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2D/3D medical image registration in image-guided intervention is crucial to assist the clinician to establish the
space corresponding relationship between image information and patients’ anatomy, which can be quantified
by a similarity measure. Among similarity measures, mutual information and its derivatives, were used widely
for image registration, and showed significantly differences in the performances of registrations. However, the
comparison of their registration performances has not been studied quantitatively yet. Therefore, in this paper,
four similarity measures were evaluated for 2D/3D rigid registrations, which are mutual information (MI) and its
three derivatives (distance coefficient mutual information (DCMI), distance weighted mutual information (DWMI),
gradient weighted mutual information (GWMI)). They were applied to implement registrations based on porcine
skull phantom datasets from the Medical University of Vienna, and were evaluated through the mean target
registration errors (mTRE) for the registrations. The results demonstrated that the performance of DCMI was the
most accurate and robust, and M| was the least effective of the four similarity measures. Moreover, due to the
presence of a great amount of soft tissues, GWMI also had the low performance with its mean of mTRE even
greater than that by MI, which suggested that intensity gradients were not always having a positive impact for
2D/3D rigid registration when involving a great amount of soft tissues. Between DCMI and DWMI, there were a
significant difference in terms of accuracy and robustness, despite using the same image information for them,
which means that the construction of an ideal measure should consider not only the image information to be

involved but also the construction way of these information.

Keywords: 2D/3D Rigid Registration, Similarity Measure,

Image-Guided Intervention.

1. INTRODUCTION

During Image-guided intervention (IGI),! it is crucial to establish
the relationship between the space information of image datasets
and patient’s anatomy. However, the corresponding relation-
ship between the patient’s anatomy and the pre-operative image
information,' in the past, was established subjectively and men-
tally by the clinician, which leads to poor results during the
intervention. In order to avoid the great error of subjective
assessment,’ the traditional method was progressively replaced
by 2D/3D image registration technology. During the registration,
pre-operative medical images, which are usually three dimen-
sions (3D) CT or MRI, are aligned to two dimension (2D)
intra-operative images (X-ray fluoroscopy or Ultrasound) by a
space transformation in order to correctly locate the pathological
targets.

*Authors to whom correspondence should be addressed.
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The goal of 2D/3D rigid registration is to find the space
transform, which is applied to pre-operative 3D volume data for
combining high-resolution 3D images with real-time 2D images.
In the past few years, a variety of 2D/3D rigid registration
methods® were proposed for different intervention operations,
which in general can be roughly classified into feature based and
intensity based methods.?

Feature based methods only make use of landmarks
(fiducial or natural) or other anatomical features to match images.
This makes the type of methods rapidly implemented for 2D/3D
rigid registration. Their results can be acted as the gold stan-
dard registration when using fixed implants as markers. How-
ever, automatic extraction of corresponding features itself is not
a trivial procedure. Manual segmentation of features is time-
consuming and subjective as well. Because of these disadvan-
tages, this kind of methods has been gradually replaced by
intensity based methods' and was subjected to less and less stud-
ies in 2D/3D rigid registration.
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Fig. 1. General process of 2D/3D registration based on intensity methods
in image-guided intervention.

Intensity based methods register the images using not the
extracted corresponding features but lots of image intensity
information.!" This makes this type of methods generally out-
perform the feature based methods in terms of accuracy and
robustness. However, the images to be registered have differ-
ent spatial dimensions. Pre-operative volume images usually
were rendered and projected to create 2D virtual projection
images, called digitally reconstructed radiographs (DRRs) which
were compared iteratively with intra-operative 2D image by
one selected similarity measure. Having the measure between
DRR and intra-operative image, the optimal registration can be
achieved by optimization. The process of the registration using
intensity based methods is given by Figure 1, in which volume
rendering, similarity measure, and optimization are three critical
steps for the performance of registration.

A variety of similarity measures have been proposed® and
were used to construct cost functions for the optimization pro-
cess of registration. Among the whole of similarity measures, MI
nowadays enjoys the great reputation of an accurate and robust
multimodality image registration measure'? which was first pro-
posed in 1995 by Collignon et al.'3 and Viola and Wells'* as
a measure for image registration and further developed in their
later papers.'> !¢ Since then, it has become a well-known and
commonly used similarity measure in medical image registra-
tion due to no assumptions and no limits. However, MI cannot
work under some conditions, especially for the weak statistical
relationship between intensities of images to be registered. This
resulted in the propositions of its many derivatives” %12 17-19 by
adding extra constrained conditions to original MI, such as space
coordinates and image gradients.'®!” Although these derivatives
based on MI had significantly improved performances in regis-
tration, they have not yet been quantitatively studied among each
other. Therefore, in this paper we take the X-ray fluoroscopy and
CT dataset of a porcine skull phantom from the Medical Univer-
sity of Vienna® as an example and evaluate the performances of
four similarity measures in 2D/3D rigid registrations, i.e., MI and
its three modified methods, based on the mean target registration
errors (mTRE).?!

2. METHODS

A variety of registration studies'®?? show that MI and its
derivatives are accurate and robust. We will present four similar-
ity measures in turn: MI and its three derivatives-distance coef-
ficient mutual information (DCMI), distance weighted mutual
information (DWMI), gradient weighted mutual information
(GWMI).
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2.1. Mutual Information
The original mutual information'® can be given by:

! P(x,) )

M %p(l’ vYlog (p(X)p(y) D
Where p(x), p(y) are the probability distributions in individual
images; p(x,y) is the joint probability distribution and x, y are
respectively the intensities of two images. MI need no assump-
tion of a linear relationship between the pixel values of the two
images, but instead assumes that the co-occurrence of the most
probable values in the two images is maximized at registration.

2.2. Distance Coefficient Mutual Information
MI cannot work well when only the intensities are considered,
and space information is not used.”!® Therefore, adding extra
space information as a constraint (e.g., space coordinates) to MI
can overcome the problem to a certain degree. The coordinate
of the pixel is one of the key spatial features because it is used
to calculate the Euclidean distance to the image origin. Besides,
under the conditions of the well-calibrated projection geometry,
successful registration means that the two images from the same
tissue should have the same intensities and space positions of cor-
responding pixels theoretically in the same X-ray imaging plate,
ignoring differences in image system and formation.'” Therefore,
if the two images were not aligned perfectly, the coordinates of
the pixels with the same intensity of two images are not same
(Fig. 2). In other words, the distances from the pixels to their
respective origins of images are not same. Therefore, the distance
difference between pixels with the same intensity in two images
can reflect how much two images are aligned with each other.
For example, two kinds of circles (filled and unfilled) in the
center of pixels were used to represent two different values of
pixels in Figure 2. The distances from the pixels (filled circles)
to their respective origins of images can be measured by fi(i =
1,2,3,4) in the floating image, and ri in the reference image,
and the distance difference d can be written as:

d=(f1+f24+F3+f8)—(rl+r24r3+rd)  (2)

Based on the idea mentioned above, a novel similarity measure
has been proposed!” by introducing distance difference to MI,
named DCMI in this paper, and expressed as follows:
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Fig. 2. Respectively Euclidean distances to their own image origins with
the same intensity (filled circles).
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Where RI,, RJ, and FI,, FJ, are the space coordinates of pixel
with the same intensity x along the / and J axis in reference and
floating image, respectively; d(x) is the Euclidean distance dif-
ference between the reference image (X-ray image) and the float-
ing image (DRR image). The greater the distance difference d(x)
is, the smaller the probability of co-occurrence is, and smaller
DCMI is. When DCMI reached the maximum, two images were
considered to be aligned successfully.

2.3. Distance Weighted Mutual Information

Both image intensities and space coordinates are able to measure
alignment of two images. There is also another form of combi-
nation between them, i.e., weighted sum, which is called DWMI
in this paper. The novel similarity measure can be expressed as:

DWMI = Z‘ [P(X’ y)log <%)

o
T araEna +d(y>2>} ©)

Where « is the weighted factor, other parameters are the same
as Eq. (4).

2.4. Gradient Weighted Mutual Information

Apart from coordinate information, space information can be
also expressed by gradient information, which is pointed in the
direction of the greatest rate of increase of image intensity. Intro-
ducing it to MI can also improve the performance of MI in regis-
tration. Various similarity measures based on intensity gradients
of images were proposed. Yim et al.'’ used the weighted sum
of mutual information and gradient information, calculated the
mutual information in the gradient images (e.g., GI) as well as
original images and named GWMI, as similarity measure. GWMI
can be given by:

GWMI =B-MI+7v-GI (6)

Where GI denote mutual information calculated from the gradi-
ent images, B, y are the weight factors, which decided the con-
tribution to the similarity measure of the intensity and gradient
information.

3. EXPERIMENTS AND RESULTS

3.1. Experimental Materials

We compared the four similarity measures by using the 2D X-
ray images taken from the anterior-posterior (AP) and lateral
(LAT) views as in Figure 3, and 3D CT dataset of the porcine
skull phantom, in which the rigid transformation has been already
acquired with markers and known as the gold standard.? The
X-ray images were obtained with an Elekta Synergy linear accel-
erator, which is equipped with electronic portal imaging device
using a PerkinElmer XRD amorphous silicon detector with an
active surface of 410 x 410 mm? and a size of 1024 x 1024 pix-
els. The 3D CT images were obtained by a 64-slice CT scan-
ner (Philips Brilliance 64, Philips AG, Best, The Netherlands) at
120 kVp and 156 mAs with the spacing of 0.4 x 0.4 x 0.8 mm?®
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Fig. 3. The left and right images respectively correspond to the X-rays from
AP and LAT view.

and the size of 512 x 512 x 825 voxels. More details can be found
about the publicly available gold standard data sets in papers.??

The implementation of registrations required the intensities of
the image to be scaled to 0-255. The X-ray images and the CT
volume were isotropically resampled to 1 mm.?* Moreover, to
reduce the influence of a great amount of soft tissues, X-ray
images needed to be windowed and CT was used to render and
create the DRR image when its intensities greater than a specified
threshold value. 70 is selected as the threshold in this paper.
To reduce the registration time, the registration is performed in
the region of interest (ROI) with a diameter of 200 pixels on the
X-ray images with removing the fixed markers as in Figure 4.

After necessarily preprocessing these images, the experiments
were begun with setting different starting positions for the opti-
mization in the registration. The starting positions were obtained
by distorting the gold standard parameters with a random dis-
placement. The range of displacements was chosen to be +5°
and + 10 mm. These displacements should also reflect the typi-
cal range of motion encountered in radiotherapy, for instance, in
lung irradiation.?>2® Then 120 different starting positions were
used to evaluate the accuracy and robustness of these measures,
which resulted in 120 registrations for each of similarity mea-
sures. The accuracy of registration results was quantified based
on the mean Target Registration Errors (mTRE). 350 points were
spread evenly over the CT and were used as targets for the cal-
culation of mTRE, which can be given by:

regt i g

| X
mTRE = i YN TP = Toa Pl @
i=1

Where P, is the ith target point; K is the number of target points.

T,,q denotes the gold standard transformation matrix and 7,

cg

Fig. 4. The left and right images respectively correspond to the ROl of AP
and LAT.
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Table I. The mean and standard deviations of mTRE and iteration
times, as well as the success rate by different measures for the AP.

mTRE IterN

Factor  Measure Mean SD Mean SD SR
MI 11.6630 8.9961 110.1667 22.0146  18/120
(0,1) GWMI 2.3209  1.9220 78.3417  14.3828  66/120
(1,1) GWMI 5.4573  6.8542 88.3167 19.0863 52/120
DCMI 1.6492 0.6902 37.1417 12,9377 87/120
1 DWMI 4.9669 3.5425 111.0833 25.8052 23/120
0.75 DWMI 4.3626 2.6765 104.6750 28.1172 25/120
0.5 DWMI 4.8079 3.3436 108.2417  27.1244  27/120
0.25 DWMI 45294 2.8759 107.7833 28.3407 22/120

is the transformation determined by the registration algorithm.
The Ray Casting method?’ was used to create DRR of CT dataset
without optimization techniques for them, and the Downhill Sim-
plex algorithm® was chosen for the optimization. Weight factors
«a respectively were set to 0.25, 0.5, 0.75 and 1 in Eq. (5). For
GWMI in Eq. (6), B, vy were respectively set to 0, 1 resulting in
GI, and 1, 1 in this paper.

3.2. Results

Since the registrations were implemented repeatedly 120 times
for each measure, it is necessary to use the 120 times registration
results to evaluate the registration performance of each measure.
The final accuracy of these measures was given as the mean
and standard deviation (SD) of mTRE and iteration times, (e.g.,
IterN) after the registration, as well as the success rate (SR),
defined as the portion of successful against all registrations and
successful threshold was set to 2 mm.

The registration results in Tables I and II for AP and LAT
respectively showed that the mean of mTRE by DCMI was lower
by at least 28.94% and at most 88.14% than those by the other
measures, with the highest success rate, i.e., 72.50% for AP and
74.17% for LAT, which were showed in Figure 6 for AP and LAT
X-rays. The standard deviations of mTRE by DCMI also were the
smallest than those by MI, GWMI and DWMIL. It reduced from
8.9961 mm and 5.2832 mm by MI to 0.6902 mm and 5.2832 mm
by DCMI for AP and LAT, respectively. The significant decrease
of standard deviations of mTRE suggested that DCMI was more
accurate and robust for 2D/3D rigid registration than those of
the other measures. Meanwhile, the results also showed that the
registrations using DCMI took less time than those of MI, GWMI
and DWMI, with the mean of iteration times smaller by at least
52.59% and at most 66.56% than those by the others. Hence, it is
likely to use DCMI for the real-time image guided intervention

Table Il. The mean and standard deviations of mTRE and iteration
times, as well as the success rate by different measures for the LAT.

mTRE IterN

Factor  Measure Mean SD Mean SD SR
MI 12.2653 5.2832 115.6250 20.2265 0/120
0,1) GWMI 13.1988  5.1752 97.5833 12.6528  0/120
(1,1) GWMI 11.0411  4.1631 99.6667 13.9274  0/120
DCMI 1.5657  0.6846 64.1833 7.9388 89/120
1 DWMI 4.7306 5.0473 99.5750 19.7704  47/120
0.75 DWMI 6.3563 6.2150 103.7750 19.2949  32/120
0.5 DWMI 6.2521 5.8528 105.1417 22.1114  31/120
0.25 DWMI 6.3344 6.0388 105.6667 22.8496  35/120
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Fig. 5. The top and bottom correspond to the mean and standard devia-
tions of mTRE by different measures for AP and LAT.

systems. From the statistical analysis above, the conclusion can
be reached that DCMI was the best performance of registration
in terms of accuracy and robustness.

For DWMI and DCMI, they were constructed by the same
image information, i.e., image intensities and space distances
from the pixel coordinates, but their performances of registration
were significantly different, with both better than those by MIL.
This means that when using the same image information, the
way of constructing similarity measures had a significant influ-
ence on the registration performances of measures. For DWMI,
the weighted factor of it had an influence to the registration per-
formance as in Figures 5 and 6. However, their influence cannot
be objectively estimated due to the existence of a great amount
of soft tissues, which led DWMI not to be stable for the registra-
tions in this paper. For example, among of different weights for
DWMI, the registrations by DWMI obtained the highest success
rate for AP but the lowest success rate for LAT when weight «
was set to 0.5.

Similar to DWMI, both MI and GWMI also were not stable
for registrations in this paper showed in Figure 6. The mean of
mTRE by MI were greater by at least 0.9296 times and at most
6.8337 times than those of DCMI and DWMI, with no successful
registration for LAT. The performance of GWMI varied greatly
with the weighted factors 8, y. When B and vy were respectively
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Fig. 6. The top and bottom correspond to the success rates by different
measures for AP and LAT.

set to 0 and 1, GWMI can work well relative to MI, and its
mean of mTRE was lower by 4.0252 times for AP but greater
by 0.7073 times for LAT. Under the same conditions, its success
rates were respectively 55.00% and 0%. The great differences
of the results for AP and LAT suggested that intensity gradients
were not always having a positive impact to similarity measure
for 2D/3D rigid registration, especially when images to be reg-
istered involving lots of soft tissues. According to the analysis,
we can conclude that thought MI and its variants were famous
for multimodality image registration measures; they cannot work
well for 2D/3D rigid registration in some cases.

4. CONCLUSIONS

In this paper, we used X-ray fluoroscopy and CT dataset of a
porcine skull phantom from the Medical University of Vienna to
evaluate four similarity measures (MI, DCMI, DWMI, GWMI)
for 2D/3D rigid registration through the mean and standard devia-
tion of mTRE and iteration times after the registrations, as well as
the success rate. The experiment results showed that DCMI was
more accurate and robust than the other measures. By adding the
space distance information to MI, both DCMI and DWMI could
improve registration efficiency and avoid the limitations of sim-
ilarity measures constructed with the single image information
(e.g., intensity and/or its gradient information) in 2D/3D rigid reg-
istration, and achieve the registration with different SRs for AP
and LAT. Though DCMI and DWMI have the better performances
of registration, they were significantly different for 2D/3D regis-
tration in terms of accuracy and robustness. This indicates that the
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way of construction of them has a great influence on the perfor-
mance of registration although they used the same information of
the space distances and image intensities for similarity measures.
Meanwhile, the results also showed that due to the presence of lots
of soft tissues, MI and GWMI were instable for rigid registration
with low SR for AP but no SR for LAT, which meant that inten-
sity gradients were not always having an important improvement
for registration performance by integrating them with similarity
measures. Therefore, the construction of an ideal similarity mea-
sure should consider not only the information to be involved but
also the way of the construction of this information.
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