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Human vision is sensitive to the changes of local image details, which are actually image gradients. To
enhance faint infrared image details, this article proposes a gradient field specification algorithm. First
we define the image gradient field and gradient histogram. Then, by analyzing the characteristics of the
gradient histogram, we construct a Gaussian function to obtain the gradient histogram specification and
therefore obtain the transform gradient field. In addition, subhistogram equalization is proposed based
on the histogram equalization to improve the contrast of infrared images. The experimental results show
that the algorithm can effectively improve image contrast and enhance weak infrared image details and
edges. As a result, it can give qualified image information for different applications of an infrared image.
In addition, it can also be applied to enhance other types of images such as visible, medical, and lunar
surface. © 2014 Optical Society of America
OCIS codes: (100.2960) Image analysis; (100.2980) Image enhancement; (100.5010) Pattern

recognition.
http://dx.doi.org/10.1364/AO.53.004141

1. Introduction

Infrared images are widely applied in military, scien-
tific, medical, and other fields. However, infrared im-
ages have the shortcomings of low contrast and
blurred texture details due to nonideal optics and the
uneven photosensitive response of an infrared detec-
tor, which is caused by the randomness in the process
of manufacturing, such as the different effective pho-
tosensitivities and the change of semiconductor dop-
ing, making the photoelectric conversion curve
inconsistent and the dark current uneven. Thus
many details are hidden in the dark background
and cannot be identified, which affects the applica-
tion of infrared images. To give qualified image infor-
mation for applications, it is necessary to enhance
the faint details in the dark background of infrared
images [1,2].

There are a lot of image enhancement algorithms,
such as image contrast enhancement [3,4] and image
sharpening [5,6]. To enhance weak details in the dark
background, a straightforward idea is to improve the
image contrast in the dark background so that details
can be revealed. The common algorithms include
histogram equalization (HE) and improved algori-
thms [7–10]. Theymake the image gray value distrib-
uted in the histogram with equivalent probability,
which extends the dynamic range of the histogram.
However, they easily lead to the combination of small
and similar gray values, resulting in the loss of weak
information of the image. Another idea is to make the
image sharper, so that image details become clear
[11–13]. It can effectively enhance the image details
in a bright background. However, as for the details
in dark background, the effect is not obvious. The
histogram specification (HS) method [14–17] can
guide the mapping of the gray value through a pre-
determined function to make the histogram become
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a predetermined shape. If the function is selected
properly, the important gray-scale range can be high-
lighted to reach the purpose of enhancing images. In
order to enhance the image texture details effectively,
this article will extend HS to the gradient domain of
images and use it to transform the image gradient
histogram. A similar idea has been used in other as-
pects of image processing, such as image denoising
[18] and image detection [19]. Human vision is sensi-
tive to the change of the local details of images, which
areactually thegradientsof images.Therefore,wecan
adjust the image gradient field to enhance image
details.

In order to effectively enhance weak image edge
textures and improve image contrast, this article
presents the infrared image detail enhancement algo-
rithm based on the gradient field specification (GFS).
First we construct a Gaussian function to obtain the
gradient HS and therefore obtain the enhanced gra-
dient field. Second we use the variational method
to rebuild a new image from the gradient field. Third
we improve the overall contrast of the new image by
combing HE with subhistogram equalization (SHE)
transformation. The experimental results show that
the algorithm cannot only effectively enhance weak
details and edges of the infrared image, but also can
be applied to enhance other types of images such as
visible, medical, and lunar surface.

This article is organized as follows. In Section 2, we
describe the algorithm of infrared image detail
enhancement based on GFS. In Section 3, we give ex-
perimental results and related discussions, followed
by a brief conclusion.

2. Proposed Algorithm

The process of the proposed algorithm is shown in
Fig. 1. Each step will be introduced in the following
contents.

A. Gradient Histogram Specification

To an infrared image, u�x; y���x; y� ⊂ Ω�, the gradient
of the point p ⊂ Ω is

∇up �
�
∂up

∂x
;
∂up

∂y

�
: (1)

So gradients of each point form a vector field (the gra-
dient field). It reflects the changes of adjacent gray
values of each point, where the gradient magnitude
indicates the speed of change, and the direction of the
gradient indicates the direction of the change of gray
value.

The gradient HS method can guide the mapping of
the gradient value through a predetermined function
to make the gradient histogram become a predeter-
mined shape. The calculation steps are as follows:

1. In accordance with Eq. (2), the gradient value
sTk , which corresponded with the original gradient
value rTk , can be calculated as

sTk � T�rTk � �
Xk
i�0

p�rTi � �
Xk
i�0

nT
i

nT ; (2)

where 0 ≤ sTk ≤ 1, k � 0; 1;…; l − 1, nT
i indicates the

number of pixels whose gradient value is rTi , n
T rep-

resents the total number of pixels, p�rTi � is the prob-
ability density of the gradient value, and T�rTk � is the
sum of probability density.

2. From Eq. (3), the zTk , which represents the gra-
dient value of the output image, is transformed to the
vTk according to the Gaussian function f �x�:

vTk � G�zTk � �
Xk
i�0

f �zTi �: (3)

3. According to the mapping rules of [20], the cor-
respondence relationship vTk → sTk can be found and
then calculate zTk according to Eq. (4):

zTk � G−1�sTk �; (4)

where G−1 represents the inverse transform of G.

Accordingly [21], the gradient value has a direct im-
pact on the visual effect of an image. More specifically,
the larger the gradient value, the clearer the image
details become. In this article, we apply HS to the
image gradient field and therefore enhance the faint
image details by varying the gradient histogram.
Based on lots of low-contrast infrared images with un-
clear details, we find that their gradient histogram
appears as a slim shape with a sharp peak close to
zero [as the p�x� of Fig. 2 shows]. When HS is consid-
ered, we need to find an “ideal” function to perform
the gradient HS. According to characteristics of the
gradient histogram, as mentioned above, we select
the Gaussian function as the gradient HS function:Fig. 1. Overall process of the proposed algorithm.
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f �x� � 1���������
2πσ

p e−
�x−μ�2
2σ2 �−∞ < x < �∞�; (5)

where f �x� stands for the Gaussian function, x stands
for a random variable, and μ and σ are parameters of
Gaussian function. The graphical illustration of the
gradient histogram p�x� obtained from the Gaussian
function f 1�x� and f 2�x� is shown in Fig. 2, where μ1 �
μ2 � μ and σ1 > σ2. In Fig. 2, μ adjusts the position of
the Gaussian peak. In general, as σ increases, the
curve will become smoother with a more flattened
peak. If the peak shape flattens, the gradient value
will extend to the direction of the larger value, and
the image details will be clarified. We take μ and σ as

μ �
Xl−1
rT�0

rTp�rT�; (6)

σ � 1n
β
hPl−1

rT�0
�rT − μ�2p�rT�

i
1∕2o ; (7)

where rT stands for the image gradient value, l stands
for the maximum gradient value, p�rT� is the
probability density function of rT, and β is a variable,
which indicates the size of σ. As Fig. 2 shows, the gra-
dient values of the infrared image are small. And
taking μ as the average gradient value, we can make
the Gaussian peak fall in the range of small gradient
values. If the shape of the gradient histogram is nar-
row, the variance of gradient values will be smaller,
and σ will be greater according to Eq. (7). So, as men-
tioned above, the peak shape is more flattened. And
then the gradient histogram will expand toward the
direction of positive infinity. Therefore, image details
will become clearer. Here we give an example.
Figures 3(a)–3(d) show the original image, the modi-
fied image by gradient HS, the enhanced image by
HE and SHE only (will be introduced in Section 2.C),
and the final enhanced image by the proposed
algorithm. Figures 3(e) and 3(f) show the original gra-
dient magnitude field and the transformed gradient
amplitude field, respectively. Figures 3(g) and 3(h)
are their gradient histogram, where the horizontal
axis represents the gradient value, and the vertical
axis represents the number of pixels.

The original image gradient histogram in Fig. 3(g)
is a narrow single peak, and gradient values are
small. Image edge textures are fuzzy, as shown in
Figs. 3(a) and 3(e). After the specification based on
the Gaussian function, the peak shape becomes gen-
tle, and the gradient values increase, as shown in
Fig. 3(h). Corresponding to Figs. 3(b) and 3(f), image
edge textures are clear. In Fig. 3(c), image contrast is
improved, and the details in the dark background are

Fig. 2. Graphical illustration of the gradient histogram obtained
from the Gaussian function.

Fig. 3. Gradient magnitude fields and gradient histograms of the armored car. (a) Original image. (b) Modified image by gradient HS.
(c) Enhanced image by HE and SHE only. (d) Final enhanced image by the proposed algorithm. (e) Original gradient magnitude field.
(f) Transformed gradient amplitude field. (g) Original gradient histogram. (h) Transformed gradient histogram.
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revealed. Combining gradient HS with HE and SHE,
the final enhanced image is shown in Fig. 3(d).
It has a suitable contrast, and texture edges are very
clear.

With the Gaussian function, we can use it to guide
the gradient histogram transformation. According to
the calculation steps above, the S�j∇u0j�, which rep-
resents the gradient amplitude field after specifica-
tion, can be calculated. In this notation, u0 is the
original infrared image, ∇ is gradient operator, ∇u0
is the gradient field of original image, and j∇u0j rep-
resents the gradient amplitude field. Define G as the
gradient field after specification:

G � S�j∇u0j� ·
∇u0

j∇u0j
; (8)

where ∇u0∕j∇u0j is to keep the direction of image
gradient field unchanged.

B. Rebuild the New Image from the Transform
Gradient Field

Now we have obtained the transform gradient field
G, and if we find an image uf ∶ Ω → R, whose gra-
dient field is equal to G, the image uf will have clear
edge textures. To find the image uf , an intuitive idea
is to solve the equation ∇uf � G. However, usually it

has no solution because G constructed from Eq. (8)
may not be integrable, and there will not exist an in-
frared image that has the exact edge texture infor-
mation as G. A common method for this problem is
to find a closest image us in the L2 norm; that is,
if G is the target gradient field, we want the gradient
of the solution to have the least-squared error to G.

Using a mathematical formula, it can minimize
the following function:

F�us� � min
�ZZ

Ω
j∇us −Gj2dxdy

�
: (9)

This article regards Eq. (9) as the GFS model. Using
the variational method, the Euler–Lagrange in
Eq. (9) is

�
Δus � divG on Ω

∇us · n⃗ � G · n⃗ � 0 on ∂Ω ; �10�

where Δ is the Laplace operator, and div is the diver-
gence operator. Assuming that G on the boundary ∂Ω
is obtained from the source image boundary symmet-
rical continuation, it is established that G · n⃗ � 0 on

∂Ω, where n⃗ is outside the normal vector of Ω. There
are a lot of methods to solve the Poisson equation in
Eq. (10). Here, according to [21], we adopt a simple
iteration method, such as Eq. (11):

un�1
s � un

s −
1
4
�Δun

s − divG�; (11)

where n represents the number of iterations. The
Laplace operator and divergence operator must be
discretized appropriately to avoid image displace-
ment. For the Laplacian operator, we reconstruct the
new image using forward difference derivatives. And
the divergence operator is computed using backward
difference derivatives:

Δus�i; j� � us�i� 1; j� � us�i − 1; j� � us�i; j� 1�
� us�i; j − 1� − 4us�i; j�; (12)

divG � Gx�i; j� −Gx�i − 1; j� �Gy�i; j� −Gy�i; j − 1�;
(13)

where �i; j� ∈ �0; I − 1� × �0; J − 1�, G � �Gx;Gy�. Com-
bining Eqs. (11)–(13), this integration is done intui-
tively as follows:

un�1
s �i; j� � un

s �i; j� −
1
4

� �us�i� 1; j� � us�i − 1; j� � us�i; j� 1� � us�i; j − 1� − 4us�i; j��
−�Gx�i; j� −Gx�i − 1; j� �Gy�i; j� −Gy�i; j − 1��

�
: (14)

The range of these values must sit between [0,255]
to be displayed on the computer. Therefore, each
iteration should be a reconstrained, iterative form
as follows:

�
utemp � un

s −
1
4 �Δun

s − divG�
un�1
s � maxf0;min�255; utemp�g : �15�

F�us� of Eq. (9) may not be satisfied with convexity,
so iterations of Eq. (14) may not converge. In image
processing, to solve this problem, we usually choose a
suitable initial value, hoping to find a meaningful
local extreme point. Here we take the input image
u as the initial iteration value u0

s , then the optimal
result image from the iteration is the related solution
for F�us� intuitively. The image reconstruction proc-
ess, corresponding to part 4 of Fig. 1 (rebuild a new
image from the transform gradient field), is shown
in Fig. 4.

C. Combine HE and SHE to Enhance Image Contrast

Although the GFS can effectively enhance image
edge textures, it still cannot improve the image con-
trast greatly. As a result, a new method, the SHE
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transform algorithm based on HE, is proposed. HE
can effectively improve the image contrast, but is
easy to produce the overenhancement. To prevent
the overenhancement, we will divide the histogram
into several subhistograms, so that none of them
has any dominating portion. Then, for each subhisto-
gram of the image us, which is reconstructed from the
transform gradient field G, we do HE to enhance the
contrast well. Combining HE and SHE, the bright-
ness of the whole image is adjusted more uniformly
and will not appear the overenhancement phenome-
non of HE.

We divide the histogram of image us based on local
minima [22]. First we use a 1D smoothing filter with
size 1 × 3 on the histogram to get rid of insignificant
minima. If there are �n� 1� gray levels d0; d1;…; dn,
which correspond to �n� 1� local minima in the im-
age histogram, we define the histogram components
of the gray-level range �d0; d1� as the first subhisto-
gram, the gray-level range �d1 � 1; d2� as the second
subhistogram, and so on. Figure 5(a) is the illustra-
tion of such partitioning approach.

In order to achieve the purpose of improving image
us contrast, the subhistogram should be extended,
and the subhistogram i is extended as Eqs. (16)
and (17):

ai � �di − di−1� log
 Xdi

k�di−1�1

nk

!
; (16)

Ri � 255 ×
aiPn
k�1 ak

; (17)

where ai is the extended coefficient of subhistogram
i, nk means the number of k gray levels, di is the gray
level that corresponds to local minima i in the image
histogram, andRi is the extended dynamic gray-level

range of subhistogram i. If the gray-level range of
subhistogram i is extended to �istart; iend�, then istart �
�i − 1�end � 1 and iend � istart �Ri. The illustration of
subhistogram expansion is presented in Fig. 5(b).

At last, we do HE for each subhistogram of the re-
constructed image us (see Sections 2.A and 2.B) to
improve the image contrast. SHE are calculated as
follows:

8<
: ski � Ri ·

Pki
j��i−1�end�1

nj

ni
i � 1

ski �
Pi−1

m�1 Rm � Ri ·
Pki

j��i−1�end�1
nj

ni
i ≥ 2

; �18�

where ki is the gray level of the extended subhisto-
gram i, and ki ∈ ��i − 1�end � 1; istart � Ri�, ski means
the SHE gray level value corresponding with k gray
level; ni is the total number pixels of the extended
subhistogram i, nj means the number of gray-level j,
and m is the number of the subhistogram.

By dividing the histogram of the reconstructed im-
age us into several subhistograms and doing HE for
each subhistogram, the image contrast is improved
greatly, and weak details in the dark background
are enhanced effectively.

3. Experimental Results

In Section 2.A, the selection of β is particularly im-
portant, which is directly related to image enhance-
ment effect. In Eq. (7), along with the reduction of β, σ
will increase, and the curve will become smoother
with a more flattened peak, as shown in Fig. 2. Then
the modified gradient value will get bigger, and the
image texture edge becomes clearer. But if β is too
small, the image will be excessively sharpened. In or-
der to make the GFS image have good visual effect, β
should be within a range. Here we give a set of modi-
fied images when β are taking different values, as

Fig. 4. Flowchart of image reconstruction. Fig. 5. Subhistogram segmentation schematic diagram. (a) Divid-
ing the histogram based on local minima. (b) Subhistogram
expansion.
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shown in Fig. 6. The original image is shown in
Fig. 3(a).

In Fig. 6, with the decrease of β, the modified image
texture edges are becoming increasingly clear. When
β � 2.5, the image texture edges have been en-
hanced, but not very clear as shown in Fig. 6(a); when
β � 1.0, the image texture edges are very clear, but
the whole image looks too sharpened, as shown in
Fig. 6(d). In Figs. 6(b) and 6(c), the image has a good
visual effect, and texture details are very clear.
Therefore, this article takes β � 1.5–2.0.

To verify the effectiveness of the algorithm, com-
paring it with plateau HE [7], double plateaus HE
[8], and multiscale new top-hat transform [11], we
conduct a lot of experiments. Here are some experi-
mental results.

Figure 7(a) is an infrared original image with a
dark background and a bright truck in the center. Us-
ing plateau HE and double plateaus HE, the image
contrast is improved and does not appear to be over-
enhanced. However, the edge textures of details in
the background are still unclear. Figure 7(d) is the
result of multiscale new top-hat transform. The im-
age texture edges are clear, but the contrast is low.

The result of the proposed algorithm is shown in
Fig. 7(e). It effectively improves the image contrast,
and the edge textures of details are clear such as the
roadside fence and trees.

Figure 8(a) is another infrared original image, and
textures on the door are unclear because of the dark
background. Using plateau HE and double plateaus
HE, the image contrast is improved, and the textures
on the door in the background are clearer than in
Fig. 8(a). Figure 8(d) is the result of a multiscale
new top-hat transform. The image texture edges in
the bright background are clear, but the contrast
in the dark background is low. The image of the algo-
rithm is shown in Fig. 8(e). The texture edges in the
bright and dark backgrounds are very clear.

Figure 9(a) is a low dynamic range infrared image
because of the mass fog. Plateau HE and double pla-
teaus HE expand the dynamic range, and most of the
details are displayed. A multiscale new top-hat
transform sharpens the image, and the details are
clearer than in Fig. 9(a). Compared with the previous
three methods, the image enhanced by the proposed
algorithm has the most reasonable dynamic range
and the clearest details.

Fig. 6. Modified images comparison with different β. (a) β � 2.5, (b) β � 2.0, (c) β � 1.5, (d) β � 1.0.

Fig. 7. Experimental results comparison of different algorithms. (a) Original infrared image. (b) Plateau HE. (c) Double plateaus HE.
(d) Multiscale new top-hat transform. (e) Proposed algorithm.
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In addition, the proposed algorithm can also be ap-
plied to enhance other types of images. Figures 10–
12 show the visible image, medical image, and lunar
surface enhanced by the proposed algorithm.

Figure 10(a) is a visible image. The image is dim,
andmany details are unclear. HE improves the image

contrast, but it produces the overenhancement as
shown inFig. 10(c). After the enhancement, the image
contrast is improved, and the image is sharpened. A
lot of details become clear such as the dragons.

Figure 11(a) is a medical image, and the edge in-
formation is not clear due to the narrow dynamic

Fig. 8. Experimental results comparison of a door. (a) Original infrared image. (b) PlateauHE. (c) Double plateausHE. (d) Multiscale new
top-hat transform. (e) Proposed algorithm.

Fig. 9. Experimental results comparison of buildings. (a) Original infrared image. (b) Plateau HE. (c) Double plateaus HE. (d) Multiscale
new top-hat transform. (e) Proposed algorithm.
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range. In Fig. 11(c), HE increases the brightness of
the image, but image texture edges are not clear
enough. After the proposed algorithm, image details
and edges have been well enhanced, and the dynamic
range is also expanded.

Figure 12(a) is a lunar surface image, and the edge
information is fuzzy. HE expands the dynamic range
of the image, but the image has been overenhanced
as shown in Fig. 12(c). After the enhancement, the
edges have been effectively sharpened, and the im-
age is clear.

The infrared images and other types of images have
been applied in the experiment, and the image details
and edges are well enhanced, which shows that
our algorithm cannot only be applied to effectively

enhance infrared images but also can be used to en-
hance other types of images.

We use the gray mean grads (GMG) for the objec-
tive evaluation of image enhancement effect. GMG is
defined as follows:

GMG � 1
�M − 1��N − 1�

XM−1

i�1

XN−1

j�1

�����������������������������������
�ΔIx�2 � �ΔIy�2

2

s
;

(19)

where M and N represent the pixel number of the
length and width in an image, respectively, ΔIx and
ΔIy are the gray difference value of adjacent pixels in

Fig. 10. Comparison experiment of visible images enhancement. (a) Original image. (b) Proposed algorithm. (c) HE.

Fig. 11. Comparison experiment of medical images enhancement. (a) Original image. (b) Proposed algorithm. (c) HE.

Fig. 12. Comparison experiment of lunar images enhancement. (a) Original image. (b) Proposed algorithm. (c) HE.

4148 APPLIED OPTICS / Vol. 53, No. 19 / 1 July 2014



the length and width, respectively. If GMG is bigger,
indicating a better performance of image enhance-
ment, the image details and edges are clearer. We
calculate GMG of Figs. 7–9 for objective comparison
of image enhancement effect by different algorithms,
as are listed in Table 1.

In Table 1, plateau HE and double plateaus HE
improve the image contrast, and many details are
displayed. However, the image edges are unclear.
Multiscale new top-hat transform effectively en-
hance the image edges, but it does not significantly
extend the image dynamic range. Compared with the
previous three methods, the GMG of the proposed al-
gorithm is the biggest, indicating that it can improve
the image contrast and enhance the image details
and edges effectively.

4. Conclusion

In this article, we present the infrared image detail
enhancement algorithm based on gradient field
reconstruction, which can effectively enhance image
edge textures and improve contrast. By analyzing
the image gradient histogram, we construct a
Gaussian function and use it to complete the redis-
tribution of the gradient histogram to enhance weak
edge textures of infrared images. In addition, the
subhistogram equalization is proposed based on
the histogram equalization algorithm to improve
the overall contrast of the image. Based on experi-
ment results, the GMG of the original image is im-
proved significantly, and it significantly enhances
the faint information and alleviates the edge effects.
Therefore, our algorithm cannot only be applied to
effectively enhance infrared images but also can be
used to enhance other types of images. However,
there are some limitations about the algorithm.
For infrared images containing large noise, the algo-
rithm cannot obtain good enhancement, which will
be further improved in future work.

This work was supported by the National Natural
Science Foundation of China (61137001).
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Image

Plateau
HE

Double
Plateaus

HE

Multiscale
New

Top-hat
Transform

The
Proposed
Algorithm

Figure 7 3.639 8.729 11.992 10.230 18.256
Figure 8 1.688 1.874 6.934 6.887 18.927
Figure 9 5.654 10.692 11.825 14.551 26.656
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