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Degradation of fiber coupling efficiency, caused by atmospheric turbulence, seriously hinders the
performance of free space optical (FSO) communication systems. Holographic modal wave-front sensor
(HMWES), noted for its fast detecting rates and insensitivity to beam scintillation, is creatively applied to
FSO communication systems in this paper. We analyze the principle of HMWFS and the relationship
between fiber coupling efficiency and Strehl rate in theory, then simulate wave-front aberrations
detection and correction in FSO communication systems. Additionally, the impact on fiber coupling
efficiency of the FSO communication systems before and after aberrations correction based on HMWEFS is
fully discussed. The results show that HMWFS cater for weak atmospheric turbulence with the root-
mean-square (RMS) value of residual aberrations less than 0.044 and the peak-to-valley (PV) value less
than 0.254, while the fiber coupling efficiency is increased from nearly 30% to more than 70%.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

FSO communication systems transmit laser beam signals
through the atmosphere, whose advantages include relatively
low-cost, highly secure with dense spatial reuse, and low power
usage per transmitted bit capabilities [1-3]. However, the atmo-
spheric turbulence can have a tremendous impact on FSO com-
munication systems [4-8], resulting in both phase and amplitude
fluctuations of the received signal. Therefore, fiber coupling
efficiency of the FSO communication system severely decreases
and so does the system's performance.

Similar researches have been done before. Yamac [9] has
deduced the relationship between the atmosphere refraction con-
stant and the fiber coupling efficiency. Jing Ma [10] has analyzed
the fiber coupling efficiency with the change of characteristic
parameters of the localized distortion. Morio Toyoshima [11] has
discussed the random angular jitter in relation to fiber coupling
efficiency, and then analyzed the impact on bit error ratio.

Adaptive optics (AO) system can be applied to FSO communica-
tion systems to improve fiber coupling efficiency, by reducing the
effects of atmospheric turbulence with wave-front aberrations cor-
rection [12-15]. The wave-front sensor (WFS) is a key component to
detect spatiotemporally varying wave-front errors in AO system.
Generally, the Shack-Hartmann wave-front sensor (SH-WES) is
widely used as an effective WFS [16-18]. However, considering the
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scintillation of the laser caused by atmospheric turbulence is so
strong that SH-WFS might not be able to detect the laser intensity all
the time. Sensor-less wave-front measurement technology has been
developing rapidly. For instance, stochastic parallel gradient descent
(SPGD) algorithm is proposed to control the wave-front correctors in
AO systems, but the control bandwidth is not large enough and the
control process may be divergent in a particular situation [19-23].
The algorithm based on a transport of an intensity equation-based
numerical method is used to obtain the wave-front aberrations. The
intensity and phase are both reconstructed by numerical computa-
tion, such as fast Fourier transform (FFT), and multi-grid. However,
the algorithm is more complicated [24].

Recently, a new model wave-front sensor using the holographic
phase or binary phase mark to measure directly the Zernike
components of an aberrated wave-front was proposed [25,26]. The
development of holography [27-29] provides a new thought for the
model wave-front. A holographic modal wave-front sensor (HMWEFS)
provides an alternative method to detect the wave-front aberrations.
HMWES converts the phase information into intensity information,
thus the phase information can be extracted from the relative
intensity of pairs of focal spots [30-32]. The relative intensity
information can be obtained by fast photo detectors and some
simple circuits, for example the high-speed charge coupled device
(CCD) camera, the Avalanche photon diode (APD) array and so on, so
resulting in fast detecting rates. In this paper, we propose the method
of wave-front detection based on HMWES in FSO communication
system, and analyze the impact on fiber coupling efficiency.

The remainder of this paper is organized as follows. Section 2
illustrates the principle and model of the holographic modal
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wave-front sensing, HMWES and the fiber coupling efficiency of
FSO communication system. In Section 3, we simulate the
procedure of wave-front aberrations detection based on HMWFS
in the FSO communication systems, and discuss the impact on
fiber coupling efficiency of the FSO communication systems
before and after the aberrations correction based on HMWEFS. In
Section 4, we summarize and present our conclusions.

2. Theoretical analysis
2.1. Holographic modal wave-front sensing principle

We propose a FSO system wave-front sensing method based on
HMWES. The fundamental principle of holographic mode wave-
front sensing is shown in Fig. 1.

Where the output laser beam is collimated into the standard
plane wave after spatial filter P1, followed by a tunable aperture P2
matching the beam diameter to the clear aperture of a holograph.

BS1 SLM

Laser

- Hologram

CCD1/ \‘
APD Array

BS2

Before Correction

. -

‘After Correction

Fig. 1. Schematic view of the holographic modal wave-front sensing.
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Through spatial light modulator (SLM) and beam splitter (BS1 and
BS2), the plane wave, loaded with a measurable wave-front
aberration, is split into two parts. One projects the before-
correction laser image on CCD2, while the other entering holo-
graphic wave-front sensor forms multiple groups of spots on the
focal plane of CCD1/APD array. By comparing the relative intensity
of spots, the wave-front aberrations are obtained. Naturally, the
corrected laser image can be obtained on CCD1/APD array by
manipulating the SLM to correct wave-front aberrations.

2.2. Holographic modal wave-front sensor

The theoretical layout of HMWEFS is shown in Fig. 2.

A hologram is recorded between an object beam with the
minimum expected amplitude of the aberration A;,Z; and a
reference beam focused at point A on a distant detector, as shown
in Fig. 2(a). Where Z; is a Zernike polynomial of order i. Ay, is the
minimum measurable amplitude aberrations. The second holo-
gram is then recorded between an object beam with the max-
imum amplitude of the aberration AnaxZ; and a reference beam
focused at a different point B, as shown in Fig. 2(b). Where Apmax is
the maximum measurable amplitude aberration. According to the
characteristics of the multiple holographic elements, a multi-
plexed hologram is generated by the pair of hologram [32].

When this hologram is reconstructed with an input beam with
some amplitude, A;, which is between the maximum and mini-
mum values, there will be two focused beams produced at point A
and point B, as shown in Fig. 2(c). The relative intensity of point A
and point B is related to the coefficient of Zernike item. Thus, after
a calibration, it is possible to obtain the amplitude simply by
sensing the spot intensities.

Additionally, to increase the number of aberration detected
modes, the multiplexed hologram needs only to be encoded with
more pairs of holograms. Since the pairs of spots are spatial
separate, the amplitudes of pairs of spots can be parallel read
out through sensor array. Thus, the Zernike modal amplitude can
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Detect Plane

Fig. 2. The theory of HMWES.
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be obtained by comparing the relative intensity of pairs of spots,
and then the wave-front aberrations are obtained.

In the mth hologram, another interfered beam is an aberration
biased, the complex amplitude Usn,(r) is given by the following
equation:

Usin(rsm) = Usmo expliW(rsm)] (1

where Us ¢ is the amplitude of the interfered beam, W(rs,) is the
phase of the interfered beam. Expand the phase item by orthogo-
nal Zernike polynomial, as given by

W(rsm) = Z Emil; )
J

where &p,; is the amplitude of the Zernike mode, Z; is the Zernike
polynomial of order j. In the following analysis, we assume that
the multiplicity of the hologram is neglected. According to Fourier
optics, suppose the amplitude of the signal laser beam is Us, the
phase function is ¢h(rs), then the complex amplitude of the signal
laser beam Us(r) can be expressed as

Us(r) = Us o explig(rs)] 3

Similarly, the complex amplitude of the reference laser beam
Ug(r) can be expressed as

Ur(r) = Ugp explig(rp)] 4)

Fig. 3. Computer-generated holograph.
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Fig. 4. Distribution of introduced aberrations, RMS = 0.16044, PV = 1.24844.

where Ug is the amplitude of the reference laser beam, and ¢(rg)
is the phase function of the reference laser beam.

The two waves interfere in the recording medium, and generate
a holographic pattern. If we use a replay laser beam with random
aberrations to illuminate the holographic pattern, the wave-front
of signal laser beam can be reconstructed on the focal plane. The
random aberrations, we mention here, allow for the time-variable
laser beam phase distortion, caused by atmosphere turbulence.
The diffraction field distribution on the focal plane shall be
expressed as

Uy(ry) = /(U}‘UR+C.C)Up(rp,r)G(rd,r) dr (5)

Fig. 5. Intensity distribution on the focal plane before correction (partial
enlargement).

Fig. 6. The distribution of the speckle on a holographic image plane.
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Fig. 7. Distribution of detected aberrations, RMS = 0.17414, PV = 1.3134..
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where c.c is a constant, U% is the conjugate of Us(r), Up(rp, 1) is the
replay laser beam, and the G(rg4, 1) is the Green Function. In free
space, G(ry,7) can be approximately expressed as

explikal(xa—%)* + g —¥)* +@a—2°1"%}

G(rg,n = 2

(6)
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Fig. 8. Distribution of residual aberrations, RMS = 0.07334, PV = 0.4498,.

Fig. 9. Intensity distribution on focal plane after correction (partial enlargement).
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where k; is the wave vector of laser beam Uy(rg) and (x4, Y4, 24) and
(x,y,z) are space coordinates.

Satisfying Fresnel approximation condition, the secondary
phase factor of Eq. (6) can be expanded as

[(Xa—X)* + (Vg —Y)* + (24 —2)2 12

(Xd X+ (g —

(Xd*X)ZHJ’d* >
+z|l———=
2z42

y)
2Zd2 :| @)

Concerning the thickness L of the holograph, the complex
amplitude distribution of an image plane is given by

Ud(rd)w/ dVexp{—lksz< §R>}

exp(—iksEg)exp [ikdz< 5")} exp(ikq&y)
xexp[—iWx, YI[1(x—a,y —b)Up(rp) (8)

where & = (k=% + (Vg —¥)*/22r) and & =((Xa—%)*+—Y)*/
2z,), I1 is the pupil function, restricting the integral scope into the
pupil, the volume of the holograph is V = abL.

Neglecting the thickness of the holograph, Eq. (8) can be
further simplified as

Ug(rg) ~ / dx/ dyexp{ (RX+RU/R]

(X =%+ (¥4 —Y)T

Az d

~Z4

xexp [in
xexp[—iWx, MI[T(x—a,y —b)Up(xp, yp) C)

where the range of integration is limited within pupil. a and b are
respectively the length and width of the hologram. Processing the
secondary phase factor of Eq. (9), we have

Ud(rd)%eXD<Uf &> +Ya )//exp{ %

x ex iﬁxz +y°
P Az

xexp <— 1271%) dx dy
N . Xdz +yd2
A exp (lﬂiﬁz )
X)" +
{exp { ( R —X)? Az(yR

x[1(x—a,y—b)Up(xp, yp)

) x exp[—iWEx,MI[1(x—a,y —b)Up(xp, yp)

} exp[—iW(x,y)]
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Fig. 10. Comparison of the intensity distribution before and after correction.
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. X2 4y?
exp (m ye

)} (10)
fx=&a/22)fy = (Va/22)
where F{.} is the Fourier transform.

Based on the above analysis, Fresnel integral, under thin
hologram assumption conditions, is simplified into Fourier trans-
form. Thus, it is simple to compute fast Fourier transform (FFT),
and then the distribution of complex amplitude on holographic
plane can be solved by the numerical method.

2.3. Fiber coupling efficiency analysis of FSO communication system

Generally, the received laser carrier signal should be firstly
coupled into a single-mode fiber (SMF) in order to be amplified,
detected or de-multiplexed [32,33]. The fiber coupling efficiency of
the SMF is defined as the ratio of the average power coupled into

Table 1
Fiber coupling efficiency before and after aberrations correction.

Coupling efficiency before correction Coupling efficiency after correction

0.2198 0.5993
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the fiber to the average power on the receiver aperture plane [34],
which is given by the following equation:
2
‘f[Af(r)Mz(r)dzr‘
oo
JADAFT)d*T x [[Mo(nMi(ryd*r

where As(r) is the Fourier transform of the single-mode fiber optical
field, Mo(r) is the incident optical field on the focal plane, As(r) and
My(r) are complex quantities. Since Eq. (11) is too complex to
calculate, the Strehl ratio is introduced to approximate the average
fiber coupling efficiency [35], as given by the following equation:

SToo |Af(r0)|2

an

12)

where r is the desired on-axis location of the center of the fiber end
within this plane. In this paper, we will calculate the Strehl ratio of
the laser images on the focal plane before and after aberrations
compensation respectively to analyze the fiber coupling efficiency.

3. Numerical simulation

In terms of the computer-generated holograph, the center wave-
length of the laser is A = 632.8 nm, the number of sampling points of
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Fig. 11. Results of the six groups simulation.
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Fig. 11. (continued)

holographic grating is 600 x 600 pixels, the aperture of holographs is
60 mm, the distance between the image plane and the holographic
plane is 1500 mm, the off-axis distance of the spot on focal plane is
larger than 1 cm. We code the low eight order Zernike aberrations
(Z3, 74, ..., Z10). Where the peak-to-valley (PV) value of Z3, 74, Z5 is
/2, and the PV value of Z6, 77, Z8, 79, Z10 is A/4. The holograph we
eventually obtained is shown in Fig. 3.

Then, we detect the Zernike aberrations based on the holo-
graph, as shown in Fig. 3. Before detection, the relationship of
relative intensity and Zernike item is calibrated. The calibration
method is as follows: at first, a certain Zernike aberration is
introduced independently, and then the amplitude of this aberra-
tion is adjusted continuously. Simultaneously, the relative inten-
sity of the spots within detector aperture is detected on the
holographic image plane. By the above calibration method, the
sensing response sensitivity of every Zernike aberrations is
obtained. Thus, the incoming wave with the low eight orders of
Zernike aberration is generated, as shown in Fig. 4.

Where RMS is the value of root-mean-square and PV is the
value of peak-to-valley. The intensity distribution on focal plane
(detail view) is as shown in Fig. 5.

The intensity distribution of the speckle on the holographic
image plane is shown in Fig. 6.

By comparing the relative intensity on the holographic image
plane, the values of Zernike aberrations obviously can be

determined. Thus, the reconstructed wave-front is shown in
Fig. 7. Similarly, the wave-front can be described by the RMS value
and the PV value.

In order to analyze the accuracy of wave-front sensor we
proposed, we can calculate the residual aberrations between
introduced and detected aberrations. The residual aberrations’
distribution is shown in Fig. 8.

Thus, it can be seen that the holographic modal wave-front
sensor has smaller residual in low eight orders’ Zernike aberra-
tions’ detection. The intensity distribution on focal plane after
aberrations correction is shown in Fig. 9.

Then, we analyze the intensity distribution before and after
aberrations correction, as shown in Fig. 10.

Where Fig. 10(a) is the intensity distribution before aberrations
correction and Fig. 10(b) is the intensity distribution after aberra-
tions correction. In this paper, the Strehl ratio is calculated as

IMAX [A()]|*

ST=
| A6

13)

where A(i) is the gray value of the ith pixel, and N is the number of
pixels. According to Eq. (13), we analyze the fiber coupling
efficiency before and after aberrations’ correction. The results are
shown in Table 1.
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Table 2
Statistical property of simulation results.

No. Introduced Detected Introduced Detected Residual Residual Coupling efficiency Coupling efficiency
aberrations RMS aberrations RMS  aberrations PV (1) aberrations PV~ aberrations RMS aberrations PV before correction after correction
) ) ) ) ()

1 02232 0.1602 1.2539 0.8024 0.0821 0.5610 0.0971 0.5678

2 0.2460 0.1653 1.2994 0.8227 0.1095 0.6772 0.0819 0.4424

3 01463 0.1565 0.8863 0.9143 0.0267 0.1250 0.2972 0.7549

4 0.1604 0.1741 1.2484 1.3134 0.0733 0.4498 0.2198 0.5993

5 01383 0.1523 0.9443 1.0245 0.0338 0.2141 0.2906 0.7390

6 01623 0.1266 1.0896 0.7469 0.0548 0.4240 0.2836 0.6751

In this paper, we make six groups numerical simulation by
changing the introduced aberrations. In the same way, we get the
six group results mainly including wave-front distribution of the
introduced, detected and residual aberrations as shown in Fig. 11.
Where Fig. 11(a) shows the introduced aberrations, Fig. 11
(b) shows the detected aberrations, and Fig. 11(c) shows the
residual aberrations. The statistical properties, mainly including
RMS value, PV value and the fiber coupling efficiency before and
after aberrations correction, are shown in Table 2.

As shown in Table 2, we can see that it fits for weak atmo-
spheric turbulence when the RMS value of the aberration is less
than 1.151 and the PV value less than 1.04. Under this condition,
the RMS value of the residual aberrations is less than 0.044 and the
PV value less than 0.251. The fiber coupling efficiency increases
from nearly 30% to more than 70%. However, the RMS value of
residual aberrations is more than 0.074 with stronger atmospheric
turbulence, when the RMS value of introduced aberrations is more
than 0.24 and the PV value is more than 1.24. Under this condition,
the fiber coupling efficiency is only less than 10%. It increases to
around 50% after aberrations correction. Above all, the wave-front
sensor we proposed is better for weak atmospheric turbulence.

4. Conclusion

In this paper, we propose a new wave-front aberration mea-
surement method which uses HMWES in AO system for FSO
communication system. We analyzed the principle of HMWES in
theory and simulated the procedure of wave-front aberrations
detection based on HMWFS. And then we discussed the impact of
HMWEFS on fiber coupling efficiency of the FSO communication
system before and after the aberrations correction. According to
the results of numerical simulation, HMWEFS is better for weak
atmospheric turbulence while fast detecting rates and insensitivity
to beam scintillation are its biggest advantage in the FSO commu-
nication system.

The disturbance strength is only described by the RMS value
and PV value of the wave-front distribution in our work. Further
work about the relationship between the introduced aberrations
and the structure constant of refractive index C2 will be carried out
in the near future. In addition, an experimental system of wave-
front sensing based on HMWFS will be setup in the future work.
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