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In this paper, an efficient image deblurring algorithm is proposed. This algorithm restores the

blurred image by incorporating a curvelet-based empirical Wiener filter with a spatial-based joint

non-local means filter. Curvelets provide a multidirectional and multiscale decomposition that has

been mathematically shown to represent distributed discontinuities such as edges better than

traditional wavelets. Our method restores the image in the frequency domain to obtain a noisy

result with minimal loss of image components, followed by an empirical Wiener filter in the curvelet

domain to attenuate the leaked noise. Although the curvelet-based methods are efficient in edge-

preserving image denoising, they are prone to producing edge ringing which relates to the

structure of the underlying curvelet. In order to reduce the ringing, we develop an efficient joint

non-local means filter by using the curvelet deblurring result. This filter could suppress the leaked

noise while preserving image details. We compare our deblurring algorithm with a few competitive

deblurring techniques in terms of improvement in signal-to-noise-ratio (ISNR) and visual quality.
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Introduction
Image deblurring is a classical inverse problem; the goal
of it is to best estimate an image that has been degraded.
Such inverse problems often arise in many image
processing applications such as radiometry, satellite
imaging, optical systems, magnetic resonance imaging
and seismic processing. Deblurring becomes necessary
when we wish a crisp deblurred image for viewing or
further processing.

Wavelets are popular for image representation and
are used in a wide variety of image processing appli-
cations such as compression, and image restoration.1

The main reason for wavelets’ success can be explained
by their ability to sparsely represent one-dimensional
signals which are smooth away from point disconti-
nuities. It is because of this optimality property of
wavelet representations that wavelet-based deblurring
routines have been proposed. However, wavelet repre-
sentations are actually not optimal for all types of
images. Specifically, in dimension two, if we model
images as piecewise smooth functions that are smooth
away from a C2 edge, the standard two-dimensional
(2D) wavelets do not reach the best possible rate. As a
result, denoising estimates based on 2D wavelets tend to
have small unwanted artefacts and complex decision

metrics or schemes need to be utilised to try to improve
the quality of the estimate. In particular, the approxima-
tion error for a wavelet representation decays as O(N21)
as N increases.2 Multidirectional representations such as
curvelets3–5 can provide nearly the optimal approxima-
tion rate for these types of images [the approximation rate
being O(N22(log N)3) as N increases6]. The curvelet
transform is tailored to exploit the structure of images,
such as seismic images,5,7 which contain directionally
oriented features. In this work, we utilise unique proper-
ties to an implementation of the curvelet transform that
offer advantages for the purpose of deblurring.

The concept of using a sparse representation to achieve
good estimates for deblurring has been suggested before
(see, for example, Ref. 8). However, particular features
concerning implementations of such representations that
contribute to performance presented here have not been
previously considered. The performance of the proposed
method is improved by using an empirical Wiener
shrinkage filter. In this case, the curvelet coefficients with
a slightly different decomposition are filtered using the
initial curvelet-based estimate.

In the implementation stage, to surmount the problems
of boundary effects, and to be effective in regularising the
approximate deblurring process, a joint non-local means
(NLM) filter is utilised. The NLM filter9,10 replaces a
pixel’s value by a weighted average of pixels selected
using self-similarity for image denosing. This method
has shown remarkable and convincing results. Our joint
NLM filter modifies the NLM filter using a reference
image to achieve a texture-preserving result.
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Problem statement
The degradation procedure is often modelled as the
result of a convolution with a low-pass filter

y n1,n2ð Þ~Hx n1,n2ð Þzc n1,n2ð Þ

~ h xð Þ n1,n2ð Þzc n1,n2ð Þ
(1)

where x and y are the original image and the observed
image, respectively. c is the noise introduced in the
procedure of image acquisition, and it is generally
assumed to be independent and identically distributed
zero-mean additive white Gaussian noise (AWGN) with
variance s2. denotes circular convolution, and h
denotes the point spread function (PSF) of a linear space
invariant system H.

A naive deblurring estimate
-

x is obtained using the
operator inverse H{1 as:

-

x n1,n2ð Þ~H{1y n1,n2ð Þ~x n1,n2ð ÞzH{1c n1,n2ð Þ

Unfortunately, the variance of the colored noiseH{1c in

-

x is large when H is ill conditioned. Thus, to get a
reasonable image estimate, a method of reducing/
controlling noise needs to be utilised.

Known approaches
In recent years, lots of deblurring algorithms have been
proposed. In these methods, the Wiener filter11,12 and the
constrained least squares algorithm,11 can solve this
problem in the frequency domain in a fast speed.
However, they often obtain a noisy result with ringing
effects. Increased performance of deblurring methods can
be attributed to the inclusion of the wavelet-based
estimators. One such technique called the wavelet-
vaguelette deconvolution was proposed in Ref. 13, and
an improved hybrid wavelet-based regularised deblurring
algorithm that works with any ill-conditioned convolu-
tion system was developed in Ref. 14. This Fourier-
wavelet regularised deconvolution (ForWaRD) method
can obtain good results via tandem scalar shrinkages in
both the Fourier and wavelet domains. However, some-
times the restored images would have slightly low
contrast and ripple artefacts. An extension in shearlet
and incomplete measurements, named as ShearDec and
ForIcM, was proposed in Refs. 15 and 16, respectively.

The iterative deblurring method is another important
category.17–19 The well-known basic iterative methods are
Landweber20 and Richardson–Lucy.21,22 Many exten-
sions and improvements over these methods have been
proposed that include use of the wavelets or other sparse
representations, such as contourlets.23,24 The fast total
variation deconvolution (FTVd) method,25 which is well
known for its edge-preserving capability, can generally
achieve state-of-the-art results, and some iterative meth-
ods for total variation-based image restoration can be
found in Refs. 26–28. The total variation deblurring
method finds approximate solutions to differential
equations in the space of bounded variation functions.
The space of bounded variation functions is a reasonable
functional model for images since it contains piecewise
smooth functions that allow for discontinuities. The
discontinuities can be identified as the image edges.
However, its ability to describe image textures is not
satisfactory. This method usually leads to a slightly
blocky result and some fine image textures are lost.
Because image textures are important visual information

to the human eye, the results with texture loss may show
unnatural looks.

Proposed algorithm
In this paper, we develop an efficient algorithm that
combines the curvelet-based empirical Wiener filter and
the spatial-based joint NLM filter for image deblurring.
We adopt a three-step non-iterative processing proce-
dure, which first uses regularisation in the Fourier
domain to restore a noisy result, and then following an
empirical Wiener shrinkage filter in curvelet domain,
finally, considering that the curvelet deblurring image
preserves most of the important image features, we use it
as a reference image in the spatial denoising for the noisy
image obtained from the first step. Therefore, an
efficient joint NLM filter is developed. Compared with
other spatial algorithms, this proposed spatial filter
could suppress the noise while preserving image details.

Paper organisation
In Section 2, we give a brief introduction to the curvelet
transform. In Section 3, we discuss details about the
proposed deblurring algorithm. In Section 4, we show
some of the simulation results, and present the conclud-
ing remarks in Section 5.

An overview of curvelet transform
Curvelets are new multiscale transforms that represent an
image in terms of shifted versions of a low-pass scaling
function and shifted, dilated and rotated versions of a
prototype band-pass curvelet function. Unlike wavelet
basis functions, each band-pass curvelet basis function
has an elongated envelope with the envelope’s length
scaling as its width squared; this is referred to as the
parabolic scaling law.4 The curvelet transform was
designed to represent edges and other singularities along
curves much more efficiently than traditional transforms.
Formally, curvelets provide optimally economical repre-
sentations for images in so-called C2/C2 spaces. An C2/C2

image comprises twice differentiable regions separated by
piecewise twice differentiable boundary curves. In other
words, an C2/C2 image is a piecewise ‘smooth’ image with
piecewise ‘smooth’ boundary edges.4

In this paper, we use a so-called second-generation
discrete curvelet transform,5 which is extremely simple
to use.

Let m be the collection of triple index (j,l,k), where j, l
and k~ k1,k2ð Þ[Z2 are respectively scale, orientation
and translation parameters. The curvelets are defined as
functions of x[R2 by

Qm xð Þ~Qj,l,k xð Þ~Qj Rhl
x{x

j,lð Þ
k

� �h i
where hl~2p2{tj=2sl, with l50, 1, … such that

0(hl,2p, x
j,lð Þ

k ~R{1
hl

k12{j,k22{j=2
� �

, Rh is the rotation

by h radians and R{1
h is its inverse. In the above, Q is a

waveform which is oscillatory in the horizontal direction
and bell-shaped along the vertical direction.

A curvelet coefficient is then simply the inner product
between an element f [L2 R2

� �
and a curvelet Qm,

cm~Cmf ~Sf ,QmT~

ð
R2

f (x)Qm xð Þdx (2)

which can be evaluated directly in frequency domain.
Here Qm is the conjugation of Qm. Introduce the 2D
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frequency window

Uj vð Þ~2{3j=4W 2{jjvj
� �

V
2tj=2sh

2p

� �
where the radial window W (e.g. Meyer wavelet
window) partitions the frequency domain into annuli

jxj[½2j, 2jz1) and the angular window V partitions the
annuli into wedges hl. By defining the curvelets in the

frequency domain bQQm(v)~Uj Rhl
ð Þe{Sx

j,l

k
,vT. Taking

oriented local Fourier bases on each wedge, and using
Plancherel’s theorem for equation (2), we get

cm~
1

2pð Þ2
ð

f̂f vð ÞUj Rhl
ð ÞeSx

j,lð Þ
k

,vTdv

There are two digital implementations of the curvelet
transform in two dimensions.5 The first digital transfor-
mation is based on unequally spaced fast Fourier
transforms, while the second is based on the wrapping
of specially selected Fourier samples (Wrapping). Both
implementations are fast in the sense that they run in
O(M2 log M) for an M6M image. In addition, they are
also invertible, with rapid inversion algorithms of about
the same complexity. For details, we refer to Ref. 5. In
this paper, the digital transformation based on
‘Wrapping’ is used in the experiments.

Empirical wiener filter and joint NLM
filter

Fourier-based deblurring
The Fourier domain is the traditional choice for
deblurring11 because convolution simplifies to scalar
Fourier operations and it provides the most economical
representation of the colored noise H{1c.14 That is,
equation (1) can be rewritten as

Y k1,k2ð Þ~H k1,k2ð ÞX k1,k2ð ÞzC k1,k2ð Þ (3)

where Y, X, H and c are the 2D discrete Fourier
transforms (DFTs) of y, x, h and c, respectively.
Rewriting the pseudo-inversion operation in the
Fourier domain

~
X k1,k2ð Þ~

X k1,k2ð ÞzC k1,k2ð Þ=H k1,k2ð Þ, if jH k1,k2ð Þjw0,

0, otherwise

�
where

~
X is the DFT of ~x. Equation (4) clearly demonstrates

that noise components where |H(k)|<0 are particularly
amplified during operator inversion.

In our method, we first employ the simplified linear
time invariant (LTI) Wiener shrinkage29 to obtain a
distortion-free but noisy estimate. As reported in Ref. 14,
this LTI Wiener shrinkage is sufficient to significantly
attenuate the amplified noise components with a minimal
loss of image components. When an estimate of the power
spectral density can be accurately determined from a
method such as that proposed in Ref. 29, a LTI Wiener-
based solution can be found by using

Ha k1,k2ð Þ~ H k1,k2ð Þ
jH k1,k2ð Þj2za M2s2=jPsd k1,k2ð Þj½ �

(5)

where s2 is the variance of noise, a[Rz, Psd is the

estimated power spectral density of the image, H is the
complex conjugate of H and M is the size of image. An
image estimate in the Fourier domain can be written by

Xa k1,k2ð Þ~Y k1,k2ð ÞHa k1,k2ð Þ~X k1,k2ð Þ

H k1,k2ð Þ
jH k1,k2ð Þj2za M2s2=jPsd k1,k2ð Þj½ �

zCa

(6)

Ca~C k1,k2ð ÞHa k1,k2ð Þ

The Xa and cHa denote the respective DFTs of the
estimate image xa and the leaked noise ca.

Consequently, after the LTI Wiener shrinkage step
(equation (6)), the leaked noise ca in the xa has substan-
tially reduced variances s2

a,m in all curvelet coefficients. The
variance s2

a,m at curvelet subscript m is given by

s2
a,m~E jSca,QmTj

2
� �

~s2
X
k1,k2

H k1,k2ð Þ
jH k1,k2ð Þj2za M2s2=jPsd(k1,k2)j½ �

Ym k1,k2ð Þ
					

					
2

(7)

where Ym is the DFT of curvelet Qm.

Curvelet-based empirical Wiener filter
The remaining aspect of the deblurring problem is
transformed into a denoising problem in the presence
of leaked noise. Curvelets offer a better representation of
images containing directionally oriented features than
traditional transforms, and the empirical Wiener shrink-
age in the curvelet domain can provide well estimates
of x.

In the case when wavelets are used for image
denoising, it was shown in Ref. 30 that an empirical
Wiener wavelet shrinkage filter typically improves upon
the mean square error performance over that of hard/
soft thresholding. By the empirical Wiener shrinkage, we
mean to weigh the curvelet coefficients as

cw
a,m~ca,m

jce
a,mj

2

jce
a,mj

2
zls2

a,m

(8)

where ce
a,m are the curvelet coefficients from another

denoised estimate, s2
a,m are the noise’s variance at

curvelet subscript m and l is regularisation parameters.
The performance of the proposed method is improved
by using this empirical Wiener shrinkage filter. In this
case, we use two different decompositions (different
decomposition scales and different decomposition orien-
tations). We denote the curvelet coefficients using the
different subscripts m9 and m for the different decom-
positions, respectively (for one curvelet transform
implementation, we used 1, 8, 16, 16, 32 and 32
directions in the scales from coarse to fine; for the other
curvelet transform implementation, we used 1, 16, 32,
32, 64 and 64 directions in the scales from coarse to fine).

To attenuate the leaked noise, the hard-threshold is
first made dependent on the variance of each curvelet-
transform coefficient using the curvelet decomposition
m9. Let ca,m’ denote the curvelet coefficients of the still
noisy image xa for a given regularisation parameter a
and subscript m9. We shrink ca,m’ with the hard-thresh-
olding function HT ca,m’,r

� �
to obtain ce

a,m’.

HT ca,m’,r
� �

~
ca,m’, if jca,m’jwrs2

a,m’,

0, otherwise

(
: (9)

(4)
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Then we compute the inverse curvelet transform with
the ce

a,m’ to obtain an initial curvelet-based estimate xe
a.

Then, we use the xe
a to construct the cw

m . Let ca,m and
ce

a,m denote the curvelet coefficients of the still noisy
image xa and the ‘empirical’ estimate xe

a using curvelet
decomposition m, respectively. Using equation (8), we
can obtain the empirical Wiener curvelet coefficients.
Computing the inverse curvelet transform with cw

a,m, we
can get the curvelet-based empirical Wiener estimate xw

a .
The estimate ce

a,m~Cmxe
a~CmCT

m’c
e
a,m’. The mismatch

between Cm and Cm’ guarantees that the operator CmCT
m’

spreads or stretches the clear image trustworthy
coefficients in ce

a,m’ into a larger number of nonzero
coefficients in ce

a,m. The composite operator CmCT
m’

smooths ce
a,m’ to predict the remaining noise dubious

coefficients, and yields an estimate of the noisy image
coefficients. The empirical Wiener filter designed using
the same curvelet decomposition almost completely
coincides with the hard thresholding filter.30

An important advantage in the use of the curvelet
transform implementation for deblurring is that it has
the ability to represent edges and other singularities
along curves much more efficiently than traditional
transforms. The needle-shape elements of curvelets also
own very high directional sensitivity and anisotropy.
Obviously, it is natural to apply the curvelet for detail-
preserving image deblurring.

Joint NLM filter in spatial domain
As mentioned above, curvelet-based methods produce
edge ringing which relates to the structure of the
underlying curvelet, and most spatial-based algorithms
output much higher quality denoising image with less
artifacts. The NLM filter, as described in Refs. 9, 10 and
31, applied a simple nonlinear filter to remove noise
while retaining the sharpness of edges. Nonlocal
methods are an exciting innovation and work well for
texture-like images containing many repeated patterns.
Given a noisy image u, at a pixel location (i,j), the
restored result ûu(i,j) can be directly calculated by a
weighted average of the intensities in its noisy neigh-
bourhood u(k, l) as follows:

û(i,j)~
X

(k,l)[VP(i,j)

v k,l½ �, i,j½ �ð Þu k,lð Þ (10)

where the weights v k,l½ �, i,j½ �ð Þf gk,l are defined as,

v ½k,l�,½i,j�ð Þ~ 1

Ci,j

exp {
u Ni,j

� �
{u Nk,lð Þ



 

2

2,a

s2
h

0@ 1A (11)

u Ni,j

� �
{u Nk,lð Þ



 

2

2,a

~
XL

m~{L

XL

n~{L

Ga m,nð Þ u Ni,j

� �
m,nð Þ{u Nk,lð Þ m,nð Þ

� �2 (12)

and the VP(i, j) denotes the set of points in the
(2Pz1)6(2Pz1) window centered at (i, j), (2Lz1)6
(2Lz1) is the size of similarity square neighbourhood
window, u(Ni,j) is the image patch centered at pixel
location (i, j) and Ga is a Gaussian kernel, where a is
the standard deviation. sh is the similarity spread in the
image range. Ci,j is the normalisation factor. Eu(Ni,j){

u(Nk,l)E2
2,a is the weighted Euclidean distance of the two

pixels’ neighbourhoods Ni,j and Nk,l with equal size.

This formula amounts to say that the denoised value
at (i,j) is a mean of the values of all points whose
gaussian neighbourhood looks like the neighbourhood
of (i,j). Rather than simply replacing a pixel’s value with
a weighted average of its neighbours in the image
domain, this filter replaces a pixel’s value by a weighted
average of pixels selected using self-similarity to achieve
a texture-preserving result.

The parameter a characterises the spatial behavior of
the filter, but with the changes of the noise level and the
size of VP, a is not easy to select. So we define a simpler
spatial weight function D to replace the Gaussian kernel
Ga

D m,nð Þ~
XL

d~s

1

2dz1ð Þ2
, s~max jmj,jnj,1ð Þ

Let E.ED denote the l2 norm by using weight function D.
That is to say, we use the weight function D to replace
the function Ga in equation (12).

The main problem of the classic non-local filter in
image denoising is that the weights could not be
estimated accurately based on the noisy image. If a
reference contains a much better estimate of the true
high-frequency information than the noisy image,32 we
can present a joint NLM filter to compute the weights.
In this way, the weights could be estimated more
accurately.

Now, we propose the joint NLM algorithm, which is
defined by the simple formula

û i,jð Þ~ 1

Cref
i,jX

(k,l)[VP(i,j)

exp {
Euref Ni,j

� �
{uref Nk,lð ÞE2

D

s2
h

 !
u i,jð Þ

(13)

Considering that the curvelet deblurring image preserves
most of the important image textural features, we use it
as a reference image in the spatial denoising. So the
proposed joint NLM filter is very efficient to improve
the image quality. Then, the restored result xJ using joint
NLM filter can be calculated as follow:

xJ i,jð Þ~ 1

Cref
i,jX

(k,l)[VP(i,j)

exp {
Exw

a Ni,j

� �
{xw

a Nk,lð ÞE2
D

s2
h

 !
xa i,jð Þ

(14)

where xw
a is the curvelet-based estimate.

If we use the joint NLM filter in equation (14)
directly, there are some noise spots in the output
debluring image, especially when the noise level is high.
In this paper, for simplicity, we add the curvelet-based
estimate in the joint NLM filter to suppress the spots.

x̂~bxw
a z 1{bð ÞxJ, b[½0, 1) (15)

This method also can balance the curvelet-based
estimate and joint NLM-based estimate, and improve
the image quality.

Deblurring algorithm
We summarise the main steps of the proposed image
deblurring algorithm as follows (Fig. 1):
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Step 1. Operator inversion and Fourier shrinkage

Obtain Y and H by computing the DFTs of y and h. Then,
apply the LTI Wiener filter Ha (equation (5)) to Y to
obtain Xa. Compute the inverse DFT of Xa to obtain xa.

Step 2. Curvelet-based empirical Wiener filter

1. Compute the curvelet transform of still noisy image
xa to obtain ca,m’, and estimate the variance using
equation (7). Shrink ca,m’ with hard-thresholding
function equation (9) to obtain ce

a,m’. Compute the
inverse curvelet transform with the ce

a,m’ to obtain an
initial curvelet-based estimate xe

a.

2. Compute the curvelet transform of still noisy image
xa and the initial curvelet-based estimate xe

a to
obtain ca,m and ce

a,m using the different curvelet
decomposition from the Step 2?1 (note the difference
between m and m9.) Estimate the variance using
equation (7). Use the empirical Wiener filter (equa-
tion (8)), we can obtain the empirical Wiener
curvelet coefficients cw

a,m. Compute the inverse
curvelet transform with the cw

a,m to obtain the
curvelet-based empirical Wiener estimate xw

a .

Step 3. Joint NLM filter

In the spatial phase, the joint NLM filter for xa using the
previously generated curvelet restoration results xw

a as a
reference image, and then we get the final recovery
image x̂x using equations (14) and (15).

Experiments
In this section, we present results of our proposed
algorithm and compare them with some of the
deblurring methods such as ForWaRD,14 FTVd,25

ShearDec,15 L0-AbS17 and CGMK.18 In these experi-
ments, we will use the improvement in signal-to-noise-
ratio (ISNR) to measure the performance.

The ISNR is defined as

ISNR~10 log10

Ex{yE2
2

Ex{̂xE2
2

 !
In our experiments, we used the following parameter
settings. In the joint NLM filter, we kept a 11611 pixels

search window and a 767 similarity square neighbour-
hood of pixels for all the results reported in this paper,
that is to say, we set P55 and L53. For the parameter
sh, we found that a large value of it would result in a
smooth image, whereas a too small value would lead to
inadequate denoising. The choice of this parameter is
largely heuristic in nature. We have empirically found
that sh[½0:025, 0:05� generally yields good results and
have accordingly used sh50?04 for the results in the
experiments.

In our joint NLM filter, the parameters b in
equation (15) vary with respect to the reference image
quality. Ideally, if the reference image is very close to the
original image, b50 could be good choice. However, in
fact, the reference image is generated from the noisy
image by using the curvelet Wiener shrinkage filter.
Experimental results show that good range for the
parameter is b[½0:3, 0:5�. In this paper, for simplicity, we
set b50?4. And the regularisation parameter a was
estimated by the method proposed in Ref. 14. The
l53?0 in equation (8) and r52?0 in equation (9) for all
experiments. Although better results could be obtained
with ‘optimal’ tuning of these parameters, from our
experience with this method, it is believed that these
heuristic values can achieve good results in most cases.

We consider six benchmark deblurring problems. In
these experiments, the original images are Barbara
(experiments 1, 2 and 3) of size 5126512, Gold Hill of
size 5126512 (experiment 4) and Lena of size 5126512
(experiments 5 and 6). Table 1 summarises the different
degradation models used, which are defined by the blur
type and the variance of the additive white Gaussian noise.

We have compared the ISNR result given by our
approach and the other published state-of-the-art
methods respectively in Tables 2

In the first set of tests, the Barbara image is blurred by
a PSF given by hi,j5(1zi2zj2), i, j527, …, 7, and the
noise variance is s258. The SNR improvements are
summarised in Table 2 under the Exp 1. Our algorithm
outperforms the other methods in terms of ISNR.

In the second set of tests, the Barbara image is blurred
by a 969 uniform box-car blur. The AWGN variance is
0?308. A comparison of different methods in terms of

Table 1 Description of the observation parameters for the five experiments

Blur s2

Exp 1 hi,j5(1zi2zj2), i, j527, …, 7 (Barabra) 8
Exp 2 969 uniform kernel (Barabra) 0.308
Exp 3 [1, 4, 6, 4, 1]T [1, 4, 6, 4, 1]/256 (Barabra) 49
Exp 4 hi,j5(1zi2zj2), i, j527, …, 7 (Gold Hill) 2
Exp 5 Gaussian PSF (25625) with standard deviation 1.6 (Lena) 4
Exp 6 Gaussian PSF (35635)with standard deviation 2.6 (Lena) 4

1 Block-diagram of our algorithm
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ISNR is shown in Table 2 under the Exp 2 column. The
proposed method yields a value of 5?01 dB which is
better than the values obtained by any of the other
methods.

In the third experiment, the original image Barbara is
blurred by a 565 separable filter with weights [1, 4, 6, 4,
1]/16 in both the horizontal and vertical directions and
then contaminated with AWGN with s2549. The details
of the images obtained by the different methods are
shown in Fig. 2. Again, our algorithm performs the best

in terms of ISNR and captures the details better than
any of the other methods. Both the objective and
subjective quality of our estimates are high.

In the forth set of tests, we use the blur filter
considered in Exp 1. The original image of Gold Hill
is blurred by this PSF, and the noise variance s252. The
ISNR values are summarised in Table 2 under the Exp 4
column. The proposed method yields a value of 5?22 dB
which is better than the values obtained by any of the
other methods. The results obtained by different
methods are shown in Fig. 3. One can see that our
method achieves better visual result than the others
algorithms.

In the fifth set of tests, the original image of Lena is
blurred by a Gaussian PSF defined as

h(i,j)~K exp {
i2zj2

2g2

� �
for i, j5212, …, 12, where K is a normalising constant
ensuring that the blur is of unit mass, and g2 is the

Table 2 ISNR for different experiments

Methods Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6

ForWaRD 1.87 4.02 0.94 4.51 3.74 2.34
FTVd 1.67 4.63 0.67 4.98 3.63 2.61
ShearDec 2.54 4.57 1.72 4.66 3.90 2.73
L0-AbS 1.68 3.81 0.78 5.02 4.11 2.87
CGMK 1.34 3.55 0.44 4.95 3.93 2.52
Proposed method 3.97 5.01 2.27 5.22 4.27 3.08

2 Details of the image deblurring experiment with a 5126512 Barbara image: a original image; b blurred image;

c ForWaRD result; ISNR50?94; d FTVd result, ISNR50?67; e ShearDec result, ISNR51?72; f L0-AbS result, ISNR50?78;

g CGMK result, ISNR50?44; h our method result, ISNR52?27

3 Image deblurring experiment with a 5126512 Gold Hill image: a original image; b blurred image; c ForWaRD result,

ISNR54?51; d FTVd result, ISNR54?98; e ShearDec result, ISNR54?66; f L0-AbS result, ISNR55?02; g CGMK result,

ISNR54?95; h our method result, ISNR55?22
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variance that determines the severity of the blur. In this
experiment, we chose g51?6 and the noise variance
s254. We report the simulation results under the Exp 5
column of Table. 2. And Fig. 4 shows the details of the
images obtained by the different methods.

In the above experiments, the blur kernel and the
noise variance are assumed exactly known. In practice,
noise variance error on algorithm effect is very small.
When an inaccurate blur kernel is used as the input,
some distortions will appear in the image recovered. In
light of the robustness to noise and PSF of our method
shown in Fig. 5, we replicated the set-up similar to that
given in Ref. 19. In many practical situations, the PSF is
only partially known and the noise variance contains
error. In this experiment, the Gaussian PSF used to blur
the Lena image has a variance of g256?76, the region of
support is 35635, and the noise variance s254. The
PSF was corrupted with additive white Gaussian noise
of variance 861027, and the noise variance is estimated
as s256?5. Four hundred independent realisations of the
stochastic blurs were formed the common input to each
method. From this experiment, one can see that our

algorithm has good visual and objective quality. The
ISNR values are summarised in Table. 2 under the Exp
6.

Conclusion and future work
In this work, we have proposed an effective image
deblurring method. The curvelet-based empirical Wiener
shrinkage filter and the NLM filter are the exciting
innovation and work well for images containing direc-
tionally oriented features. So our algorithm restores the
blurred image by incorporating a curvelet-based empiri-
cal Wiener filter with a spatial-based joint NLM filter. We
have compared the performance of the proposed method
against the some state-of-the-art methods. Results have
shown that the proposed method is attractive to obtain
a deblurring result with better visual and quantitative
performance.

It is also worth noting that many of the improved/
fast NLM filter methods like33,34 proposed to eliminate
dissimilar pixels in the search window before computing
their weight or to substitute with a more robust similarity

4 Details of the image deblurring experiment with a 5126512 Lena image: a original image; b blurred image; c ForWaRD

result, ISNR53?74; d FTVd result, ISNR53?63; e ShearDec result, ISNR53?90; f L0-AbS result, ISNR54?11; g CGMK

result, ISNR53?93; h our method result, ISNR54?27

5 Image deblurring experiment with a 5126512 Lena image: a blurred image; b ForWaRD, ISNR52?34; c FTVd result,

ISNR52?61; d ShearDec result, ISNR52?73; e L0-AbS result, ISNR52?87; f our final result, ISNR53?08
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metric to achieve better results or much speed-up. These
ideas can be easily adopted into our method and will be in
our future work.
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