos2π
�
mg1�x;y�

T1
�ng2�x;y�

T2

�

�1
2

X∞
n0�1

a1
n0k1

a2
n0k2

cos2πn0
�
k1g1�x;y�

T1
�k2g2�x;y�

T2

�
;

(11)

According to Expression (8), the coefficients in r1
and r2 are

a1
0 � a2

0 � 1; a1
n0k1

�
	 1

2 �k1 � 1�
0�k1 > 1�

;

a2
n0k2

�
	 1

2 �k2 � 1�
0�k2 > 1�

: (12)

It is evident that the termsofExpression (11)will be
zero when the coefficients a1

n0k1
or a2

n0k2
are zero on the

condition of k1 > 1 or k2 > 1. Therefore, the simplified
expression of (k1, �k2) moiré term mk1k2 becomes

m1;�1 � 1
8

cos�2π�f 1g1�x; y� � f 2g2�x; y���: (13)

By the just-shown Fourier series expansion of the
generated moiré in the multiplicative superposition,
it could be acceptable that only the term m1;�1 is
kept, but the other terms of this multiple partial
sum term whose indices are larger than one are zero.
Therefore, it is considered that there only exists the
(1,�1) moiré in the Fourier analysis. When k1 > 1 or
k2 > 1, the coefficients of new generated terms in the
Fourier expansion are zero. This means that the
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amplitudes of the generated impulses of these terms
of the moiré in the frequency domain of the superpo-
sition are zero. At this time, the Fourier analysis
would not capture these “zero” impulses, but the ef-
fect of these terms may be received by the human vis-
ual system. Furthermore, when this phenomenon,
which doesn’t belong to the effects introduced by
the terms m1;�1 (the coefficients k1 > 1 or k2 > 1),
is received by human eye, the pseudo moiré would
be generated.

C. Parameter Analysis of Real and Pseudo Moiré

1. Real Moiré [(1, �1) Moiré]
According to the calculation in Sections 2.A and 2.B,
the (1, �1) moiré is the real moiré. At the moment,
the parameters of real moiré are

8><
>:
jTrj � T1T2

�
1

�T2
∂
∂xg1�x;y��T1

∂
∂xg2�x;y��2 �

1
�T2

∂
∂yg1�x;y��T1

∂
∂yg2�x;y��2

�1
2

cos γr �
T2

∂
∂yg1�x;y��T1

∂
∂yg2�x;y��������������������������������������������������������������������������������������������T2

∂
∂xg1�x;y��T1

∂
∂xg2�x;y��2��T2

∂
∂yg1�x;y��T1

∂
∂yg2�x;y��2

p : �14�

2. Pseudo Moiré [(k1, �k2) Moiré, k1 ≠ k2]
In this situation, the parameters of pseudo moiré are8><

>:
jTpj � T1T2

�
1

�k1T2
∂
∂xg1�x;y��k2T1

∂
∂xg2�x;y��2 �

1
�k1T2

∂
∂yg1�x;y��k2T1

∂
∂yg2�x;y��2

�1
2

cos γp � k1T2
∂
∂yg1�x;y��k2T1

∂
∂yg2�x;y����������������������������������������������������������������������������������������������������������k1T2

∂
∂xg1�x;y��k2T1

∂
∂xg2�x;y��2��k1T2

∂
∂yg1�x;y��k2T1

∂
∂yg2�x;y��2

p : �15�

jT 0
1j and jT 0

2j are the corresponding equivalent
periods of r1 and r2, which are projection periods
on the orientation of the generatedmoiré. These peri-
ods will be considered as equivalent periods of two
gratings in the generated moiré. Then we have

jT0
1j

jT0
2j
� k1

k2
: (16)

According to the preceding discussion, when the
ratio is equal to one, the generated moiré is real
moiré; when it is not equal to one, it is pseudo moiré.
Therefore, we call the ratio the “equivalent period
contribution threshold,” which defines contributions
of equivalent periods for the generated moiré.

D. Heuristic Interpretation of the Physical Meaning

For the sake of convenience, we will make simplifica-
tions for the grating waveform average intensity cal-
culation. First, in the generated waveform r as the
product of the two gratings r1 and r2, the variation
of instantaneous moiré orientation does not influ-
ence the intensity (e.g., the value of amplitude in
the 2D spectrum). Therefore, the 2D waveform r of
the generated moiré could be unfolded into the 1D
waveform r0 in a line for the average intensity calcu-
lation without any error. At this time, the orientation
of the period of waveform is along the newX axis, and

the waveform becomes a 1D waveform. Second, by
the first establishment, the term g�x; y� will be re-
placed with x0 and p�g�x; y�� � cos�2πf g�x; y�� will be-
come p�x0� � cos�2πf x0�. Under the transformation,
the function g�x; y� is replaced by x0 in theX direction.
This will make the calculation for average intensity
more convenient. Gratings r1 and r2 are expressed as

(
r1 � 1

2 cos
�
2π
T1

g1�x; y�
�� 1

2

r2 � 1
2 cos

�
2π
T2

g2�x; y�
�� 1

2

: �17�

The two projections of waveforms will be first ex-
pressed in the 1D case along the unfolded new X axis
direction as

(
r01 � 1

2 cos 2π
jT 0

1j
�x0 � θ1� � 1

2

r02 � 1
2 cos 2π

jT 0
2j
�x0 � θ2� � 1

2

; �18�

where jT0
1j and jT 0

2j are the equivalent periods (pro-
jected periods on the generated moiré orientation) of
r01 and r02 [as in Expression (16)]. θ1 and θ2 are arbi-
trary angular displacements of r01 and r02. The varia-
tions of them stand for different waveforms in the
parallel waveform family of superposed gratings.
The new waveform r0 of the generated moiré could
be expressed as

r0 � r01 × r02 � 1
4
� 1

4
cos

2π
jT0

1j
�x0 � θ1�

� 1
4

cos
2π
jT0

2j
�x0 � θ2� �

1
8



cos 2π

�jT 0
1j � jT0

2j
jT 0

1jjT0
2j

�

×
�
x0 � 1

jT 0
1j � jT0

2j
�jT0

2jθ1 � jT 0
1jθ2�

�

� cos 2π
�jT0

2j − jT0
1j

jT0
1jjT 0

2j

�

×
�
x0 � 1

jT 0
2j − jT 0

1j
�jT 0

2jθ1 − jT 0
1jθ2�

��
: (19)
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The fluctuations of average intensity of each wave-
form can be calculated by the conventional integral
method.

1. Real Moiré
When the threshold is equal to one, the integral
period is chosen as jT0j � jT0

1j � jT0
2j. Then Expres-

sion (19) can be changed to

r0 � 1
4
� 1

4
cos

�
2π
jT 0j x

0 � θ1

�
� 1

4
cos

�
2π
jT 0j x

0 � θ2

�

� 1
8

cos
2π
jT 0j �2x

0 � θ1 � θ2� �
1
8

cos
2π
jT0j �θ1 − θ2�:

(20)

The average intensity of waveform is calculated as

Iaver �
1
jT 0j

Z jT 0 j

0
r0dx0 � 1

8
cos

2π
jT 0j �θ1 − θ2� �

1
4
: (21)

It is obvious that the average intensity of wave-
form along the orientation of the real moiré is chang-
ing with the variation of θ1 and θ2.

2. Pseudo Moiré
When the threshold is not equal to one, the integral
period is chosen as the least common multiple jT 0j of
jT0

1j and jT0
2j:

r0 � 1
4
� 1

4
cos

2mπ

jT0j �x
0 � θ1� �

1
4

cos
2nπ
jT 0j �x

0 � θ2�

� 1
8



cos

2π
jT0j ��m� n�x0 �mθ1 � nθ2�

� cos
2π
jT 0j ��m − n�x0 �mθ1 − nθ2�

�
: (22)

Then the average intensity of waveform is calcu-
lated as

Iaver �
1
jT0j

Z jT 0 j

0
r0dx0 � 1

4
: (23)

According to the just-discussed research, when the
average intensity of different parallel waveforms
along the orientation of moiré in the superposition
r0 changes with parameters θ1 and θ2, the generated
moiré is real moiré. On the contrary, when the aver-
age intensity stays constant, the generated moiré is
pseudo moiré. This leads to the conclusion that
different thresholds determine different average
intensities of waveforms which belong to different
visible moiré in the multiplicative superposition.
Effects generated by thresholds which introduce
the visible real and pseudo moiré to the human vis-
ual system can be boiled down to the macrostructure
versus microstructure effect.

When the threshold is equal to one, the equivalent
periods jT0

1j and jT0
2j will contribute the same effects

to the generated waveforms along the real moiré
orientation. At this time, the average intensity of
waveform will present a similar cosinusoidal profile
as the cosinusoidal variation of local intensity. In
other words, the variations of average intensity
(macrostructure) and local intensity (microstructure)
remain synchronous. When the human visual system
captures the “real synchronous” phenomenon, the
real moiré happens in the superposition. When the
threshold is not equal to one, the equivalent periods
jT0

1j and jT0
2j will contribute different effects to the

generated waveforms along the pseudo moiré orien-
tation. This effect keeps the average intensity of
waveforms constant, but the variation of local inten-
sity still presents the cosinusoidal characteristics;
namely, macrostructure effects don’t accord with
microstructure effects. However, with cosinusoidal
variation of local intensity, the human eye will hardly
discern the constant average intensity (macrostruc-
ture effects) and consider that the average intensity
variation keeps synchronous with the intensity
variation. Under the “pseudo synchronism,” the
adjacent local intensity variations will be connected
into the moiré-like band by the human eye, and the
pseudo moiré generates.

Kong et al. [8] proposed the concept of illusional
contrast in the cosinusoidal periodic straight grating
superposition, which is one special situation in our
study. In fact, no matter how the periods of super-
posed gratings vary, the influence of essential factor
“equivalent period contribution threshold” would be
impervious to the period variation, but only the ratio
of periods. The macrostructure versus microstruc-
ture effects which are caused by the different thresh-
old introduce the real and pseudo moiré to the
human visual system. It also proves that the human
eye is more sensitive to the microstructure effects
than Fourier analysis.

An important conclusion could be obtained from
this discussion that the real moiré and pseudo moiré
may coexist and appear in the same superposition.
This is because the periods of different grating layers
will contribute effects both in real and pseudo moiré
orientations simultaneously. However, the human
eye usually accepts only one visible moiré effect even
if the two visible moiré coexist. More detailed analy-
sis of the coexistence of real and pseudo moiré will be
discussed in Section 3 to interpret which moiré the
human eye is more sensitive to under different
thresholds.

3. Simulations and Discussion of the Coexistence of
Real Moiré and Pseudo Moiré

The coexistence of real moiré and pseudomoiré in the
multiplicative superposition will be discussed. Here,
we will give an example for the multiplicative super-
position of a straight periodic cosinusoidal grating
and a circular periodic-like cosinusoidal grating.
The transmittance functions of these two gratings
are given by
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8<
:
r1�x; y� � 1

2 cos
�
2π
T1

x
�
� 1

2

r2�x; y� � 1
2 cos

�
2π
T2

����������������
x2 � y2

p �
� 1

2

; �24�

where T1∶T2 � 1∕P�P ≥ 1�. These situations are
shown in Fig. 1.

According to Amidror’s study [11], when T1 is
equal to T2, the (1, �1) moiré becomes parabolic.
If T2 is slightly larger than T1, the (1, �1) moiré be-
comes hyperbolic; if, however, T1 is slightly larger

than T2, the (1, �1) moiré becomes elliptic. In
Fig. 1(a), the superposition presents as absolutely
parabolic; the generated moiré is evidently the real
moiré [(1, �1) moiré]. In Fig. 1(e), the superposition
presents an obscure parabolic-like (1, �1) moiré.
This moiré is actually the pseudo moiré. In Fig. 1(b),
the superposition appears hyperbolic but doesn’t
show the parabolic or elliptic. This proves that the
generated moiré is more adjacent to the real moiré.
In Fig. 1(d), the superposition appears elliptic; the
pseudo moiré becomes more prominent. In Fig. 1(c),

Fig. 1. Multiplicative superposition of straight cosinusoidal grating and circular grating. (a) Period ratio 1∶1. (b) Period ratio 1∶1.2.
(c) Period ratio 1∶1.5. (d) Period ratio 1∶1.8. (e) Period ratio 1∶2.
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the superposition presents the obscure coexistence of
the elliptic and hyperbolic.

A universal conclusion summarizing this phe-
nomenon would give a supplement for the interpre-
tation in 2.D. When the ratio T2∶T1 (the ratio ≥ 1)
approaches 1 (in our example, the ratio can be con-
sidered as the threshold), the real moiré is more
prominent; when the ratio approaches 2, the pseudo
moiré becomes more prominent. When the ratio
approaches 1.5, the pseudo and real moirés will be
nearly equal to the human eye.

4. Discussion of the Multiplicative Superposition of
Binary Repetitive, Periodic-like Gratings

A curvilinear grating with a symmetric square-wave
function with period T and opening τ can be ex-
pressed in a form of the Fourier series decomposition:

r�x; y� � p�g�x; y�� � a0 � 2
X∞
n�1

an cos
�
2nπg�x; y�

T

�
;

�
a0 � τ

T
; an � 1

nπ
sin

�
πmτ

T

��
: (25)

Here, we have

8<
:
r1�x; y� � a1

0 � 2
P∞

m�1 a
1
m cos

�
2nπg1�x;y�

T1

�
r2�x; y� � a2

0 � 2
P∞

n�1 a
2
n cos

�
2nπg2�x;y�

T2

� : �26�

The multiplicative superposition of these two
binary gratings can be expressed as

r1�x;y�× r2�x;y�

� a1
0a

2
0 � 2a2

0

X∞
m�1

a1
m cos



2πmg1�x; y�

T1

�

�2a1
0

X∞
n�1

a2
n cos



2πng2�x; y�

T2

�

� 2
X∞
m�1

X∞
n�1

a1
ma2

n cos 2π


mg1�x;y�

T1
� ng2�x; y�

T2

�
: (27)

The (k1, �k2) moiré terms are isolated by the last
two new generated terms,

mk1;�k2 � 2
X∞

m�−∞

X∞
n�−∞

a1
ma2

n

× cos 2π


mg1�x; y�

T1
� ng2�x; y�

T2

�

� 2
X∞
n0�1

a1
n0k1

a2
n0k2

cos 2πn0

×
�
k1g1�x; y�

T1
� k2g2�x; y�

T2

�
. (28)

The coefficients are expressed as

8<
:
a1
0 � τ1

T1
; a1

m � 1
mπ sin

�
πmτ1
T1

�
� 1

n0k1π
sin

�
πn0k1τ1

T1

�
a2
0 � τ2

T2
; a2

n � 1
nπ sin

�
πnτ2
T2

�
� 1

n0k2π
sin

�
πn0k2τ2

T2

� :

�29�
When k1 � k2, the generated moiré is the (1, �1)

moiré. Then we have

a1
1 � 1

π
sin

�
πτ1
T1

�
and a2

1 � 1
π

sin
�
πτ2
T2

�
: (30)

The conditions 0 < τ1∕T1 < 1 and 0 < τ2∕T2 < 1
are always satisfied, so a1

1 and a2
1 are always not

equal to zero. Therefore, the (1, �1) moiré is always
the real moiré, no matter what the opening ratio is.

For k1 ≠ k2, when n0k1τ1∕T1 � N or n0k2τ2∕T2 � N
(N is an arbitrary integer), a2

n0k1
or a2

n0k2
will be equal

to zero. This makes the (k1, �k2) moiré the pseudo
moiré. On the contrary, the (k1,�k2) moiré is the real
moiré when both a2

n0k1
and a2

n0k2
are not equal to zero.

An example of superposition by a square-wave,
periodic-like repetitive grating and a periodic linear
grating will be given. The first grating is a binary
straight grating with the period T1, and the second
grating is a binary circle grating with the period T2,
where T1∶T2 � 1∕P�P ≥ 1�. The first superposition is
shown in Fig. 2(a), where T1∶T2 � 1∶1, τ1∕T1 � 1∕2,
and τ2∕T2 � 1∕2. The second superposition is shown
in Fig. 2(b), where T1∶T2 � 1∶2, τ1∕T1 � 1∕2,
and τ2∕T2 � 1∕2.

In Fig. 2(a), the moiré form presents as parabolic.
By our discussion, the generated moiré is the real
moiré. We can easily mark two curves which are
along the orientation of the parabolic path (the gen-
erated moiré orientation). It is clear that the average
intensities of these two waveforms on the curves
vary. A similar analysis would apply in Fig. 2(b);
the moiré form is also parabolic but it is the pseudo
moiré. According to our previous calculation, the
pseudo moiré would present similar characteristics,
especially in the orientation. Therefore, the pseudo
moiré orientation would easily be obtained by the
magnification of the period ratio on the real moiré
orientation. We could mark two curves along the
pseudo moiré orientation. Furthermore, the average
intensities of two waveforms on two parabolic curves
are proven to stay constant by our calculation.

Figure 2(a) shows two curves along the moiré ori-
entation to stand for two waveforms of the moiré
waveform family. It can be easily seen that the aver-
age intensities of waveform 1 and waveform 2 are dif-
ferent. Figure 2(b) also presents two curves along the
moiré orientation. However, the average intensities
of these waveforms are equal to each other and stay
constant. The example confirms that our interpreta-
tion and conclusion is also suitable for square or
sawtooth waves in repetitive, periodic-like grating
superposition.
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5. Conclusions

This work presents following research and points
of view:

(1) The instantaneous parameters period and ori-
entation could be used to describe the generated
moiré in multiplicative superposition by two cosinu-
soidal repetitive, periodic-like gratings in the image
domain. They present intuitive mathematical forms
of parameters.

(2) The Fourier series expansion presents the ba-
sic discrimination of real moiré and pseudo moiré.
With the analysis, the parameters of periods and ori-
entations calculated in (1) have been sorted into real
and pseudo moiré patterns.

(3) By the combination of these two criteria, the
“equivalent period contribution threshold” concept
is provided. With the thresholds, the average inten-
sities of generated waveforms along different moiré
orientations have been calculated by the mathemati-
cal integral method. This shows that different
thresholds would make average intensities of wave-
forms reveal different profiles (cosinusoidal or con-
stant) in different moiré patterns. The interaction
of the average intensity distribution and local inten-
sity variation can be considered as macrostructure
versus microstructure effects, which introduce
confusion to the human eye and produce different
visible moiré.

(4) The previous methods give a mathematical in-
terpretation for real and pseudo moiré in the repeti-
tive, periodic-like grating superposition. The theory
is novel and reasonable for similar superposition.

(5) An interesting conclusion is that the real moiré
and pseudo moiré may coexist in the same superpo-
sition. When the threshold distributes in (1, 1.5), the
human eye will more easily capture the real moiré.
When the threshold distributes in (1.5, 2), the human
eye will more easily capture the pseudo moiré
orientation. When the threshold is near 1.5, the real

moiré and pseudo moiré seem equal to the human
eye.

(6) According to the examples in Sections 3 and 4,
the interpretation is adapted to various situations
such as cosinusoidal, square, sawtooth or other
periodic-profile forms in the repetitive, periodic-like
grating superposition. Furthermore, it is consistent
with the Fourier theory and is understandable in the
image domain.

References
1. Lord Rayleigh, “On the manufacture and theory of diffraction-

gratings,” Philos. Mag. 47(310), 81–93 (1874). Also published
in G. Indebetouw and R. Czarnek, Selected Papers on Optical
Moiré and Applications, 64, SPIE Milestone Series (SPIE,
1992), pp. 3–15.

2. S. Kohayashi, Handbook on Experimental Mechanics, 2nd ed.
(SEM, 1993).

3. K. Patorski, Handbook of the Moire Fringe Technique
(Elsevier, 1993).

4. H. Takasaki, “Moiré topography,” Appl. Opt. 9, 1467–1472
(1970).

5. I. Amidror and R. D. Hersch, “Fourier-based analysis and
synthesis of moirés in the superposition of geometrically
transformed periodic structures,” J. Opt. Soc. Am. A 15,
1100–1113 (1998).

6. G. Lebanon, “Variational approach to moiré pattern synthe-
sis,” J. Opt. Soc. Am. A 18, 1371–1382 (2001).

7. I. Amidror and R. D. Hersch, “The role of Fourier theory and of
modulation in the prediction of visible moiré effects,” J. Mod.
Opt. 56, 1103–1118 (2009).

8. L. Kong, S. Cai, Z. Li, G. Jin, S. Huang, K. Xu, and T. Wang,
“Interpretation of moiré phenomenon in the image domain,”
Opt. Express 19, 18399–18409 (2011).

9. K. Patorski, K. Pokorski, and M. Trusiak, “Fourier domain
interpretation of real and pseudo-moiré phenomena,” Opt.
Express 19, 26065–26078 (2011).

10. L. Yu, S.-R. Wang, and G.-Y. Lin, “An image domain approach
to the interpretation of the visible moiré phenomenon,” J. Opt.
15, 1–11 (2013).

11. I. Amidror, The Theory of the Moire Phenomenon (Springer-
Verlag, 2009).

12. M. Abolhassani and M. Mirzaei, “Unification of formulation of
moiré fringe spacing in parametric equation and Fourier
analysis methods,” Appl. Opt. 46, 7924–7926 (2007).

Fig. 2. Multiplicative superposition of straight binary grating and circular grating. (a) Real moiré. (b) Pseudo moiré.
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