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A scheme for giant enhancement of the Kerr nonlinearity in linear triple quantum dot molecules is proposed. In
such a system, the tunneling-induced transparency window obtained in double quantum dot molecules splits into
two windows, due to the coupling with the third quantum dot. And most important, the Kerr nonlinearity can be
enhanced by several orders of magnitude, compared with that generated in double quantum dot molecules. With
proper detuning of the tunneling, giant Kerr nonlinearity accompanied by vanishing absorption can be realized,
which opens the possibility to enhance self-phase modulation in tunneling controllable semiconductor nanostruc-
tures under conditions of low light levels. Quantitative analysis shows that the giant Kerr nonlinearity is attributed
to the interacting double dark resonances induced by the tunneling between the triple quantum dots, therefore no
extra laser fields are required. © 2014 Optical Society of America
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1. INTRODUCTION
The Kerr nonlinearity, corresponding to the refractive part of
the third-order susceptibility in optical media, plays an impor-
tant role in the field of nonlinear optics [1], such as self
focusing [2], the generation of optical solitons [3], polarization
phase gates [4], and so on. The enhanced nonlinear suscep-
tibility with suppressed absorption has attracted tremendous
interest in nonlinear optics at low light levels. The electromag-
netically induced transparency (EIT) scheme is capable of
producing enhanced Kerr nonlinearity and, at the same
time, suppressing the linear absorption [5]. And in order to
enhance the Kerr nonlinearity, several multiple-level atomic
schemes (such as N- [6,7], M- [8], double-Λ [9], inverted-Y
[10], and tripod-type [11,12] systems) have been proposed.
But in all these atomic systems, it is crucial to have additional
coupling lasers to modify the linear and nonlinear optical
properties.

Semiconductor quantum dots (QDs) are collections of thou-
sands of atoms, whose electronic degrees of freedom are dis-
cretized, similar to those of an atom, owing to confinement of
electrons and holes. QDs coherently driven by electromag-
netic fields have been used to investigate quantum coherence
phenomena, such as Autler–Townes splitting (ATS) and Mol-
low triplets [13], EIT [14], and resonance fluorescence [15,16].
Moreover, two or more QDs coupled by tunneling can form
quantum dot molecules (QDMs), in which one can control
the tunneling of electrons or holes by an external electric field
and create a multilevel structure of excitonic states. And both
vertical [17] and lateral [18] double quantum dots (DQDs)
have been realized experimentally. Many studies have been
carried out about such DQDs, such as optical spectroscopy

[19], excitonic entanglement [20], single photon and spin
storage [21], and coherent population trapping (CPT) [22].

Most recently, Borges et al. have proposed a scheme to use
tunneling to induce transparency in DQDs, which is called
tunneling-induced transparency (TIT) [23]. Through TIT, the
linear and nonlinear optical properties of DQDs media can
be modified by using the electric gates. Inspired by this, in this
paper we investigate the Kerr nonlinearity in a linear triple
quantum dots (TQDs). Such molecules have been achieved
in much experimental progress [24–27]. In the presence of
only one tunneling, the system reduces to DQDs and the
enhancement of Kerr nonlinearity is obtained. While under
the coupling of two tunnelings between the TQDs, the Kerr
nonlinearity can be dramatically enhanced compared to that
of DQDs. By proper control of the tunneling, a giant Kerr
nonlinearity accompanied by vanishing absorption can be
realized. And unlike the atomic system, in TQDs the enhanced
Kerr nonlinearity is induced by the tunneling between the
dots, requiring no coupling lasers. The system considered here
opens the possibility to enhance self-phase modulation with
vanishing linear absorption in semiconductor nanostructures
controlled by electric gates.

The remaining of this paper is organized as follows: In
Section 2, we introduce the model and the basic equations.
In Section 3, we describe the numerical results and explain
the corresponding features. Section 4 is the conclusions.

2. TRIPLE QUANTUM DOT SYSTEM
We show the schematic of the band structure and level con-
figuration of a TQD system in Fig. 1. At nanoscale interdot
separation, the hole states are localized in the QDs and the
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electron states are rather delocalized. From Fig. 1(a), in the
absence of a gate voltage, the conduction-band electron levels
are out of resonance and the electron tunneling between the
QDs is very weak. In contrast, in the presence of a gate volt-
age, the conduction-band electron levels come close to reso-
nance and the electron tunneling between the QDs is greatly
enhanced, as shown in Fig. 1(b). In such system, the tunneling
can be controlled by placing a gate electrode between the
neighboring dots. And in the latter case the hole tunneling
can be neglected because of the more off-resonant valence-
band energy levels. Therefore, we can give the schematic of
the level configuration of a TQD system, as shown in Fig. 1(c).
Without the excitation of the laser, no excitons are inside all
QDs, which corresponds to state j0i. When a laser field is ap-
plied, a direct exciton is created inside the QD1, a condition
represented by the state j1i. Under the tunneling couplings,
the electron can tunnel from QD1 to the QD2, and from
QD2 to QD3. And we denote these indirect excitons as state
j2i and state j3i, respectively.

Under the rotating-wave and the electric-dipole approxima-
tions, and after performing the unitary transformation
U � e−iωpt�j1ih1j � j2ih2j � j3ih3j�, which removes the time-
dependent oscillatory terms, the Hamiltonian under the basis
fj0i; j1i; j2i; j3ig can be written as (assumption of ℏ � 1)

HI �

0
BB@

0 −Ωp 0 0
−Ωp δp −T1 0
0 −T1 δp − δ1 −T2

0 0 −T2 δp − δ1 − δ2

1
CCA: (1)

Here, Ωp � μ01 · e · Ep is the Rabi frequency of the transition
j0i → j1i, with μ01 being the associated dipole transition-
matrix element, e the polarization vector, and Ep the electric-
field amplitude of the probe laser. And T1 and T2 are the
tunneling couplings, which depends on the barrier character-
istics and the external electric field. δp � �ω10 − ωp�,
δ1 � δp − ω12, and δ2 � δp − ω12 − ω23 are the detuning of

the probe field and the tunneling couplings, respectively, with
ωmn being the transition frequency between jmi and jni states,
and ωp being the frequency of the probe field. Experimentally,
the value of δ1 and δ2 are controlled by varying the value of δp
and the frequency transition ω12 and ω23, which can be done
by manipulation of the external electric field that changes the
effective confinement potential.

At any time t, the state vector can be written as

jΨI�t�i � a0�t�j0i � a1�t�j1i � a2�t�j2i � a3�t�j3i: (2)

The evolution of the state vector obeys the Schrödinger
equation

d
dt

jΨI�t�i � −iHI�t�jΨI�t�i: (3)

Substituting Eqs. (1) and (2) into Eq. (3), and then using the
Weisskopf–Wigner theory [28–30], we can obtain the follow-
ing dynamical equations for atomic probability amplitudes in
the interaction picture:

i _a0 � −Ωpa1; (4a)

i _a1 � −Ωpa0 − T1a2 � �δp − iγ1�a1; (4b)

i _a2 � −T1a1 − T2a3 � �δp − δ1 − iγ2�a2; (4c)

i _a3 � −T2a2 � �δp − δ1 − δ2 − iγ3�a3; (4d)

ja1j2 � ja2j2 � ja3j2 � ja4j2 � 1; (4e)

where γi � �1∕2�Γi0 � γdi0 (i � 1–3) is the typical effective de-
cay rate, with Γi0 being the radiative decay rate of populations
from jii → j0i and γdi0 being the pure dephasing rates.

Fig. 1. (a) Schematic of band structure without a gate voltage. (b) Schematic of band structure with a gate voltage. (c) Schematic of the level
configuration of a TQD system. (d) Dressed states under the tunneling coupling T2.
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It is well known that the response of the QDs media to the
probe field is governed by its polarization χ. We solve Eq. (4)
and obtain the analytical expressions of the first- and third-
order susceptibilities (see Appendix A):

χ�1� � Γjμ01j2
Vε0ℏ

1

Γ1 −
T2
1Γ3

Γ2Γ3−T2
2

; (5a)

χ�3� � Γjμ01j4
3Vε0ℏ3

1

Γ1 −
T2
1Γ3

Γ2Γ3−T2
2

1���Γ1 −
T2
1Γ3

Γ2Γ3−T2
2

���2
×
�
1� T2

1
Γ2
3

jΓ2Γ3 − T2
2j2

� �T1T2�2
1

jΓ2Γ3 − T2
2j2
�
: (5b)

Here,

Γ1 � δp − iγ1; (6a)

Γ2 � δp − δ1 − iγ2; (6b)

Γ3 � δp − δ1 − δ2 − iγ3; (6c)

and Γ is the optical confinement factor, V is the volume of a
single QD, ε0 is the dielectric constant, and μ01 is the associ-
ated dipole transition-matrix element [31]. According to
Eq. (5), we can obtain the linear absorption Im�χ�1�� and the
refractive part of the third-order susceptibility Re�χ�3��.

3. RESULTS AND DISCUSSION
In TQDs, the tunneling couplings T1 and T2 depend on the
barrier characteristics and the external electric field. Fre-
quency transition ω12 and ω23 can be done by manipulation
of the external electric field that changes the effective confine-
ment potential. In addition, in this investigation we work in the
low temperature regime, and consider both the population
decay rates and the dephasing rates. The realistic values of
the parameters are listed in Table 1, which are according
to Ref. [23] and references therein [32–43]. And for simplicity,
all the parameters are scaled by the decay rate γ1. (Though
some of the value of parameters are for DQDs, it can be in-
ferred that the tunneling, frequency transition, and decay rates
of TQDs have the same values as that of DQDs. And such
TQDs have already been achieved in much experimental
progress [24–27].)

First, in the absence of the tunneling couplings, the electron
cannot tunnel from QD 1 to the other QDs. Thus the system is
reduced to a single QD with one exited state j1i and one
ground state j0i. When the probe field passes through such
QDs media, the normal absorption and nonlinearity curves
of the two-level system are obtained (dotted line in Fig. 2).
In the presence of the tunneling coupling T1, the system turns
to be a DQD system and one transparency window appears, as
shown in Fig. 2(a) by the solid line. The transparency of the
probe field, so-called TIT in [23], is owning to the dark state
induced by the tunneling T1, which can been written as

jDarki � �1∕
������������������
Ω2

p � T2
1

q
��T1j0i − Ωpj2i� under the resonant

coupling. And simultaneously the nonlinearity is enhanced
in the region of the transparency window [solid line in

Fig. 2(b)]. The origination of the enhanced nonlinearity can
be seen below.

When considering the DQD system, i.e., T1 ≠ 0, T2 � 0,
Eq. (5b) is simplified as

χ�3� � Γjμ01j4
3Vε0ℏ3

1

Γ1 −
T2
1

Γ2

1���Γ1 −
T2
1

Γ2

���2
�
1� T2

1

jΓ2j2
�
: (7)

We denote the second term of Eq. (7) as F1�T1�, which is pro-
portional to the square of the tunneling T1. While we denote
the first term of Eq. (7) as F2, which is independent of the
square of T1. Then the Kerr nonlinearity can be written as
χ�3� � F2 � F1�T1�. In Fig. 3, we plot both Re�F1� and
Re�χ�3�� as a function of δp. It can be seen from the figure that
in the region of TIT window the two curves are approximately
coincident. Therefore, it can be concluded that the enhance-
ment of the third-order susceptibility is mainly caused by the
tunneling coupling T1.

Next we apply both tunneling T1 and T2, thus the electrons
can tunnel from QD1 to QD2, then from QD2 to QD3, which
creates a four-level Λ type system. We can analyze this TQD
system by diagonalizing the interaction with the tunneling T2

and show the corresponding dressed states in Fig. 1(d). Under

Table 1. Experimental Values of the Parameters
in TQDs

Parameters Values Regime Values∕γ1 Reference

ℏω10 1.6 eV — [32,33]
ℏω12, ℏω23 −0.01–0.01 meV −1–1 [23,34]
Ωp 1 μeV 0.1 [23,35] �Ωp ≪ T1; T2�
T1, T2 0–10 μeV 0–1 [23,35,36] (TIT regime)
Γ10 0–6.6 μeV 0–0.66 [37]
Γ20, Γ30 10−4Γ10 10−4 × �0–0.66� [38,39]
γ1 2–10 μeV — [40–42]
γ2, γ3 10−3γ1 10−3 [43]
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Fig. 2. Variation of Re�χ�3�� and Im�χ�1�� as a function of the probe
detuning δp with T1 � 0 (dotted line) and T1 � 0.5 (solid line),
(a) Im�χ�1��, (b) Re�χ�3��. Other parameters are T2 � 0, δ1 � 0,
δ2 � 0, γ1 � 1, γ2 � γ3 � 10−3γ1.
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the coupling of tunneling T2, the state j2i splits into two

dressed levels j2�iwith splitting of
�������������������
4T2

2 � δ22

q
and two Λ type

subsystems can be created. In such two Λ type subsystems,
the existence of two distinct dark states jDark�i �
�1∕

���������������������
Ω2

p � T2
1�

q
��T1�j0i −Ωpj2�i� is clear at hand, where

T1� denote the tunneling coupling between the state j1i
and j2�i. Each dark state corresponds to a two-photon reso-
nance between the state j0i and j2�i, and the state j0i and j2

−

i,
respectively. In this case, the single TIT window obtained in
the DQD system splits into two TIT windows, and the position
of these two transparency windows is δp � �δ2∕2� �����������������������������
�δ2∕2�2 � T2

2

q
(dotted line in Fig. 4).

When detuning δ2 � 0, the linear absorption is symmetrical
and two distinct transparency windows induced by the tunnel-
ing T2 can be found at δp � �T2, as shown in Fig. 4(a) by the
dotted line. In the vicinity of the resonance, the third-order
susceptibility Re�χ�3�� is now significantly enhanced by about
2 orders of magnitude compared with the DQD system [solid
line in Fig. 4(a)]. But such enhanced Re�χ�3�� is accompanied
by a strong linear absorption, which is not desirable for appli-
cations of low-intensity nonlinear optics. Fortunately, one can
tune the tunneling to obtain the enhanced Kerr nonlinearity
with vanishing absorption.

We show in Figs. 4(b) and 4(c) the variation of the linear
absorption Im�χ�1�� and the Kerr nonlinearity Re�χ�3�� with non-
zero value of detuning δ2. As detuning δ2 is increased from 0 to
0.4, one can see from the figure that the linear absorption
Im�χ�1�� configuration changes from symmetrical to unsym-
metrical, with one broadened EIT window (left region) and
one narrowed EIT window (right region). Simultaneously,
the enhanced Re�χ�3�� gradually enters the narrowed EIT
window, which means the Kerr nonlinearity is dramatically
enhanced with suppressed linear absorption. The results
can be analyzed in two regions. In the left region, Im�χ�1��
and Re�χ�3�� of the TQD system are similar to those of the
DQD system (Fig. 2). Thus, for certain probe detuning
between δA and δB in Fig. 4(c), the enhanced Re�χ�3�� corre-
sponds to fractional linear absorption. While in the right
region, for certain probe detuning between δC and δD, the
giant enhanced Re�χ�3�� is accompanied by suppressed absorp-
tion, which cannot be obtained in the DQD system.

Now we provide a qualitative explanation for the origina-
tion of the enhanced Kerr nonlinearity. As can be seen, the
third term of Eq. (5b) is proportional to the product of the
two tunneling T1 and T2, which is denoted as F 0

1�T1T2�. While
the other two terms are independent of the product, which is

denoted as F 0
2. Then χ�3� � F 0

2 � F 0
1�T1T2�. For comparison,

we plot the both the term Re�F 0
1� and Re�χ�3�� in Fig. 5 as a func-

tion of δp, with δ2 � 0 and δ2 � 0.4, respectively. From the
figure one can see that the profile of Re�F 0

1� is almost the
same with the third-order susceptibility Re�χ�3�� in the vicinity
of the resonance. So the giant enhancement of the third-order
susceptibility undoubtedly originates from the interaction of
the two tunneling coupling T1 and T2. So here we propose
a new possibility for giant enhancement of Kerr nonlinearity
by combination of two tunneling between the TQDs.

To understand the detuning-dependent behavior, we con-
sider the dressed state approach. Working in an interaction
picture and taking into account only the strong tunneling cou-
pling T1 and T2, the effective Hamiltonian under the basis
fj1i; j2i; j3ig can be written as

H �
2
4 0 −T1 0
−T1 −δ1 −T2

0 −T2 −δ1 − δ2

3
5: (8)

And the eigenstates of this interaction Hamiltonian is the set
of three linear combinations of the energy eigenstates j1i, j2i
and j3i, and they are given by the formulas
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1
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Fig. 3. Variation of Re�F1� (solid line) and Re�χ�3�� (dotted line) as a
function of the probe detuning δp. Parameters are the same as those in
Fig. 2.
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Fig. 4. Variation of Re�χ�3�� (solid line) and Im�χ�1�� (dotted line) as a
function of the probe detuning δp with different values of detuning δ2:
(a) δ2 � 0, (b) δ2 � 0.2, (c) δ2 � 0.4. Other parameters are T1 � 0.5,
δ1 � 0, T2 � 0.1, γ1 � 1, γ2 � γ3 � 10−3γ1.
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jii � cos φ cos θj1i � sin φj2i � cos φ sin θj3i; (9)

where

tan φ � AB������������������
A2 � B2

p ; (10a)

tan θ � A
B
; (10b)

A � λi
T1

; (10c)

B � λi − �δ1 � δ2�
T2

: (10d)

Here, λi is the eigenvalue of the dressed level jii (i � a, b, c),
giving the relative energy of the dressed sublevels jii (i � a, b,
c) generated by T1 and T2. Therefore, the weak probe field
couples the transition from state j0i to the dressed state jii
(i � a, b, c), as shown in Fig. 6(a). If the frequency of the
probe field is chosen such that it is in resonance with one
of the transition j0i↔jii, then the maximal absorption is ob-
tained. And the destructive interference between the three ab-
sorptive channels j0i → jai and j0i → jbi, also jbi↔j0i and
j0i → jci can lead to the two dark states, which correspond
to the two transparency windows.

From Eqs. (9) and (10), one can note that as the eigenvalues
of the three dressed sublevels are dependent on the detuning
δ2, so is the position of the absorption peaks. In order to see
the influence of the detuning δ2 on the position of the dressed
states, we plot the eigenenergies (λi, i � a, b, c) as a function
of the detuning δ2 [see Fig. 6(b)]. When the detuning δ2 � 0,

from the figure one can see that the energy difference be-
tween the dressed state jai and jbi is equal to that of between
jbi and jci. Therefore, the absorption profile is symmetrical,
with the same width of two transparency windows. In this
case although the Kerr nonlinearity is enhanced, it is accom-
panied by strong linear absorption. As changing the detuning
δ2 from 0 to 0.4, the energy difference between the dressed
states jai and jbi decreases, while the energy difference be-
tween the dressed states jbi and jci increases. As a result,
the absorption profile is unsymmetrical, and the width of
the left transparency window becomes wider, and that of
the right one becomes narrower. Within the narrower win-
dow, the steep dispersion profile of the probe field makes
it possible to enhance the Kerr nonlinearity accompanied
by vanishing absorption. The result demonstrates that the
widths of the transparency window and the Kerr nonlinearity
can be significantly modified by the detuning of the tunneling.

4. CONCLUSIONS
In this paper, we demonstrate that it is possible to obtain giant
enhancement of Kerr nonlinearity in linear TQDs. Compared
with single QD, the Kerr nonlinearity obtained in DQDs is en-
hanced in the TIT window. The analytical expression clearly
demonstrates that the enhancement of the Kerr nonlinearity is
owing to the tunneling between the DQDs. When considering
the TQDs, two TIT windows are obtained and the Kerr non-
linearity can be dramatically enhanced compared to that of
DQDs. And the properties of TIT windows and the Kerr non-
linearity are significantly modified by changing the detuning
of the tunneling. With the proper detuning of the tunneling,
the giant Kerr nonlinearity can be accompanied by vanishing
linear absorption. Quantitative analysis shows that the giant
enhancement of the Kerr nonlinearity is attributed to the in-
teracting double dark resonances induced by the tunneling in
the TQDs. Potential applications of such semiconductor nano-
structures are to the enhancement of self-phase modulation at
low light levels, such as optical solitons and self focusing.

APPENDIX A
The analytical expressions of the first- and third-order suscep-
tibilities can be obtained by solving Eq. (4). Under the steady-
state condition, Eqs. (4a)–(4d) can be set to zero; then
substitute Eq. (6) into Eqs. (4a)–(4d):

−Ωpa1 � 0; (A1a)
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Fig. 5. Variation of Re�F 0
1� (solid line) and Re�χ�3�� (dotted line) as a

function of the probe detuning δp with different values of detuning δ2:
(a) δ2 � 0, (b) δ2 � 0.4. Other parameters are the same as those
in Fig. 4.

a

b

c

0

pω

(a)

-1 -0.5 0 0.5 1
-1.5

-1

-0.5

0

0.5

1

1.5
(a)

δ
2
/Γ

10

λ i/Γ
10

λ
a

λ
b

λ
c

(b)
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δ2. The parameters are the same as those in Fig. 4.
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−Ωpa0 − T1a2 � Γ1a1 � 0; (A1b)

−T1a1 − T2a3 � Γ2a2 � 0; (A1c)

−T2a2 � Γ3a3 � 0; (A1d)

ja1j2 � ja2j2 � ja3j2 � ja4j2 � 1: (A1e)

Γ3 × (A1c) − T2 × (A1d),

a2 �
T1Γ3

Γ2Γ3 − T2
2

a1: (A2)

Substituting Eq. (A2) into Eq. (A1b), then

a1 �
Ωp

Γ1 −
T2
1Γ3

Γ2Γ3−T2
2

a0: (A3)

Substituting Eq. (A3) into Eq. (A2), then

a2 �
T1Γ3

Γ2Γ3 − T2
2

Ωp

Γ1 −
T2
1Γ3

Γ2Γ3−T2
2

a0: (A4)

Substituting Eq. (A4) into Eq. (A1d), then

a3 �
T1T2

Γ2Γ3 − T2
2

Ωp

Γ1 −
T2
1Γ3

Γ2Γ3−T2
2

a0: (A5)

Substituting Eq. (A3)–(A5) into Eq. (A1e), then

ja0j2 �
1

1� Ω2
p���Γ1−

T2
1
Γ3

Γ2Γ3−T
2
2

���2
�
1� T2

1
Γ2
3

jΓ2Γ3−T2
2j2

� �T1T2�2 1
jΓ2Γ3−T2

2j2

� :

(A6)

Ωp → 0 (TIT condition), so �1∕1� x� → 1 − x. Thus,

ja0j2 � 1 −
Ω2

p���Γ1 −
T2
1Γ3

Γ2Γ3−T2
2

���2
×
�
1� T2

1

Γ2
3

jΓ2Γ3 − T2
2j2

� �T1T2�2
1

jΓ2Γ3 − T2
2j2
�
: (A7)

The coherence element between state j0i and j1i is

ρ01 � a1a�0 � Ωp

Γ1 −
T2
1Γ3

Γ2Γ3−T2
2

ja0j2: (A8)

Substituting Eq. (A7) into Eq. (A8), then

ρ01 �
Ωp

Γ1 −
T2
1Γ3

Γ2Γ3−T2
2

2
41 − Ω2

p���Γ1 −
T2
1Γ3

Γ2Γ3−T2
2

���2
×

 
1� T2

1

Γ2
3

jΓ2Γ3 − T2
2j2

� �T1T2�2
1

jΓ2Γ3 − T2
2j2
��

: (A9)

The susceptibility χ is proportional to ρ01; then

χ � Γjμ01j2
Vε0ℏΩp

ρ01 �
Γjμ01j2
Vε0ℏ

1

Γ1 −
T2
1Γ3

Γ2Γ3−T2
2

×

2
41 − Ω2

p���Γ1 −
T2
1Γ3

Γ2Γ3−T2
2

���2
 
1� T2

1
Γ2
3

jΓ2Γ3 − T2
2j2

� �T1T2�2
1

jΓ2Γ3 − T2
2j2
��

: (A10)

This expression includes all the linear and nonlinear contribu-
tions due to the two tunneling couplings. And susceptibility χ
can be written as [6–12]

χ � χ�1� � χ�3�Ω2
p: (A11)

That is to say, the first-order susceptibilities are proportional
to Ω�0�

p , and third-order susceptibilities are proportional to Ω2
p;

thus

χ�1� ∝
1

Γ1 −
T2
1Γ3

Γ2Γ3−T2
2

; (A12a)

χ�3� ∝
1

Γ1 −
T2
1Γ3

Γ2Γ3−T2
2

1���Γ1 −
T2
1Γ3

Γ2Γ3−T2
2

���2
×

 
1� T2

1
Γ2
3

jΓ2Γ3 − T2
2j2

� �T1T2�2
1

jΓ2Γ3 − T2
2j2
!
: (A12b)

ACKNOWLEDGMENTS
This project received financial support from the National
Basic Research Program of China (grant 2013CB933300),
the National Natural Science Foundation of China (grants
11304308 and 61176046), Jilin Provincial Natural Science
Foundation (grant 20140101203JC), and the Hundred Talents
Program of the Chinese Academy of Sciences.

REFERENCES
1. R. W. Boyd, Nonlinear Optics (Academic, 1992).
2. S. Chi and Q. Guo, “Vector theory of self-focusing of an optical

beam in Kerr media,” Opt. Lett. 20, 1598–1600 (1995).
3. V. Tikhonenko, J. Christou, and B. Luther-Davies, “Three dimen-

sional bright spatial soliton collision and fusion in a saturable
nonlinear medium,” Phys. Rev. Lett. 76, 2698–2701 (1996).

4. S. Rebic, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F.
Cataliotti, and R. Corbalan, “Polarization phase gate with a
tripod atomic system,” Phys. Rev. A 70, 032317 (2004).

5. S. E. Harris, “Electromagnetically induced transparency,” Phys.
Today 50(7), 36–42 (1997).

6. H. Schmidt and A. Imamoglu, “Giant Kerr nonlinearities
obtained by electromagnetically induced transparency,” Opt.
Lett. 21, 1936–1938 (1996).

Tian et al. Vol. 31, No. 7 / July 2014 / J. Opt. Soc. Am. B 1441



7. H. Kang and Y. F. Zhu, “Observation of large Kerr nonlinearity at
low light intensities,” Phys. Rev. Lett. 91, 093601 (2003).

8. A. B. Matsko, I. Novikova, G. R. Welch, and M. S. Zubairy, “En-
hancement of Kerr nonlinearity by multiphoton coherence,”
Opt. Lett. 28, 96–98 (2003).

9. Y. P. Niu, S. Q. Gong, R. X. Li, Z. Z. Xu, and X. Y. Liang, “Giant
Kerr nonlinearity induced by interacting dark resonances,” Opt.
Lett. 30, 3371–3373 (2005).

10. A. Joshi and M. Xiao, “Phase gate with a four-level inverted-Y
system,” Phys. Rev. A 72, 062319 (2005).

11. S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F.
Cataliotti, and R. Corbalán, “Polarization phase gate with a tri-
pod atomic system,” Phys. Rev. A 70, 032317 (2004).

12. Y. X. Han, J. T. Xiao, Y. H. Liu, C. H. Zhang, H. Wang, M. Xiao,
and K. C. Peng, “Interacting dark states with enhanced nonli-
nearity in an ideal four-level tripod atomic system,” Phys.
Rev. A 77, 023824 (2008).

13. X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D.
Gammon, and L. J. Sham, “Coherent optical spectroscopy of
a strongly driven quantum dot,” Science 317, 929–932 (2007).

14. S. Marcinkevicius, A. Gushterov, and J. P. Reithmaier,
“Transient electromagnetically induced transparency in self-
assembled quantum dots,” Appl. Phys. Lett. 92, 041113 (2008).

15. A. Nick Vamivakas, Y. Zhao, C. Y. Lu, and M. Atatüre, “Spin-
resolved quantum-dot resonance fluorescence,” Nat. Phys. 5,
198–202 (2009).

16. E. B. Flagg, A. Muller, J. W. Robertson, S. Founta, D. G. Deppe,
M. Xiao, W. Ma, G. J. Salamo, and C. K. Shih, “Resonantly driven
coherent oscillations in a solid-state quantum emitter,” Nat.
Phys. 5, 203–207 (2009).

17. M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski,
Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and entan-
gling of quantum states in quantum dot molecules,” Science 291,
451–453 (2001).

18. G. J. Beirne, C. Hermannstädter, L. Wang, A. Rastelli, O. G.
Schmidt, and P. Michler, “Quantum light emission of two lateral
tunnel-coupled (In,Ga)As/GaAs quantum dots controlled by a
tunable static electric field,” Phys. Rev. Lett. 96, 137401 (2006).

19. E. A. Stinaff, M. Scheibner, A. S. Bracker, I. V. Ponomarev, V. L.
Korenev, M. E. Ware, M. F. Doty, T. L. Reinecke, and D.
Gammon, “Optical signatures of coupled quantum dots,”
Science 311, 636–639 (2006).

20. D. Kim, S. G. Carter, A. Greilich, A. S. Bracker, and D. Gammon,
“Ultrafast optical control of entanglement between two
quantum-dot spins,” Nat. Phys. 7, 223–229 (2010).

21. A. Boyer de la Giroday, N. Sköld, R. M. Stevenson, I. Farrer, D. A.
Ritchie, and A. J. Shields, “Exciton-spin memory with a semicon-
ductor quantum dot molecule,” Phys. Rev. Lett. 106, 216802
(2011).

22. K. M. Weiss, J. M. Elzerman, Y. L. Delley, J. Miguel-Sanchez, and
A. Imamoğlu, “Coherent two-electron spin qubits in an optically
active pair of coupled InGaAs quantum dots,” Phys. Rev. Lett.
109, 107401 (2012).

23. H. S. Borges, L. Sanz, J. M. Villas-Bôas, O. O. Diniz Neto, and
A. M. Alcalde, “Tunneling induced transparency and slow light
in quantum dot molecules,” Phys. Rev. B 85, 115425 (2012).

24. C. Y. Hsieh, Y. P. Shim, M. Korkusinski, and P. Hawrylak, “Phys-
ics of lateral triple quantum-dot molecules with controlled elec-
tron numbers,” Rep. Prog. Phys. 75, 114501 (2012).

25. Q. H. Xie, A. Madhukar, P. Chen, and N. P. Kobayashi, “Vertically
self-organized InAs quantum box islands on GaAs(100),” Phys.
Rev. Lett. 75, 2542–2545 (1995).

26. G. Rainò, A. Salhi, V. Tasco, M. De Vittorio, A. Passaseo, R.
Cingolani, M. De Giorgi, E. Luna, and A. Trampert, “Structural
and optical properties of vertically stacked triple InAs dot-
in-well structure,” J. Appl. Phys. 103, 096107 (2008).

27. R. Songmuang, S. Kiravittaya, and O. G. Schmidt, “Formation of
lateral quantum dot molecules around self-assembled nano-
holes,” Appl. Phys. Lett. 82, 2892–2894 (2003).

28. G. S. Agarwal, Quantum Optics (Springer-Verlag, 1974).
29. S. M. Barnett and P. M. Radmore,Methods in Theoretical Quan-

tum Optics (Oxford University, 1997).
30. A. Jun Li, X. Li Song, X. G. Wei, L. Wang, and J. Y. Gao, “Effects

of spontaneously generated coherence in a microwave-
driven four-level atomic system,” Phys. Rev. A 77, 083806
(2007).

31. J. Kim, S. L. Chuang, P. C. Ku, and C. J. Chang-Hasnain, “Slow
light using semiconductor quantum dots,” J. Phys. Condens.
Matter 16, S3727 (2004).

32. N. H. Bonadeo, J. Erland, D. Gammon, D. Park, D. S. Katzer, and
D. G. Steel, “Coherent optical control of the quantum state of a
single quantum dot,” Science 282, 1473–1476 (1998).

33. H. Kamada, H. Gotoh, J. Temmyo, T. Takagahara, and H. Ando,
“Exciton Rabi oscillation in a single quantum dot,” Phys. Rev.
Lett. 87, 246401 (2001).

34. H. S. Borges, L. Sanz, J. M. Villas-Bôas, and A. M. Alcalde,
“Robust states in semiconductor quantum dot molecules,” Phys.
Rev. B 81, 075322 (2010).

35. A. Tackeuchi, T. Kuroda, and K. Mase, “Dynamics of carrier
tunneling between vertically aligned double quantum dots,”
Phys. Rev. B 62, 1568–1571 (2000).

36. H. S. Borges, L. Sanz, J. M. Villas-Boas, and A. M. Alcalde, “Quan-
tum interference and control of the optical response in quantum
dot molecules,” Appl. Phys. Lett. 103, 222101 (2013).

37. P. Chen, C. Piermarocchi, and L. J. Sham, “Control of exciton
dynamics in nanodots for quantum operations,” Phys. Rev. Lett.
87, 067401 (2001).

38. V. Negoita, D. W. Snoke, and K. Eberl, “Harmonic-potential traps
for indirect excitons in coupled quantum wells,” Phys. Rev. B
60, 2661–2669 (1999).

39. T. Takagahara, “Theory of exciton coherence and decoherence
in semiconductor quantum dots,” Phys. Status Solidi A 234,
115–129 (2002).

40. P. Borri, W. Langbein, U. Woggon, M. Schwab, M. Bayer, S.
Fafard, Z. Wasilewski, and P. Hawrylak, “Exciton dephasing
in quantum dot molecules,” Phys. Rev. Lett. 91, 267401
(2003).

41. G. Ortner, M. Schwab, P. Borri, W. Langbein, U. Woggon, M.
Bayer, S. Fafard, Z. Wasilewski, P. Hawrylak, Y. B. Lyanda-
Geller, T. L. Reinecke, and A. Forchel, “Exciton states in self-
assembled InAs/GaAs quantum dot molecules,” Physica E 25,
249–260 (2004).

42. C. Bardot, M. Schwab, M. Bayer, S. Fafard, Z. Wasilewski, and P.
Hawrylak, “Exciton lifetime in InAs/GaAs quantum dot mole-
cules,” Phys. Rev. B 72, 035314 (2005).

43. L. V. Butov, A. Zrenner, G. Abstreiter, G. Bohm, and G. Weimann,
“Condensation of indirect excitons in coupled AlAs/GaAs quan-
tum wells,” Phys. Rev. Lett. 73, 304–307 (1994).

1442 J. Opt. Soc. Am. B / Vol. 31, No. 7 / July 2014 Tian et al.


	XML ID ack1

