
ORIGINAL ARTICLE

Incorporating mutation scheme into krill herd algorithm
for global numerical optimization

Gaige Wang • Lihong Guo • Heqi Wang •

Hong Duan • Luo Liu • Jiang Li

Received: 2 August 2012 / Accepted: 7 December 2012 / Published online: 25 December 2012

� Springer-Verlag London 2012

Abstract Recently, Gandomi and Alavi proposed a

robust meta-heuristic optimization algorithm, called Krill

Herd (KH), for global optimization. To improve the per-

formance of the KH algorithm, harmony search (HS) is

applied to mutate between krill during the process of krill

updating instead of physical diffusion used in KH. A novel

hybrid meta-heuristic optimization approach HS/KH is

proposed to solve global numerical optimization problem.

HS/KH combines the exploration of harmony search (HS)

with the exploitation of KH effectively, and hence, it can

generate the promising candidate solutions. The detailed

implementation procedure for this improved meta-heuristic

method is also described. Fourteen standard benchmark

functions are applied to verify the effects of these

improvements, and it is demonstrated that, in most cases,

the performance of this hybrid meta-heuristic method (HS/

KH) is superior to, or at least highly competitive with, the

standard KH and other population-based optimization

methods, such as ACO, BBO, DE, ES, GA, HS, KH, PSO,

and SGA. The effect of the HS/FA parameters is also

analyzed.

Keywords Global optimization problem � Krill herd

(KH) � Harmony search (HS) � Multimodal function

1 Introduction

The process of optimization is searching for a vector in a

function that produces an optimal solution. All of feasible

values are available solutions and the extreme value is

optimal solution. In general, optimization algorithms are

applied to solve optimization problems. A simple classifi-

cation way for optimization algorithms is considering the

nature of the algorithms, and optimization algorithms can be

divided into two main categories: deterministic algorithms

and stochastic algorithms. Deterministic algorithms using

gradient such as hill-climbing have a rigorous move and will

generate the same set of solutions if the iterations commence

with the same initial starting point. On the other hand,

stochastic algorithms without using gradient often generate

different solutions even with the same initial value. How-

ever, generally speaking, the final values, though slightly

different, will converge to the same optimal solutions within

a given accuracy. Generally, stochastic algorithms have two

types: heuristic and meta-heuristic. Recently, nature-inspired

meta-heuristic algorithms perform powerfully and efficiently

in solving modern nonlinear numerical global optimization

problems [1]. To some extent, all meta-heuristic algorithms

strive for making balance between randomization (global

search) and local search [2].

Inspired by nature, these strong meta-heuristic algo-

rithms are applied to solve NP-hard problems such as task-

resource assignment. Optimization algorithms cover all

searching for extreme value problems. These kinds of

meta-heuristic algorithms carry out on a population of

solutions and always find best solutions. During the 1950s

G. Wang � L. Guo (&) � H. Wang � L. Liu � J. Li

Changchun Institute of Optics, Fine Mechanics and Physics,

Chinese Academy of Sciences, Changchun 130033, China

e-mail: guolh@ciomp.ac.cn

G. Wang

e-mail: gaigewang@163.com; gaigewang@gmail.com

G. Wang � L. Liu � J. Li

Graduate School of Chinese Academy of Sciences,

Beijing 100039, China

H. Duan

School of Computer Science and Information Technology,

Northeast Normal University, Changchun 130117, China

e-mail: duanh0618@163.com

123

Neural Comput & Applic (2014) 24:853–871

DOI 10.1007/s00521-012-1304-8

and 1960s, computer scientists studied the possibility of

conceptualizing evolution as an optimization tool and this

generated a subset of gradient-free approaches named

genetic algorithms (GAs) [3, 4]. Since then many other

nature-inspired meta-heuristic algorithms have emerged,

such as differential evolution (DE) [5–7], particle swarm

optimization (PSO) [8–10], genetic programming (GP) [11,

12], biogeography-based optimization (BBO) [13, 14], bat

algorithm (BA) [15, 16], cuckoo search (CS) algorithm

[17–19], firefly algorithm (FA) [20–23], and more recently,

the krill herd (KH) algorithm [24] that is based on simu-

lating the herding behavior of krill individuals in nature.

Firstly presented by A. H. Gandomi and A. H. Alavi in

2012, krill herd (KH) is a new meta-heuristic optimization

algorithm [24], inspired by the herding behavior of krill

individuals. In KH algorithm, the objective function for the

krill movement is determined by the minimum distances of

each individual krill from food and from highest density of

the herd. The time-dependent position of the krill individuals

is comprised of three main components: (1) movement

induced by other individuals (2) foraging motion, and (3)

random physical diffusion. One of the remarkable advanta-

ges of KH algorithm is that the derivative information is not

necessary because it uses a stochastic random search rather

than a gradient search. The other important advantage of KH

algorithm is its simplicity, therefore, it is very easy to

implement. In principle, comparing with other population-

based meta-heuristic algorithms such as particle swarm

optimization (PSO) [8] and harmony search (HS) [25, 26],

there is essentially only a single-parameter Ct (time interval)

in KH (apart from the population size).

Firstly proposed by Geem et al. in 2001 [25], harmony

search (HS) is a new meta-heuristic approach for mini-

mizing possibly non-differentiable and nonlinear functions

in continuous space. HS is inspired by behavior of musi-

cian’s improvisation process, where every musician

attempts to improve its tune so as to create optimal har-

mony in a real-world musical performance processes. HS

algorithm originates in the similarity between engineering

optimization and music improvisation, and the engineers

search for a global optimal solution as determined by an

objective function, just like the musicians strive for finding

esthetic harmony as determined by esthetician. In music

improvisation, each musician chooses any pitch within the

feasible range, together producing one harmony vector. If

all the pitches produce a good solution, that experience is

reserved in each variable’s memory, and the possibility of

producing a better solution is also increased next time.

Furthermore, this new approach requires few control vari-

ables, which makes HS easy to implement, more robust,

and is very appropriate for parallel computation.

Harmony search is a powerful algorithm in exploration,

but at times, it may trap into some local optima so that it

cannot perform global search well. For krill herd, the search

depends completely on random walks, so a fast convergence

cannot be guaranteed. Firstly presented here, in order to

increase the diversity of the population for KH, a main

improvement of adding HS serving as mutation operator is

made to the KH with the aim of speeding up convergence,

thus making the approach more feasible for a wider range of

practical applications while preserving the attractive charac-

teristics of the basic KH. That is to say, we combine two

approaches to propose a new hybrid meta-heuristic algorithm

according to the principle of HS and KH, and then an

improved KH method is used to search the optimal objective

function value. The proposed approach is evaluated on

fourteen standard benchmark functions that have ever been

applied to verify optimization algorithms in continuous

optimization problems. Experimental results demonstrate that

the HS/KH performs more efficiently and accurately than

basic KH, ACO, BBO, DE, ES, GA, HS, PSO, and SGA.

The structure of this paper is organized as follows: Sect. 2

describes global numerical optimization problem, the HS

algorithm, and basic KH in brief. Our proposed approach HS/

KH is presented in detail in Sect. 3. Subsequently, our

method is evaluated through fourteen benchmark functions in

Sect. 4. In addition, the HS/KH is also compared with ACO,

BBO, DE, ES, GA, HS, KH, PSO, and SGA. Finally, Sect. 5

consists of the conclusion and proposals for future work.

2 Preliminary

To begin with, in this section, we will provide a brief

background on the optimization problem, harmony search

(HS), and krill herd (KH) algorithm.

2.1 Optimization problem

In computer science, mathematics, and management sci-

ence, optimization (also called mathematical programming

or mathematical optimization) means the selection of an

optimal solution from some set of feasible alternatives. In

general, an optimization problem includes minimizing or

maximizing a function by systematically selecting input

values from a given feasible set and calculating the value

of the function. More generally, optimization consists of

finding the optimal values of some objective function

within a given domain, including a number of different

types of domains and different types of objective functions.

A global optimization problem can be described as follows:

Given: a function f: S?R from some set S to the real

numbers

Sought: a parameter x0 in S such that f(x0) B f(x) for all

x in S (‘‘minimization’’) or such that f(x0) C f(x) for all x in

S (‘‘maximization’’).

854 Neural Comput & Applic (2014) 24:853–871

123

Such a formulation is named a numerical optimization

problem. Many theoretical and practical problems may be

modeled in this general framework. In general, S is some

subset of the Euclidean space Rn, often specified by a group

of constraints, equalities, or inequalities that the compo-

nents of S have to satisfy. The domain S of f is named the

search space, while the elements of S are named feasible

solutions or candidate solutions. In general, the function f is

called an objective function, utility function (maximiza-

tion), or cost function (minimization). An optimal solution

is an available solution that is the extreme of (minimum or

maximum) the objective function.

Conventionally, the standard formulation of an optimi-

zation problem is stated in accordance with minimization.

In general, unless both the feasible region and the objective

function are convex in a minimization problem, there may

be more than one local minima. A global minimum x* is

defined as a point for which the following expression

f x�ð Þ � f xð Þ ð1Þ

holds.

The branch of numerical analysis and applied mathe-

matics that investigates deterministic algorithms that can

guarantee convergence in limited time to the true optimal

solution of a non-convex problem is called global numerical

optimization problems. A variety of algorithms have been

proposed to solve non-convex problems. Among them,

heuristics algorithms can evaluate approximate solutions to

some optimization problems, as described in introduction.

2.2 Harmony search

Firstly developed by Z. W. Geem et al. in 2001 [25],

harmony search (HS) is a relatively new meta-heuristic

optimization algorithm [27], and it is based on natural

musical performance processes that occur when a musician

searches for an optimal state of harmony [28]. The opti-

mization operators of HS algorithm are specified as the

harmony memory (HM), which stores the solution vectors

which are all within the search space, as shown in Eq. (2),

the harmony memory size (HMS), which specifies the

number of solution vectors stored in the HM, the harmony

memory consideration rate (HMCR), the pitch adjustment

rate (PAR) and the pitch adjustment bandwidth (bw).

HM ¼

x1
1 x1

2 . . . x1
D

x2
1 x2

2 . . . x2
D

..

. ..
.

.
.

xHMS
1 xHMS

2 . . . xHMS
D

fitnessðx1Þ
fitnessðx2Þ

..

.

fitnessðxHMSÞ

�
�
�
�
�
�
�
�
�

2

6
6
6
4

3

7
7
7
5

ð2Þ

In more detail, we can explain the HS algorithm with the

help of discussing the improvisation process by a music

player. When a player is improvising, he or she has 3

feasible options: (1) play any famous piece of music (a

series of pitches in harmony) exactly from his or her

memory as the HMCR; (2) play something similar to a

known piece in player’s memory (thus adjusting the pitch

slightly); or (3) play totally new or random pitch from

feasible ranges. If these three options are formalized for

optimization, we have three corresponding components: use

of harmony memory, pitch adjusting, and randomization.

Similarly, when each decision variable chooses one value in

the HS algorithm, it can apply one of the above three rules in

the whole HS procedure. If a new harmony vector is better

than the worst harmony vector in the HM, the new harmony

vector replaces the worst harmony vector in the HM. This

procedure is repeated until a stopping criterion is satisfied.

The use of harmony memory is significant as it is

analogous to select the optimal fit individuals in the GA.

This will make sure the best harmonies will be kept on to

the new harmony memory. For the purpose of using this

memory more effectively, we should properly set the value

of the parameter HMCR[0, 1]. If this rate is very

approaching to 1 (too high), almost all the harmonies are

utilized in the harmony memory, then other harmonies are

not explored well, resulting in potentially wrong solutions.

If this rate is very close to 0 (extremely low), only few best

harmonies are chosen and it may have a slow convergence

rate. Therefore, generally, HMCR = 0.7*0.95.

To adjust the pitch slightly in the second component, an

appropriate approach is to be applied to adjust the fre-

quency efficiently. In theory, we can adjust the pitch lin-

early or nonlinearly, but in fact, linear adjustment is

utilized. If xold is the current solution (or pitch), then the

new solution (pitch) xnew is generated by

xnew ¼ xold þ bw 2e� 1ð Þ ð3Þ

where e is a uniformly distributed random numbers in [0,1].

Here, bw is the bandwidth, controlling the local range of

pitch adjustment. Actually, we can see that the pitch

adjustment (3) is a random walk.

Pitch adjustment is similar to the mutation operator in

GA. Also, we must appropriately set the parameter PAR to

control the degree of the adjustment. If PAR nears 1 (too

high), then the solution is always changing and the algo-

rithm may not converge at all. If it is very close to 0 (too

low), then there is very little change and the algorithm may

be premature. Therefore, we use PAR = 0.1*0.5 in most

simulations as usual.

For the purpose of increasing the diversity of the solu-

tions, the randomization is needed in the third component.

Although adjusting pitch has a similar role, it is confined to

certain local pitch adjustment and thus corresponds to a

local search. The usage of randomization can make the

system move further to explore multifarious regions with

Neural Comput & Applic (2014) 24:853–871 855

123

high-solution diversity in order to search for the global

optimal solution. In real-world engineering applications,

HS has been applied to solve many optimization problems

including linear antenna arrays, function optimization, flow

shop scheduling, reliability problem, economic load

dispatch, and others.

The mainframe of the basic HS algorithm can be described

as shown in Algorithm 1. Where D is the number of decision

variables. rand is a random real number in interval (0, 1)

drawn from uniform distribution. From Algorithm 1, it is

clear that there are only two control parameters in HS, which

are HMCR and PAR.

2.3 Krill herd algorithm

Krill herd (KH) [24] is a novel meta-heuristic swarm

intelligence optimization method for solving optimization

problems, which is based on the simulation of the herding

of the krill swarms in response to specific biological and

environmental processes. The time-dependent position of

an individual krill in two-dimensional surface is deter-

mined by three main actions described as follows:

I. Movement induced by other krill individuals;

II. Foraging action; and

III. Random diffusion

In KH, the Lagrangian model is used in a d-dimensional

decision space as shown in Eq. (4).

dXi

dt
¼ Ni þ Fi þ Di ð4Þ

where Ni is the motion induced by other krill individuals;

Fi is the foraging motion, and Di is the physical diffusion of

the ith krill individuals.

2.3.1 Motion induced by other krill individuals

The direction of motion induced, ai, is approximately

evaluated by the target swarm density (target effect), a

local swarm density (local effect), and a repulsive swarm

density (repulsive effect). For a krill individual, this

movement can be defined as follows:

Nnew
i ¼ Nmaxai þ xnNold

i ð5Þ

where

ai ¼ alocal
i þ atarget

i ð6Þ

and Nmax is the maximum induced speed, xn is the inertia

weight of the motion induced in [0, 1], Nold
i is the last

motion induced, alocal
i is the local effect provided by the

neighbors, and atarget
i is the target direction effect provided

by the best krill individual. According to the experimental

values of the maximum induced speed, we set Nmax to 0.01

(ms-1) in our study.

2.3.2 Foraging motion

The foraging motion is influenced by the two main factors.

One is the food location and the other one is the previous

856 Neural Comput & Applic (2014) 24:853–871

123

experience about the food location. For the ith krill indi-

vidual, this motion can be expressed as follows:

Fi ¼ Vf bi þ xf F
old
i ð7Þ

where

bi ¼ bfood
i þ bbest

i ð8Þ

and Vf is the foraging speed, xf is the inertia weight of the

foraging motion between 0 and 1, Fold
i is the last foraging

motion, bfood
i is the food attractive, and bbest

i is the effect of

the best fitness of the ith krill so far. In our study, we set Vf

to 0.02 [24].

In KH, the virtual center of food concentration is

approximately calculated according to the fitness distribu-

tion of the krill individuals, which is inspired from ‘‘center

of mass.’’ The center of food for each iteration is formu-

lated as follows:

Xfood ¼
PN

i¼1
1
Ki

Xi
PN

i¼1
1
Ki

ð9Þ

Therefore, the food attraction for the ith krill individual

can be determined as follows:

bfood
i ¼ Cfood bKi;food

bXi;food ð10Þ

where Cfood is the food coefficient.

2.3.3 Physical diffusion

The physical diffusion of the krill individuals is considered

to be a random process. This motion can be expressed in

terms of a maximum diffusion speed and a random direc-

tional vector. It can be formulated as follows:

Di ¼ Dmaxd ð11Þ

where Dmax is the maximum diffusion speed, and d is the

random directional vector, and its arrays are random values

in [-1, 1]. The better the position of the krill is, the less

random the motion is. The effects of the motion induced by

other krill individuals and foraging motion gradually

decrease with increasing the time (iterations). Thus,

another term Eq. (12) is added to Eq. (11). This term

linearly decreases the random speed with the time and

performs on the basis of a geometrical annealing schedule:

Di ¼ Dmax 1� 1

Imax

� �

d ð12Þ

2.3.4 Main procedure of the KH algorithm

In general, the defined motions frequently change the

position of a krill individual toward the best fitness. The

foraging motion and the motion induced by other krill

individuals contain two global and two local strategies.

These are working in parallel which make KH a powerful

algorithm. Using different effective parameters of the

motion during the time, the position vector of a krill

individual during the interval t to t ? Dt is given by the

following equation:

Xi t þ Dtð Þ ¼ XiðtÞ þ Dt
dXi

dt
ð13Þ

It should be noted that Dt is one of the most important

constants and should be carefully set according to the

optimization problem. This is because this parameter works

as a scale factor of the speed vector.

In addition, to improve the performance of the KH,

genetic reproduction mechanisms are incorporated into the

algorithm. The introduced adaptive genetic reproduction

mechanisms are crossover and mutation which are inspired

from the classical DE algorithm.

Various krill-inspired algorithms can be developed by

idealizing the motion characteristics of the krill individu-

als. Generally, the KH algorithm can be described by the

following steps:

(i) Data structures: define the simple bounds, determina-

tion of algorithm parameter(s) and, etc.

(ii) Initialization: randomly create the initial population

in the search space.

(iii) Fitness evaluation: evaluate each krill individual

according to its position.

(iv) Motion calculation:

• Motion induced by other krill individuals,

• Foraging motion

• Physical diffusion

(v) Perform the genetic operators.

(vi) Updating: update the krill individual position in the

search space.

(vii) Repeating: go to step iii until the stop criterion is

reached.

(viii) End

The basic representation of the KH can be summarized

as shown in Algorithm 2. More details about the three main

motions and KH algorithm can be found in [24].

3 Our approach: HS/KH

Based on the introduction of HS and KH in previous sec-

tion, we will explain how we combine the two approaches

to form the proposed krill herd with harmony search (HS/

KH) in this section, which modifies the solutions with poor

fitness in order to add diversity of the population to

improve the search efficiency.

Neural Comput & Applic (2014) 24:853–871 857

123

858 Neural Comput & Applic (2014) 24:853–871

123

For krill herd, as the search relies entirely on random

walks, a fast convergence cannot be guaranteed. Described

here for the first time, a main improvement of adding hybrid

HS mutation operator is made to the KH, which is made

with the aim of speeding up convergence, thus making the

method more practical for a wider range of applications but

without losing the attractive features of the original method.

The main improvement is to add HS serving as mutation

operator in an attempt to increase diversity of the popula-

tion to improve the search efficiency and speed up the

convergence to optima. For the local search part, once a

solution is selected among the current best solutions, a new

solution for each krill is generated globally. And then, we

mutate every element in xi using HS. When n is larger than

HMCR, that is, n1 C HMCR, the element j is updated

randomly; while when n1 \ HMCR, we update the element

j in accordance with xr1, moreover, hybrid HS mutation

operator is applied to update the element j if n2 \ PAR to

increase diversity of the population to improve the search

efficiency, as shown in Eq. (3), where n1 and n2 are two

uniformly distributed random numbers in [0,1], r1 is the

integer number in [1, NP], and NP is population size.

Through testing benchmarks in Sect. 4.2, it was found that

setting the parameter of harmony memory consideration

rate HMCR to 0.9 and pitch adjustment rate PAR to 0.1

produced the best results.

Based on above-mentioned analyses, the mainframe of

the harmony search/krill herd (HS/KH) is presented in

Algorithm 3.

4 Simulation experiments

In this section, we test the performance of the proposed meta-

heuristic HS/KH to global numerical optimization through a

series of experiments conducted in benchmark functions.

To allow a fair comparison of running times, all the

experiments were conducted on a PC with a Pentium IV

processor running at 2.0 GHz, 512 MB of RAM and a hard

drive of 160 Gbytes. Our implementation was compiled

using MATLAB R2012a (7.14) running under Windows

XP3. No commercial KH or HS tools were used in the

following experiments.

4.1 General performance of HS/KH

In order to explore the benefits of HS/KH, in this section,

we compared its performance on global numeric optimi-

zation problem with eight other population-based optimi-

zation methods, which are ACO, BBO, DE, ES, GA, HS,

PSO, and SGA. Ant colony optimization (ACO) [29] is a

swarm intelligence algorithm for solving optimization

problems which is based on the pheromone deposition of

ants. Biogeography-based optimization (BBO) [13, 30] is a

new excellent powerful and efficient evolution algorithm

developed for the global optimization inspired by the

immigration and emigration of species between islands (or

habitats) in search of more compatible islands. Differential

evolution (DE) [5, 31] is a simple but excellent optimiza-

tion method that uses the difference between two solutions

to probabilistically adapt a third solution. An evolutionary

strategy (ES) [32] is an algorithm that generally distributes

equal importance to mutation and recombination, and that

allows two or more parents to reproduce an offspring. A

genetic algorithm (GA) [3] is a search heuristic that mimics

the process of natural evolution. Particle swarm optimiza-

tion (PSO) [8, 33] is also a swarm intelligence algorithm

which is based on the swarm behavior of fish and bird

schooling in nature. A stud genetic algorithm (SGA) [34] is

a GA that uses the best individual at each generation for

crossover. In addition, we must point out that, in [24], A.

H. Gandomi and A. H. Alavi demonstrated that, comparing

all the algorithms, the KH II (KH with crossover operator)

has the best performance which confirms the robustness of

the krill herd algorithm. Therefore, in our study, we use KH

II as basic krill herd algorithm.

In all experiments, we will use the same parameters for

HS, KH, and HS/KH that are the foraging speed Vf = 0.02,

the maximum diffusion speed Dmax = 0.005, the maximum

induced speed Nmax = 0.01, the harmony memory con-

sideration rate HMCR = 0.9, and the pitch adjustment rate

PAR = 0.1. In addition, the inertia weights (xn, xf) are

equal to 0.9 at the beginning of the search to emphasize

exploration. These two parameters are linearly decreased to

0.1 at the end to encourage exploitation. For ACO, BBO,

DE, ES, GA, PSO, and SGA, we set the parameters as

follows. For ACO, initial pheromone value s0 = 1E-6,

pheromone update constant Q = 20, exploration constant

q0 = 1, global pheromone decay rate qg = 0.9, local

pheromone decay rate ql = 0.5, pheromone sensitivity

s = 1, and visibility sensitivity b = 5; for BBO, habitat

modification probability = 1, immigration probability

bounds per gene = [0, 1], step size for numerical integra-

tion of probabilities = 1, maximum immigration and

migration rates for each island = 1, and mutation proba-

bility = 0.005; for DE, a weighting factor F = 0.5 and a

crossover constant CR = 0.5; for the ES, the number of

offspring k = 10 produced in each generation, and

standard deviation r = 1 for changing solutions. For the

GA, we used roulette wheel selection, single-point cross-

over with a crossover probability of 1, and a mutation

probability of 0.01. For PSO, we set an inertial con-

stant = 0.3, a cognitive constant = 1, and a social constant

for swarm interaction = 1. For the SGA, we used single-

point crossover with a crossover probability of 1, and a

mutation probability of 0.01.

Neural Comput & Applic (2014) 24:853–871 859

123

Well-defined problem sets are favorable for evaluating

the performance of optimization methods proposed in this

paper. Based on mathematical functions, benchmark

functions can be applied as objective functions to perform

such tests. The properties of these benchmark functions can

be easily achieved from their definitions. Fourteen different

benchmark functions are applied to verify our proposed

meta-heuristic algorithm HS/KH.

The benchmark functions described in Table 1 are

standard testing functions. The properties of the benchmark

functions are given in Table 2. The modality property

means the number of the best solutions in the search space.

Unimodal benchmark functions only have an optimum,

which is the global optimum. Multimodal benchmark

functions have at least two optima in their search space,

indicating that they have more than one local optimum

Table 1 Benchmark functions

No. Name Definition

F01 Ackley

f ð x!Þ ¼ 20þ e� 20 � e
�0:2�

ffiffiffiffiffiffiffiffiffiffiffi

1
n

Pn

i¼1

x2
i

r

� e

1
n

Pn

i¼1

cosð2pxiÞ

F02 Fletcher-Powell
f ð x!Þ ¼

Xn

i¼1

ðAi � BiÞ2;Ai ¼
Xn

j¼1

aij sin aj þ bij cos aj

� �

Bi ¼
Xn

j¼1

aij sin xj þ bij cos xj

� �

F03 Griewank
f ð x!Þ ¼

Pn

i¼1

x2
i

4000
�
Qn

i¼1

cos xiffi
i
p
� 	

þ 1

F04 Penalty #1
f ð x!Þ ¼ p

30

(

10 sin2 py1ð Þ þ
Xn�1

i¼1

yi � 1ð Þ2� 1þ 10 sin2 pyiþ1ð Þ

 �

:

þ yn � 1ð Þ2
)

þ
Xn

i¼1

u xi; 10; 100; 4ð Þ; yi ¼ 1þ 0:25 xi þ 1ð Þ

F05 Penalty #2
f ðx~Þ ¼ 0:1

(

sin2ð3px1Þ þ
Xn�1

i¼1

ðxi � 1Þ2 � ½1þ sin2ð3pxiþ1Þ�:

þðxn � 1Þ2½1þ sin2ð2pxnÞ�
)

þ
Xn

i¼1

uðxi; 5; 100; 4Þ

F06 Quartic with noise
f ð x!Þ ¼

Pn

i¼1

ði � x4
i þ Uð0; 1ÞÞ

F07 Rastrigin
f ð x!Þ ¼ 10 � nþ

Pn

i¼1

ðx2
i � 10 � cosð2pxiÞÞ

F08 Rosenbrock
f ð x!Þ ¼

Pn�1

i¼1

100ðxiþ1 � x2
i Þ

2 þ ðxi � 1Þ2
h i

F09 Schwefel 2.26
f ð x!Þ ¼ 418:9829� D�

PD

i¼1

xi sin xij j1=2
� 	

F10 Schwefel 1.2

f ð x!Þ ¼
Pn

i¼1

Pi

j¼1

xj

 !2

F11 Schwefel 2.22
f ð x!Þ ¼

Pn

i¼1

xij j þ
Qn

i¼1

xij j

F12 Schwefel 2.21 f ð x!Þ ¼ max
i

xij j; 1� i� nf g

F13 Sphere
f ð x!Þ ¼

Pn

i¼1

x2
i

F14 Step
f ð x!Þ ¼ 6 � nþ

Pn

i¼1

xib c

In benchmark function F02, the matrix elements an�n;bn�n 2 �100; 100ð Þ; an�1 2 �p;pð Þ are drawn from uniform distribution [36]

In benchmark functions F04 and F05, the definition of the function u(xi,a,k,m) is as follows: u xi; a; k;mð Þ ¼
k xi � að Þm; xi [a

0; �a� xi� a

k �xi � að Þm; xi\� a

8

<

:

860 Neural Comput & Applic (2014) 24:853–871

123

except the global optimum. More details of all the bench-

mark functions can be found in [35].

We set population size NP = 50, an elitism parameter

Keep = 2, and maximum generation Maxgen = 50 for

each algorithm. We ran 100 Monte Carlo simulations of

each algorithm on each benchmark function to get repre-

sentative performances. Tables 3 and 4 illustrate the results

of the simulations. Table 3 shows the average minima

found by each algorithm, averaged over 100 Monte Carlo

runs. Table 4 shows the absolute best minima found by

each algorithm over 100 Monte Carlo runs. In other words,

Table 3 shows the average performance of each algorithm,

while Table 4 shows the best performance of each algo-

rithm. The best value achieved for each test problem is

shown in bold. Note that the normalizations in the tables

are based on different scales, so values cannot be compared

between the two tables. Each of the functions in this study

has 20 independent variables (i.e., d = 20).

From Table 3, we see that, on average, HS/KH is the

most effective at finding objective function minimum on

thirteen of the fourteen benchmarks (F01, F03–F14). BBO

is the second most effective, performing best on the other

one benchmark (F02) when multiple runs are made.

Table 4 shows that HS/KH performs the best on twelve of

Table 3 Mean normalized optimization results in fourteen benchmark functions

ACO BBO DE ES GA HS HSKH KH II PSO SGA

F01 6.13 3.40 4.92 7.59 6.82 7.78 1.00 2.14 6.57 3.43

F02 9.53 1.00 3.73 10.09 4.26 8.90 1.23 26.63 7.85 1.19

F03 11.67 8.56 18.97 92.94 38.53 185.24 1.00 30.59 73.42 7.67

F04 1.3E7 2.6E3 6.6E4 7.9E6 1.6E5 1.3E7 1.00 1.3E6 1.4E6 60.51

F05 1.2E7 1.5E4 1.5E5 6.5E6 3.2E5 1.1E7 1.00 1.3E6 1.5E6 1.5E3

F06 1.5E3 142.47 674.06 2.1E4 1.4E3 2.1E4 1.00 4.6E3 4.6E3 54.16

F07 6.81 1.46 6.03 9.34 6.41 8.83 1.00 7.77 7.08 2.00

F08 65.73 4.07 9.52 82.72 16.36 57.63 1.00 22.50 20.18 3.93

F09 3.29 1.58 5.99 7.45 2.47 9.11 1.00 12.67 9.28 1.75

F10 3.56 2.06 4.84 5.56 3.78 5.08 1.00 11.95 3.97 3.20

F11 33.66 4.79 14.25 53.83 25.73 40.89 1.00 1.3E11 29.61 6.91

F12 6.06 6.52 7.73 9.22 8.00 9.58 1.00 2.21 7.80 5.56

F13 738.32 54.37 135.27 1.5E3 485.40 1.3E3 1.00 246.00 550.01 57.56

F14 65.12 31.51 74.94 500.52 140.94 731.38 1.00 121.61 296.96 28.18

Time 2.06 1.00 1.24 1.28 1.36 1.77 2.88 2.63 1.54 1.32

The values shown are the minimum objective function values found by each algorithm, averaged over 100 Monte Carlo simulations

The values are normalized so that the minimum in each row is 1.00. These are not the absolute minima found by each algorithm, but the average

minima found by each algorithm

Bold values indicate the best value achieved for each test problem

Table 2 Properties of

benchmark functions, lb denotes

lower bound, ub denotes upper

bound, opt denotes optimum

point

No. Function lb ub opt Continuity Modality

F01 Ackley -32.768 32.768 0 Continuous Multimodal

F02 Fletcher-Powell -p p 0 Continuous Multimodal

F03 Griewank -600 600 0 Continuous Multimodal

F04 Penalty #1 -50 50 0 Continuous Multimodal

F05 Penalty #2 -50 50 0 Continuous Multimodal

F06 Quartic with noise -1.28 1.28 1 Continuous Multimodal

F07 Rastrigin -5.12 5.12 0 Continuous Multimodal

F08 Rosenbrock -2.048 2.048 0 Continuous Unimodal

F09 Schwefel 2.26 -512 512 0 Continuous Multimodal

F10 Schwefel 1.2 -100 100 0 Continuous Unimodal

F11 Schwefel 2.22 -10 10 0 Continuous Unimodal

F12 Schwefel 2.21 -100 100 0 Continuous Unimodal

F13 Sphere -5.12 5.12 0 Continuous Unimodal

F14 Step -5.12 5.12 0 Discontinuous Unimodal

Neural Comput & Applic (2014) 24:853–871 861

123

the fourteen benchmarks (F01–F03, F06–F14). ACO is the

second most effective, performing the best on the bench-

marks F04 and F05 when multiple runs are made. In

addition, statistical analysis on these values obtained by the

ten methods on fourteen benchmark functions based on

the Friedman’s test [37] reveals that the differences in the

obtained average and best function minima are statistically

significant (p = 1.72 9 10-17 and p = 8.19 9 10-17,

respectively) at the confidence level of 5 %.

Furthermore, the computational requirements of the ten

optimization methods were similar. We collected the

average computational time of the optimization methods as

applied to the 14 benchmarks discussed in this section. The

results are shown in Table 3. BBO was the quickest opti-

mization method. HS/KH was the tenth fastest of the ten

algorithms. However, it should be noted that in the vast

majority of real-world applications, it is the fitness function

evaluation that is by far the most expensive part of a

population-based optimization algorithm.

Further, convergence graphs of ACO, BBO, DE, ES, GA,

HS, HS/KH, KH, PSO, and SGA are shown in Figs. 1, 2, 3,

4, 5, 6, 7, 8, 9, 10, 11, 12, 13, and 14, which represent the

process of optimization. The values shown in Figs. 1, 2, 3, 4,

5, 6, 7, 8, 9, 10, 11, 12, 13, and 14 are the mean objective

function optimum achieved from 100 Monte Carlo simula-

tions, which are the true objective function values, not

normalized. In addition, it is notable that the global optima

of the benchmarks (F02, F04, F05, and F11) are illustrated in

the form of the semi-logarithmic convergence plots. Also,

we use KH short for KH II in the legend of the Figs. 1, 2, 3,

4, 5, 6, 7, 8, 9, 10, 11, 12, 13, and 14.

Figure 1 shows the results obtained for the ten methods

when the F01 Ackley function is applied. This is a multi-

modal function with a narrow global minimum basin

(F01min = 0) and many minor local optima. From Fig. 1,

clearly, we can draw the conclusion that HS/KH is

significantly superior to the other algorithms during the

process of optimization, while KH II performs the second

best in this multimodal benchmark function. Here, all the

algorithms show the almost same starting point, while HS/

KH has a stably faster convergence rate than other algo-

rithms. All methods clearly outperform the standard HS

algorithm.

0 5 10 15 20 25 30 35 40 45 50
2

4

6

8

10

12

14

16

18

20

Numer of generations

be
nc

hm
ar

k
fu

nc
tio

n
va

lu
e

ACO

BBO

DE
ES

GA

HS

HSKH

KH
PSO

SGA

Fig. 1 Comparison of the performance of the different methods for

the F01 Ackley function

Table 4 Best normalized optimization results in fourteen benchmark functions

ACO BBO DE ES GA HS HSKH KH II PSO SGA

F01 13.68 6.29 11.18 18.24 13.21 19.02 1.00 3.24 15.70 6.10

F02 14.07 1.20 6.92 22.74 3.67 13.61 1.00 47.24 14.07 1.36

F03 5.84 3.50 9.95 60.03 4.14 126.53 1.00 18.80 34.92 3.08

F04 1.00 14.24 2.2E3 1.5E7 9.37 2.5E7 3.32 3.9E6 2.0E4 2.67

F05 1.00 9.4E17 1.1E21 1.8E23 1.0E18 3.1E23 1.5E16 3.8E22 2.3E22 3.9E16

F06 1.3E4 671.45 9.2E3 1.6E5 9.8E3 4.3E5 1.00 8.5E4 5.0E4 244.00

F07 12.10 2.09 11.23 16.24 8.53 16.76 1.00 12.09 13.21 2.67

F08 61.63 2.91 9.75 85.32 12.24 49.89 1.00 24.13 14.21 2.89

F09 7.16 2.10 14.85 17.10 2.04 23.91 1.00 33.70 21.64 1.47

F10 2.95 1.20 6.65 6.91 2.50 6.57 1.00 5.77 4.88 3.44

F11 87.38 8.44 37.82 112.69 46.82 122.87 1.00 1.2E5 60.91 12.79

F12 7.07 6.76 12.22 16.02 8.52 15.15 1.00 2.50 11.44 5.75

F13 3.9E3 273.60 994.91 8.5E3 2.7E3 1.1E4 1.00 1.6E3 2.2E3 221.34

F14 302.67 106.33 372.00 2.4E3 377.67 4.3E3 1.00 702.00 1.9E3 93.00

The values shown are the minimum objective function values found by each algorithm

The values are normalized so that the minimum in each row is 1.00. These are the absolute best minima found by each algorithm

Bold values indicate the best value achieved for each test problem

862 Neural Comput & Applic (2014) 24:853–871

123

Figure 2 illustrates the optimization results for F02

Fletcher-Powell function. From Fig. 2, clearly, we can

draw the conclusion that BBO is significantly superior to

the other algorithms including HS/KH during the process

of optimization, while SGA performs the second best in

this multimodal benchmark function. Unfortunately, HS/

KH only performs the third for this case. Moreover, KH II

is inferior to HS/KH and ranks 4 out of the ten methods.

Figure 3 shows the optimization results for F03 Grie-

wank function, which has many local minima but a global

minimum of F03min = 0. F03 has a
QD

i¼1 cos xiffi
i
p
� 	

com-

ponent causing linkages among dimensions thus making it

difficult to reach the global optimum. An interesting phe-

nomenon of F03 is that it is more difficult for lower

dimensions than higher dimensions [38]. From Table 3 and

Fig. 3, we can see that HS/KH performs the best in this

multimodal function. By carefully looking at the Fig. 3,

SGA and ACO show a faster convergence rate initially

than HS/KH; however, they are outperformed by HS/KH

after 13 generations. For other algorithms, although slower,

ACO, BBO, and SGA eventually find the global minimum

close to HS/KH, while DE, ES, GA, HS, KH II, and PSO

fail to search the global minimum within the limited

iterations.

Figure 4 shows the results for F04 Penalty #1 function.

From Fig. 4, apparently, HS/KH outperforms all other

methods in this example. Here, PSO shows a much faster

convergence rate initially; however, it seems to be attracted

to sub-minima as the distance from the global minimum

increases slightly. Although slower, SGA performs the

second best at finding the global minimum.

0 5 10 15 20 25 30 35 40 45 50
10

1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Numer of generations

be
nc

hm
ar

k
fu

nc
tio

n
va

lu
e

ACO

BBO

DE
ES

GA

HS

HSKH

KH
PSO

SGA

Fig. 5 Comparison of the performance of the different methods for

the F05 Penalty #2 function

0 5 10 15 20 25 30 35 40 45 50

10
5

10
6

Numer of generations

be
nc

hm
ar

k
fu

nc
tio

n
va

lu
e

ACO

BBO

DE
ES

GA

HS

HSKH

KH
PSO

SGA

Fig. 2 Comparison of the performance of the different methods for

the F02 Fletcher-Powell function

0 5 10 15 20 25 30 35 40 45 50

10
2

10
4

10
6

10
8

Numer of generations

be
nc

hm
ar

k
fu

nc
tio

n
va

lu
e

ACO

BBO

DE
ES

GA

HS

HSKH

KH
PSO

SGA

Fig. 4 Comparison of the performance of the different methods for

the F04 Penalty #1 function

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300

350

Numer of generations

be
nc

hm
ar

k
fu

nc
tio

n
va

lu
e

ACO

BBO

DE
ES

GA

HS

HSKH

KH
PSO

SGA

Fig. 3 Comparison of the performance of the different methods for

the F03 Griewank function

Neural Comput & Applic (2014) 24:853–871 863

123

Figure 5 shows the performance achieved for F05

Penalty #2 function. For this multimodal function, very

similar to F04 Penalty #1 function as shown in Fig. 4, HS/

KH significantly outperforms all other methods during the

process of optimization. By carefully looking at Fig. 4, we

can see that in the beginning of the optimization process,

PSO converges faster than HS/KH while HS/KH is able to

improve its solution steadily for a long run.

Figure 6 shows the results achieved for the ten methods

when using the F06 Quartic (with noise) function. For this

case, the figure shows that there is little difference between

the performance of BBO, HS/KH, and SGA. From Table 3

and Fig. 6, we can conclude that HS/KH performs the best

in this multimodal function. Through carefully looking at

Fig. 6, PSO and SGA have a fast convergence initially

toward the known minimum, as the procedure proceeds

HS/KH gets closer and closer to the minimum, while PSO

comes into being premature and traps into the local mini-

mum; eventually they are outperformed by HS/KH after 8

generations. ACO, DE, ES, GA, HS, KH II, and PSO do

not manage to succeed in this benchmark function within

maximum number of generations, showing a wide range of

obtained results. At last, BBO and SGA converge to the

value that is very close to HS/KH’s.

Figure 7 shows the optimization results for the F07

Rastrigin function, which is a complex multimodal prob-

lem with a unique global minimum of F07min = 0 and a

large number of local optima. When attempting to solve

F07, methods may easily trap into a local optimum. Hence,

a method capable of maintaining a larger diversity is likely

0 5 10 15 20 25 30 35 40 45 50

50

100

150

200

250

300

Numer of generations

be
nc

hm
ar

k
fu

nc
tio

n
va

lu
e

ACO

BBO

DE
ES

GA

HS

HSKH

KH
PSO

SGA

Fig. 7 Comparison of the performance of the different methods for

the F07 Rastrigin function

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

Numer of generations

be
nc

hm
ar

k
fu

nc
tio

n
va

lu
e

ACO

BBO

DE
ES

GA

HS

HSKH

KH
PSO

SGA

Fig. 6 Comparison of the performance of the different methods for

the F06 Quartic (with noise) function

0 5 10 15 20 25 30 35 40 45 50

500

1000

1500

2000

2500

3000

3500

4000

Numer of generations

be
nc

hm
ar

k
fu

nc
tio

n
va

lu
e

ACO

BBO

DE
ES

GA

HS

HSKH

KH
PSO

SGA

Fig. 8 Comparison of the performance of the different methods for

the F08 Rosenbrock function

0 5 10 15 20 25 30 35 40 45 50

1000

2000

3000

4000

5000

6000

Numer of generations

be
nc

hm
ar

k
fu

nc
tio

n
va

lu
e

ACO

BBO

DE
ES

GA

HS

HSKH

KH
PSO

SGA

Fig. 9 Comparison of the performance of the different methods for

the F09 Schwefel 2.26 function

864 Neural Comput & Applic (2014) 24:853–871

123

to produce better results. At first glance, it is clear that

though HS/KH is outperformed by BBO within 25 gener-

ations, HS/KH has the fastest convergence rate at finding

the global minimum and significantly outperforms all other

approaches. Further, BBO and SGA works very well

because the BBO and SGA have ranks of 2, 3, respectively,

among ten algorithms.

Figure 8 shows the results for F08 Rosenbrock function.

It can be also treated as a multimodal problem. It has a

narrow valley from the perceived local optima to the global

optimum. For this case, analogous to the F06 Quartic (with

noise) function as shown in Fig. 6, we can conclude: (1)

the figure shows that there is little difference between the

performance of BBO, HS/KH, and SGA; (2) PSO shows

a much faster convergence rate initially than HS/KH;

however, it is outperformed by HS/KH after 7 generations

and is premature to the local minimum. From Table 3 and

Fig. 8, we can see that HS/KH is superior to the other

algorithms during the optimization process in this bench-

mark function.

Figure 9 shows the equivalent results for the F09

Schwefel 2.26 function. This is a multimodal function with

a global minimum of F09min = 0. The complexity of F09 is

due to its deep local optima being far from the global

optimum. From Fig. 9, very apparently, though HS/KH is

outperformed by BBO and SGA within 23 and 9 genera-

tions, respectively, it has the stable convergence rate at

finding the global minimum and significantly outper-

forms all other approaches in this multimodal benchmark

function.

0 5 10 15 20 25 30 35 40 45 50
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Numer of generations

be
nc

hm
ar

k
fu

nc
tio

n
va

lu
e

ACO

BBO

DE
ES

GA

HS

HSKH

KH
PSO

SGA

Fig. 11 Comparison of the performance of the different methods for

the F11 Schwefel 2.22 function

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Numer of generations

be
nc

hm
ar

k
fu

nc
tio

n
va

lu
e

ACO

BBO

DE
ES

GA

HS

HSKH

KH
PSO

SGA

Fig. 13 Comparison of the performance of the different methods for

the F13 Sphere function

0 5 10 15 20 25 30 35 40 45 50

10

20

30

40

50

60

70

80

Numer of generations

be
nc

hm
ar

k
fu

nc
tio

n
va

lu
e

ACO

BBO

DE
ES

GA

HS

HSKH

KH
PSO

SGA

Fig. 12 Comparison of the performance of the different methods for

the F12 Schwefel 2.21 function

0 5 10 15 20 25 30 35 40 45 50

0.5

1

1.5

2

2.5

x 10
4

Numer of generations

be
nc

hm
ar

k
fu

nc
tio

n
va

lu
e

ACO

BBO

DE
ES

GA

HS

HSKH

KH
PSO

SGA

Fig. 10 Comparison of the performance of the different methods for

the F10 Schwefel 1.2 function

Neural Comput & Applic (2014) 24:853–871 865

123

Figure 10 shows the results for F10 Schwefel 1.2

function. From Fig. 10, for this relative simple unimodal

benchmark function, we can see that HS/KH performs far

better than other algorithms in the optimization process.

PSO shows a faster convergence rate initially than HS/KH;

however, it is outperformed by HS/KH after 17 genera-

tions. For other algorithms, BBO works very well, because

it ranks 2 among ten methods.

Figure 11 shows the results for F11 Schwefel 2.22

function. From Fig. 11, very clearly, though HS/KH per-

forms equally with BBO within 20 generations, it has the

stable convergence rate at finding the global minimum and

significantly outperforms all other approaches in this uni-

modal benchmark function. At last, HS/KH reaches the

optimal solution significantly superiorly to other algo-

rithms. BBO is only inferior to HS/KH and performs the

second best in this unimodal function.

Figure 12 shows the results for F12 Schwefel 2.21

function. At first glance, it is clear that HS/KH has the

fastest convergence rate finding the global minimum in the

whole optimization progress. HS/KH reaches the optimal

solution significantly superiorly to other algorithms. KH II

is only inferior to HS/KH and performs the second best in

this unimodal function.

Figure 13 shows the results for F13 Sphere function,

which is also known as de Jong’s function, and has a

unique global minimum of F13min = 0, and therefore, it is

easy to solve. From Table 3 and Fig. 13, HS/KH has the

fastest convergence rate at finding the global minimum and

outperforms all other approaches. Looking carefully at

Fig. 13, for BBO and SGA, we can see that BBO has a

faster convergence rate than SGA, but SGA does finally

converge to the value of BBO that is very close to HS/

KH’s. KH II does not manage to succeed in this relatively

simple problem within the maximum number of iterations,

showing a wide range of obtained results. This highlights

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Numer of generations

be
nc

hm
ar

k
fu

nc
tio

n
va

lu
e

ACO

BBO

DE
ES

GA

HS

HSKH

KH
PSO

SGA

Fig. 14 Comparison of the performance of the different methods for

the F14 Step function

Table 5 Best normalized optimization results in fourteen benchmark functions with different HMCR

HMCR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F01 2.51 2.51 2.51 2.18 2.16 2.00 1.19 1.37 1.95 1.00 2.37

F02 2.01E5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

F03 74.32 101.26 8.27 9.01 9.21 9.02 9.08 9.12 5.36 1.00 9.18

F04 3.47E6 3.45 5.26E4 6.03 2.79 2.69 2.35 2.39 2.89 1.00 2.78

F05 3.15E6 9.32 1.01 1.05E4 1.00 1.00 1.00 1.00 1.00 1.00 1.00

F06 2.30E6 4.14E3 5.15E3 3.40E3 2.55E3 1.95E3 521.36 119.36 16.89 1.00 2.79E3

F07 12.03 12.22 11.36 1.16 1.14 8.86 1.00 1.00 1.00 1.00 1.00

F08 79.25 1.22 15.32 1.26 1.26 1.25 30.15 1.00 1.00 1.00 1.00

F09 360.25 348.52 1.25 12.63 1.24 1.56 1.54 189.25 1.00 1.00 1.00

F10 956.85 20.87 1.63E3 27.63 2.13 2.79 2.16 2.48 826.96 1.00 1.00

F11 10.14 1.59 6.98 4.56 8.13 4.26 3.16 3.78 1.58 1.00 2.85

F12 5.12 1.00 2.36 1.25 5.85 1.52 1.63 1.85 1.47 1.47 5.13

F13 158.32 265.32 158.25 198.23 25.36 85.26 39.15 28.96 15.22 1.00 63.25

F14 978.23 9.68 7.86 1.00 1.00 10.59 1.00 1.00 1.00 1.00 1.00

0 2 1 2 3 2 4 5 6 13 7

The numbers shown are the best results found after 100 Monte Carlo simulations of HS/KH algorithm

The values are normalized so that the minimum in each row is 1.00. These are not the absolute minima found by each algorithm, but the average

minima found by each algorithm

Bold values indicate the best value achieved for each test problem

866 Neural Comput & Applic (2014) 24:853–871

123

the lack of the diversity of the population in the standard

algorithm, meaning KH II cannot take advantage of the

symmetry of this function as HS/KH can.

Figure 14 shows the results for F14 Step function.

Apparently, HS/KH shows the fastest convergence rate at

finding the global minimum and significantly outperforms

Table 6 Mean normalized optimization results in fourteen benchmark functions with different HMCR

HMCR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.00 1.00

F02 1.45E3 13.56 12.35 14.26 7.36 8.52 7.26 9.25 1.00 1.56 8.75

F03 10.22 3.65E4 1.05 1.02 1.02 1.05 1.08 1.08 1.00 1.00 1.06

F04 4.65E6 3.89E4 4.25E4 1.12E4 2.65E3 2.21E3 250.36 156.23 1.05 1.00 4.36E3

F05 1.05E7 8.36E4 7.96E4 5.25E4 6.36E4 2.05E4 1.15E4 3.23E3 4.25 1.00 3.63E4

F06 1.00 3.25E4 356.25 345.25 3.26E4 1.18 1.26 1.27 1.26 1.22 1.18

F07 9.66 4.24E6 10.35 269.85 306.59 3.27E4 1.06 1.08 1.00 1.00 1.26

F08 89.26 3.53E4 2.89E4 308.25 258.36 287.25 2.98E4 1.05 1.06 1.00 1.48

F09 228.36 7.8E6 2.69 10.23 285.36 256.45 248.96 2.63E4 1.26 1.00 2.69

F10 285.49 4.36E4 1.25E6 1.56E4 76.24 189.23 156.32 148.74 1.31E4 1.00 2.33

F11 3.78 1.00 4.63E4 1.28 15.69 178.49 314.94 318.15 315.56 3.6E4 1.17

F12 2.89 2.69E4 3.85E4 1.00 3.0E4 158.31 158.91 185.46 275.34 248.56 3.0E4

F13 2.96 8.95 8.9E6 3.5E6 1.00 9.63 185.49 198.25 285.14 285.21 289.12

F14 156.1 4.67E5 1.05E4 4.52E3 1.00 3.58E3 15.23 19.54 15.32 34.85 36.25

1 1 0 1 2 0 0 0 3 8 1

The numbers shown are the best results found after 100 Monte Carlo simulations of HS/KH algorithm

The values are normalized so that the minimum in each row is 1.00. These are the absolute best minima found by each algorithm

Bold values indicate the best value achieved for each test problem

Table 7 Best normalized optimization results in fourteen benchmark functions with different PAR

PAR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

F02 4.41E3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

F03 1.00 2.36 1.56 1.58 1.59 1.25 1.99 1.96 1.58 1.58 1.06

F04 1.00 2.36 258.66 3.69 3.85 3.45 3.85 3.69 3.58 3.54 3.21

F05 4.25 1.00 1.98 8.67E3 1.95 1.95 1.95 1.95 1.95 1.95 1.96

F06 1.00 10.25 22.36 36.89 5.63 24.69 19.25 36.89 4.56 7.99 15.36

F07 12.23 1.00 1.89 3.58 3.15 32.86 3.58 3.45 3.26 3.89 3.56

F08 6.52 1.00 1.58 1.00 1.00 1.00 13.85 1.00 1.00 1.00 1.00

F09 125.96 4.85 1.65 1.00 1.98 1.96 1.95 356.22 1.95 1.63 1.95

F10 1.25E3 1.58 1.00 6.48 3.68 3.98 3.52 3.56 4.5E3 3.58 3.62

F11 2.9E3 1.00 4.4E3 4.6E3 2.5E3 4.7E3 4.2E3 4.4E3 4.8E3 2.2E3 4.9E3

F12 1.3E3 1.00 3.3E3 352.25 600.36 370.25 389.52 345.23 348.25 354.12 2.6E3

F13 1.03 7.66 3.89 3.52 5.62 5.25 4.69 3.25 2.10 1.35 1.00

F14 135.25 1.00 1.58 3.69 3.58 5.65 3.56 3.58 3.51 3.98 3.52

4 8 3 4 3 3 2 3 3 3 4

The numbers shown are the best results found after 100 Monte Carlo simulations of HS/KH algorithm

The values are normalized so that the minimum in each row is 1.00. These are not the absolute minima found by each algorithm, but the average

minima found by each algorithm

Bold values indicate the best value achieved for each test problem

Neural Comput & Applic (2014) 24:853–871 867

123

all other approaches. Looking carefully at Fig. 14, for BBO

and SGA, they perform approximately equally and are only

inferior to HS/KH.

From above analyses about the Figs. 1, 2, 3, 4, 5, 6, 7, 8,

9, 10, 11, 12, 13 and 14, we draw the conclusion that the

HS/KH’s performance is superior to or at least quite

competitive with the other nine acclaimed state-of-the-art

population-based algorithms. In general, BBO and SGA are

only inferior to the HS/KH. Further, benchmarks F04, F05,

F06, F08, and F10 illustrate that PSO has a much faster

convergence rate initially, while later it converges slower

and slower to the true objective function value. At last, we

must point out, in [13], Simon compared BBO with seven

state-of-the-art EAs over fourteen benchmark functions and

a real-world sensor selection problem. The results dem-

onstrated the good performance of BBO. It is also indi-

rectly demonstrated that our proposed hybrid meta-

heuristic method HS/KH is a more powerful and efficient

optimization algorithm than other population-based opti-

mization algorithms.

4.2 Influence of control parameter

The choice of the control parameters is of vital importance

for different problems. To compare the different effects on

the parameter of the harmony memory consideration rate

HMCR and pitch adjustment rate PAR, we ran 100 Monte

Carlo simulations of HS/KH algorithm on the above

problem to get the best performances. All other parameter

settings are kept unchanged (unless noted otherwise in the

following paragraph). The results are recorded in Tables 5,

6, 7 and 8 after 100 Monte Carlo runs. Among them,

Tables 5 and 7 show the best minima found by HS/KH

algorithm over 100 Monte Carlo runs. Tables 6 and 8 show

the average minima found HS/KH algorithm, averaged

over 100 Monte Carlo runs. In other words, Tables 5, 7 and

Tables 6, 8 show the best and average performance of HS/

KH algorithm, respectively. In each table, the last row is

the total number of functions on which HS/KH performs

the best with specific parameters.

4.2.1 Harmony memory consideration rate (HMCR)

Tables 5 and 6 recorded the results performed on the

benchmark problem with the harmony memory consider-

ation rate HMCR = 0, 0.1, 0.2, … , 0.9, 1.0, and fixed

pitch adjustment rate PAR = 0.1. From Tables 5 and 6,

obviously, it can be seen that (1) for the three benchmark

functions F02, F05, and F14, HS/KH performs slightly

differently, that is to say, these three benchmark functions

are insensitive to the parameter HMCR. (2) For benchmark

function F12, HS/KH performs better on smaller HMCR

(\0.5). (3) However, for other functions, HS/KH performs

better on bigger HMCR ([0.5). In sum, HS/KH performs

the best when HMCR is equal or very close to 0.9. So,

we set HMCR = 0.9 in other experiments. In addition,

Table 8 Mean normalized optimization results in fourteen benchmark functions with different PAR

PAR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

F02 42.36 2.58 4.56 5.23 4.56 9.25 5.69 2.56 1.05 1.98 1.00

F03 1.00 1.2E4 1.25 1.25 1.23 1.25 1.27 1.55 1.26 1.85 1.89

F04 2.26 56.36 8.9 E3 1.05 1.00 1.06 1.07 1.08 1.00 1.00 1.00

F05 256.36 1.45 158.63 7.9E3 1.56 1.05 9.56 63.56 1.25 1.85 1.00

F06 1.00 5.26E6 5..2E4 3.4E4 5.1E6 526.33 569.25 585.63 578.69 578.26 589.15

F07 5.65 3.48 1.00 136.32 58.26 1.3E4 1.25 1.26 1.89 1.56 1.64

F08 15.36 58.65 8.5E3 106.32 85.63 58.65 8.7E3 1.08 1.08 1.00 1.25

F09 62.25 158.61 1.85 1.65 65.23 68.56 38.12 5.6E3 1.25 1.36 1.00

F10 125.25 1.04 2.52 1.9E3 16.32 25.36 24.12 16.69 1.7E3 1.00 1.05

F11 96.36 1.00 7.8E3 125.96 85.22 1.3E4 1.1E4 1.6E4 6.9E3 1.4E6 125.36

F12 6.32 8.5E3 8.6E3 1.00 8.4E3 158.36 85.36 105.39 96.56 58.32 8.4E3

F13 1.00 25.96 1.3E3 15.56 6.25 4.25 1.4E3 585.65 665.23 605.32 359.61

F14 35.96 1.52 1.56 35.69 1.00 5.3E3 78.25 115.25 56.25 65.85 58.51

4 2 2 2 3 1 1 1 2 4 5

The numbers shown are the best results found after 100 Monte Carlo simulations of HS/KH algorithm

The values are normalized so that the minimum in each row is 1.00. These are the absolute best minima found by each algorithm

Bold values indicate the best value achieved for each test problem

868 Neural Comput & Applic (2014) 24:853–871

123

statistical analysis on these values obtained by the HS/KH

with harmony memory consideration rate HMCR on

fourteen benchmark functions based on the Friedman’s test

reveals that the differences in the obtained average and best

function minima across various chaotic maps are statisti-

cally significant (p = 8.1 9 10-16 and p = 5.6 9 10-16,

respectively) at the confidence level of 5 %.

4.2.2 Pitch adjustment rate (PAR)

Tables 7 and 8 recorded the results performed in the

benchmark problem with the pitch adjustment rate PAR =

0, 0.1, 0.2, …, 0.9, 1.0 and fixed harmony memory con-

sideration rate HMCR = 0.9. From Table 7, we can rec-

ognize that the function values for HS/KH vary little with

the increase in PAR, and HS/KH reaches optimum/mini-

mum in most benchmarks when PAR is equal or very close

to 0.1. Whereas, looking at numbers in Table 8, the numbers

are very complex and in disorder. Considering comprehen-

sively, our aim is to get the best performance, so we set

PAR = 0.1 in other experiments. In addition, statistical

analysis on these values obtained by the HS/KH with 11

different pitch adjustment rate PAR on fourteen benchmark

functions based on the Friedman’s test reveals that the

differences in the obtained average and best function min-

ima across various pitch adjustment rate PAR are statisti-

cally significant (p = 7.9 9 10-16 and p = 4.9 9 10-16,

respectively) at the confidence level of 5 %.

With respect to the HS in the HS/KH and the original

HS, the effects of the two main parameters of the HS

namely HMCR and HMS were investigated by many

researchers [39]. Based on those observations, a large value

for HMCR (i.e. approaching to 1.00) is generally used

except for problems with a very low dimensionality for

which a small value of HMCR is recommended. This

conclusion coincides with the experimental results con-

ducted in Sect. 4.2.

5 Discussion

For all of the standard benchmark functions that have been

considered, the HS/KH has been demonstrated to perform

better than or be equal to the standard KH and other

acclaimed state-of-the-art population-based algorithms

with the HS/KH performing significantly better in some

functions. The HS/KH performs excellently and efficiently

because of its ability to simultaneously carry out a local

search, still searching globally at the same time. It succeeds

in doing this due to the local search via krill herd algorithm

and global search via harmony search algorithm concur-

rently. A similar behavior may be performed in the PSO by

using multiswarm from a particle population initially [40].

However, HS/KH’s advantages include performing simply

and easily and only have two parameters to regulate. The

work carried out here demonstrates the HS/KH to be robust

over all kinds of benchmark functions.

Benchmark evaluation is a good way for verifying the

performance of the meta-heuristic algorithms, but it also

has limitations. First, we did not make any special effort to

tune the optimization algorithms in this section. Different

tuning parameter values in the optimization algorithms

might result in significant differences in their performance.

Second, real-world optimization problems may not have

much of a relationship to benchmark functions. Third,

benchmark tests might result in different conclusions

whether the grading criteria or problem setup change. In

our work, we examined the mean and best results obtained

with a certain population size and after a certain number of

generations. However, we might arrive at different con-

clusions whether (for example) we change the generation

limit, or look at how many generations it takes to reach a

certain function value, or whether we change the popula-

tion size. In spite of these caveats, the benchmark results

shown here are promising for HS/KH and indicate that this

novel method might be able to find a niche among the

plethora of population-based optimization algorithms.

The proposed method has strong optimization ability, but

it is not perfect and its running time is a little too long. We

note that CPU time is a bottleneck to the implementation of

many population-based optimization algorithms. If an

algorithm cannot converge fast, it will be impractical, since

it would take too long to find an optimal or sub-optimal

solution. HS/KH does not seem to require an unreasonable

amount of computational effort; of the ten optimization

algorithms compared in this paper, HS/KH was the tenth

fastest. How to accelerate the HS/KH’s convergence speed

still deserves further scrutiny. Therefore, besides deeply

studying the algorithm, we will continue improving the

method and optimize code to reduce running time.

In this work, fourteen benchmark functions are used to

evaluate the performance of our approach; we will test our

approach on more problems, such as the high-dimensional

(d C 20) CEC 2010 test suit [41] and the real-world

problems. Moreover, we will compare HS/KH with other

EAs. In addition, we only consider the unconstrained

function optimization in this work. Our future work

consists on adding the diversity rules into HS/KH for

constrained optimization problems, such as constrained

real-parameter optimization CEC 2010 test suit [42].

6 Conclusion and future work

This paper proposed a hybrid meta-heuristic HS/KH

method for optimization problem. We improved the KH by

Neural Comput & Applic (2014) 24:853–871 869

123

combining harmony search (HS) algorithm and evaluate

the HS/KH on multimodal numerical optimization prob-

lems. A novel type of KH model has been presented, and

an improvement is applied to mutate between krill using

harmony search algorithm during the process of krill

updating. Using the original configuration of the krill herd

algorithm, we generate the new harmonies based on the

newly generated krill each iteration after krill’s position

has been updated. The new harmony vector substitutes the

newly generated krill only if it has better fitness. This

selection scheme is rather greedy which often overtakes

original HS and KH. The HS/KH attempts to take merits of

the KH and the HS in order to avoid all krill getting trapped

in inferior local optimal regions. The HS/KH enables the

krill to have more diverse exemplars to learn from as the

krill are updated each iteration and also form new harmo-

nies to search in a larger search space. This new method can

speed up the global convergence rate without losing the

strong robustness of the basic KH. From the analysis of the

experimental results, we observe that the proposed HS/KH

makes good use of the information in past solutions more

effectively to generate better quality solutions frequently

when compared to the other population-based optimization

algorithms such as ACO, BBO, DE, ES, GA, HS, KH, PSO,

and SGA. Based on the results of the ten approaches on the

test problems, we can conclude that the HS/KH significantly

improves the performances of the HS and the KH on most

multimodal and unimodal problems. Further, the novel

configuration of HS/KH does not introduce additional

complex operations beyond the original KH and HS. In

addition, the HS/KH is simple and easy to implement.

In the field of optimization, there are many issues that are

worthy of further study, and efficient optimization method

should be developed depending on the analysis of specific

engineering problems. Our future work will focus on the two

issues. On the one hand, we would apply our proposed

approach HS/KH to solve practical engineering optimization

problems, such as structural optimization, geometric opti-

mization, resource-constrained project scheduling, economic

load dispatch problem, and PID control. And, obviously,

HS/KH can be a promising method for real-world engi-

neering optimization problems. On the other hand, in this

study, HS is applied to improve the performance of the KH

algorithm, and there are many new excellent meta-heuristic

optimization methods and technology can be used, for

example, teaching–learning-based optimization, eagle strat-

egy, bat algorithm, cuckoo search, and firefly algorithm.

Therefore, we would adopt these new strategies and develop

new meta-hybrid approach to solve optimization problem.

Acknowledgments This work was supported by State Key Labo-

ratory of Laser Interaction with Material Research Fund under Grant

No. SKLLIM0902-01 and Key Research Technology of Electric-

discharge Non-chain Pulsed DF Laser under Grant No. LXJJ-11-Q80.

References

1. Gandomi AH, Yang XS, Talatahari S, Alavi AH (2013) Meta-

heuristic applications in structures and infrastructures. Elsevier,

London, UK

2. Yang XS, Gandomi AH, Talatahari S, Alavi AH (2013) Meta-

heuristics in water. Geotechnical and Transport Engineering,

Elsevier

3. Goldberg DE (1998) Genetic algorithms in search. Optimization

and Machine learning, Addison-Wesley

4. Zhao M, Ren J, Ji L, Fu C, Li J, Zhou M (2012) Parameter

selection of support vector machines and genetic algorithm based

on change area search. Neural Comput Appl 21(1):1–8. doi:

10.1007/s00521-011-0603-9

5. Storn R, Price K (1997) Differential evolution-a simple and

efficient heuristic for global optimization over continuous spaces.

J Global Optim 11(4):341–359

6. Gandomi AH, Yang X-S, Talatahari S, Deb S (2012) Coupled

eagle strategy and differential evolution for unconstrained and

constrained global optimization. Comput Math Appl 63(1):

191–200. doi:10.1016/j.camwa.2011.11.010

7. Khazraee S, Jahanmiri A, Ghorayshi S (2011) Model reduction

and optimization of reactive batch distillation based on the

adaptive neuro-fuzzy inference system and differential evolution.

Neural Comput Appl 20(2):239–248. doi:10.1007/s00521-010-

0364-x

8. Kennedy J, Eberhart R (1995) Particle swarm optimization. In:

Proceeding of the IEEE International Conference on Neural

Networks, Perth, Australia, pp. 1942–1948

9. Chen D, Zhao C, Zhang H (2011) An improved cooperative

particle swarm optimization and its application. Neural Comput

Appl 20(2):171–182. doi:10.1007/s00521-010-0503-4

10. Talatahari S, Kheirollahi M, Farahmandpour C, Gandomi AH

(2012) A multi-stage particle swarm for optimum design of truss

structures. Neural Comput Appl. doi:10.1007/s00521-012-1072-5

11. Gandomi AH, Alavi AH (2012) A new multi-gene genetic pro-

gramming approach to nonlinear system modeling. Part II:

Geotechnical and Earthquake Engineering Problems. Neural

Comput Appl 21 (1):189–201

12. Gandomi AH, Alavi AH (2011) Multi-stage genetic program-

ming: a new strategy to nonlinear system modeling. Inf Sci

181(23):5227–5239. doi:10.1016/j.ins.2011.07.026

13. Simon D (2008) Biogeography-based optimization. IEEE Trans

Evolut Comput 12(6):702–713

14. Wang G, Guo L, Duan H, Liu L, Wang H (2012) Dynamic

deployment of wireless sensor networks by biogeography based

optimization algorithm. J Sens Actuat Netw 1(2):86–96. doi:

10.3390/jsan1020086

15. Yang XS, Gandomi AH (2012) Bat algorithm: a novel approach

for global engineering optimization. Eng Comput 29(5):464–483

16. Gandomi AH, Yang X-S, Alavi AH, Talatahari S (2012) Bat

algorithm for constrained optimization tasks. Neural Comput

Appl. doi:10.1007/s00521-012-1028-9

17. Gandomi AH, Yang X-S, Alavi AH (2012) Cuckoo search

algorithm: a metaheuristic approach to solve structural optimi-

zation problems. Eng Comput Ger. doi:10.1007/s00366-011-

0241-y

18. Gandomi AH, Talatahari S, Yang XS, Deb S (2012) Design

optimization of truss structures using cuckoo search algorithm.

Struct Des Tall Spec. doi:10.1002/tal.1033

19. Wang G, Guo L, Duan H, Wang H, Liu L, Shao M (2012) A hybrid

meta-heuristic DE/CS algorithm for UCAV three-dimension path

planning. Sci World J 2012:1–11. doi:10.1100/2012/583973

20. Yang X-S, Sadat Hosseini SS, Gandomi AH (2012) Firefly

algorithm for solving non-convex economic dispatch problems

870 Neural Comput & Applic (2014) 24:853–871

123

http://dx.doi.org/10.1007/s00521-011-0603-9
http://dx.doi.org/10.1016/j.camwa.2011.11.010
http://dx.doi.org/10.1007/s00521-010-0364-x
http://dx.doi.org/10.1007/s00521-010-0364-x
http://dx.doi.org/10.1007/s00521-010-0503-4
http://dx.doi.org/10.1007/s00521-012-1072-5
http://dx.doi.org/10.1016/j.ins.2011.07.026
http://dx.doi.org/10.3390/jsan1020086
http://dx.doi.org/10.1007/s00521-012-1028-9
http://dx.doi.org/10.1007/s00366-011-0241-y
http://dx.doi.org/10.1007/s00366-011-0241-y
http://dx.doi.org/10.1002/tal.1033
http://dx.doi.org/10.1100/2012/583973

with valve loading effect. Appl Soft Comput 12(3):1180–1186.

doi:10.1016/j.asoc.2011.09.017

21. Gandomi AH, Yang X-S, Alavi AH (2011) Mixed variable

structural optimization using firefly algorithm. Comput Struct

89(23–24):2325–2336. doi:10.1016/j.compstruc.2011.08.002

22. Talatahari S, Gandomi AH, Yun GJ (2012) Optimum design of

tower structures using Firefly Algorithm. Struct Des Tall Spec

23. Wang G, Guo L, Duan H, Liu L, Wang H (2012) A modified

firefly algorithm for UCAV path planning. Int J Hybrid Inf

Technol 5(3):123–144

24. Gandomi AH, Alavi AH (2012) Krill Herd: a new bio-inspired

optimization algorithm. Commun Nonlinear Sci Numer Simulat

17(12):4831–4845. doi:10.1016/j.cnsns.2012.05.010

25. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic

optimization algorithm: harmony search. Simulation 76(2):

60–68. doi:10.1177/003754970107600201

26. Wang G, Guo L, Duan H, Wang H, Liu L, Shao M (2012)

Hybridizing Harmony Search with Biogeography based Optimi-

zation for Global Numerical Optimization. J Comput Theor

Nanosci

27. Yang X-S (2011) Optimization Algorithms. In: Koziel S, Yang

X-S (eds) Computational Optimization, Methods and Algorithms,

vol 356. Studies in Computational Intelligence. Springer-Verlag

Berlin Heidelberg, Berlin, Heidelberg, pp. 13–31. doi: 10.1007/

978-3-642-20859-1_2

28. Zhao SZ, Suganthan PN, Pan Q-K, Fatih Tasgetiren M (2011)

Dynamic multi-swarm particle swarm optimizer with harmony

search. Expert Syst Appl 38(4):3735–3742. doi:10.1016/j.eswa.

2010.09.032

29. Dorigo M, Stutzle T (2004) Ant Colony Optimization. MIT Press,

Cambridge

30. Duan H, Zhao W, Wang G, Feng X (2012) Test-sheet composi-

tion using AHP and TS/BBO. Math Probl Eng 2012:1–22. doi:

10.1155/2012/712752

31. Wang G, Guo L, Duan H, Liu L, Wang H, Shao M (2012) Path

planning for uninhabited combat aerial vehicle using Hybrid

Meta-Heuristic DE/BBO algorithm. Adv Sci Eng Med 4(6):

550–564. doi:10.1166/asem.2012.1223

32. Beyer H (2001) The theory of evolution strategies. Springer, New

York

33. Gandomi AH, Yun GJ, Yang X-S, Talatahari S (2013) Chaos-

enhanced accelerated particle swarm optimization. Commun

Nonlinear Sci Numer Simulat 18(2):327–340. doi:10.1016/

j.cnsns.2012.07.017

34. Khatib W, Fleming P (1998) The stud GA: A mini revolution? In:

Eiben A, Back T, Schoenauer M, Schwefel H (eds) Proceeding of

the 5th International Conference on Parallel Problem Solving

from Nature (1998) Parallel problem solving from nature.

Springer-Verlag, London, pp 683–691

35. Yao X, Liu Y, Lin G (1999) Evolutionary programming made

faster. IEEE Trans Evolut Comput 3(2):82–102

36. Fletcher R, Powell MJD (1963) A rapidly convergent descent

method for minimization. Comput J 6(2):163–168

37. Friedman M (1940) A comparison of alternative tests of signifi-

cance for the problem of m rankings. Ann Math Stat 11(1):86–92.

doi:citeulike-article-id:7471117

38. Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehen-

sive learning particle swarm optimizer for global optimization of

multimodal functions. IEEE Trans Evolut Comput 10(3):281–

295. doi:10.1109/tevc.2005.857610

39. Omran MGH, Mahdavi M (2008) Global-best harmony search.

Appl Math Comput 198(2):643–656. doi:10.1016/j.amc.2007.

09.004

40. Brits R, Engelbrecht A, Van den Bergh F (2007) Locating mul-

tiple optima using particle swarm optimization. Appl Math

Comput 189(2):1859–1883

41. Tang K, Li X, Suganthan PN, Yang Z, Weise T (2010) Bench-

mark functions for the CEC’2010 special session and competition

on large scale global optimization. Nature Inspired Computation

and Applications Laboratory, USTC

42. Mallipeddi R, Suganthan P (2010) Problem definitions and

evaluation criteria for the CEC 2010 competition on constrained

real-parameter optimization. Nanyang Technological University,

Singapore

Neural Comput & Applic (2014) 24:853–871 871

123

http://dx.doi.org/10.1016/j.asoc.2011.09.017
http://dx.doi.org/10.1016/j.compstruc.2011.08.002
http://dx.doi.org/10.1016/j.cnsns.2012.05.010
http://dx.doi.org/10.1177/003754970107600201
http://dx.doi.org/10.1007/978-3-642-20859-1_2
http://dx.doi.org/10.1007/978-3-642-20859-1_2
http://dx.doi.org/10.1016/j.eswa.2010.09.032
http://dx.doi.org/10.1016/j.eswa.2010.09.032
http://dx.doi.org/10.1155/2012/712752
http://dx.doi.org/10.1166/asem.2012.1223
http://dx.doi.org/10.1016/j.cnsns.2012.07.017
http://dx.doi.org/10.1016/j.cnsns.2012.07.017
http://dx.doi.org/citeulike-article-id:7471117
http://dx.doi.org/10.1109/tevc.2005.857610
http://dx.doi.org/10.1016/j.amc.2007.09.004
http://dx.doi.org/10.1016/j.amc.2007.09.004

	Incorporating mutation scheme into krill herd algorithm for global numerical optimization
	Abstract
	Introduction
	Preliminary
	Optimization problem
	Harmony search
	Krill herd algorithm
	Motion induced by other krill individuals
	Foraging motion
	Physical diffusion
	Main procedure of the KH algorithm

	Our approach: HS/KH
	Simulation experiments
	General performance of HS/KH
	Influence of control parameter
	Harmony memory consideration rate (HMCR)
	Pitch adjustment rate (PAR)

	Discussion
	Conclusion and future work
	Acknowledgments
	References

