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An off-axis three-mirror system (OTS) was designed based on the primary mirror and tertiary mirror
(TM) integrated on a single substrate in order to solve the OTS drawbacks, such as the alignment diffi-
culty and the large opto-mechanical weight. Furthermore, an optical freeform surface that can increase
the optimizing degrees of freedom (DOF) was applied on the TM in order to achieve a wide field of view
(FOV). An example with a focal length of 1200 mm, F-number of 12, and FOV of 10° × 4° was given, and
the maximum wave front error (WFE) RMS was 0.0126λ, indicating a good imaging quality. The design
result shows that the number of alignment DOF was reduced from 12 to 6, and the weight of the mirror
support assembly can also be lighter. An XY polynomial, established as an even function of x, was em-
ployed as the TM surface, so we obtained an axial symmetrical imaging quality about the x axis, and the
axial symmetry aberration performance also brings considerable convenience to alignment and testing
for the OTS. © 2014 Optical Society of America
OCIS codes: (080.3620) Lens system design; (080.1010) Aberrations (global); (120.3620) Lens system

design; (220.3620) Lens system design.
http://dx.doi.org/10.1364/AO.53.003028

1. Introduction

With the rapid development of remote sensing, the
design goal of the optical system moves toward high
resolution and wide field of view (FOV). The off-axis
three-mirror system (OTS) [1–4], which evolved
from a coaxial three-mirror system, has been getting
more attention since the discovery of the advantages
of much wider FOV [5] and nonobscuration, which
makes a better spot diagram energy concentration
[6]. Both Korsch and Cook have introduced design
forms that have no pupil obscuration [7], [8].

However, there are also drawbacks to OTS, such as
alignment difficulty, high cost [9], [10], and large op-
tomechanical weight. Therefore, to solve these prob-
lems, it is an essential way to design and optimize

the optical system from basic theory. It can be easily
found that, on many occasions, the axial positions of
the primary mirror (PM) and tertiary mirror (TM)
are close enough so that we hope the PM and TM can
be integrated as a monolithic mirror through a proper
design. Consequently, the alignment difficulty will
be reduced to a great extent owing to the fewer de-
grees of freedom (DOF). Moreover, the weight of the
mirror support assembly will also be lighter.

Furthermore, due to the finite optimization varia-
bles, achieving a very wide FOV of OTS is still beset
with difficulties. So increasing the quantity of DOFof
optimization variables is an effective way to achieve
wide FOV. A simple solution to this problem is to
introduce mirror position DOFs during the design
process, such as mirror tilt variables, mirror decenter
variables, image plane tilt variable, and so on, but it
results in the alignment difficulty worsening in an-
other way that we don’t want to confront. Freeform
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surfaces are a category of nonrotational symmetric
surfaces that have strong abilities of aberration cor-
rection since they obtain multiple DOFs compared
with conventional optical surfaces. Now the optical
freeform surface manufacturing technology is becom-
ing more and more mature, and the optical freeform
surface has been successfully applied in illumination
systems and imaging systems [11–15]. The freeform
surface can increase the DOFof surface shape, which
makes realization of imaging system with a wide
FOV possible.

In this paper, we design an easy alignment OTS by
using an optical freeform surface based on integra-
tion of PM and TM, which can not only achieve a very
wide FOV but also reduce the alignment difficulty.
The system has very good application prospects in
the optical remote sensing field.

2. Design Principle and Establishing Initial
Configuration Based on Third Order Aberration

In order to achieve the integration of the PM and TM,
theoretically speaking, they should have as many of
the same parameters as possible. A similar profile
will lower the fabrication difficulty and hence ensure
the fabrication accuracy. At least three basic require-
ments should be satisfied. First, the axial position of
the PM and TM should be equal. Second, they should
have the same radius of curvature or mirrors with a
different radius of curvature will hardly be fabri-
cated on a single substrate. Third, they should have
the same conical coefficient, i.e., k1 � k3, which will
lower the grinding difficulty.

What should be emphasized is that the optical sys-
tem that we want to achieve has no decenter in PM
and TM, so the PM and TM have the same optical
axis. And it will reduce the cost and processing time
at initial stage of mirror finishing if we set the radius
of curvature and conical coefficient of PM equal to
TMs, because the optical spherical surface of PM
and TM could be grinded simultaneously. Then, the
different surfaces can be lapped and polished respec-
tively in the region of themselves. It should be men-
tioned that the computer generated holography (CGH)
could be used in PM and TM testing.

OTS derives from a coaxial three-mirror system
[16]. Generally, an OTS begins with solving the ini-
tial structure of a coaxial three-mirror system, which
is shown in Fig. 1. M1, M2, and M3 are the PM, sec-
ondary mirror (SM), and TM. −l01 is the focal length of
the PM, l2; l02; l3; l

0
3 are the object distance of SM, im-

age distance of SM, object distance of TM, and image
distance of TM, respectively. h1, h2, h3 are the diam-
eters of PM, SM, and TM, respectively, u2, u0

2 are the
object aperture angle and image aperture angle of
PM, respectively, u3, u0

3 are the object aperture angle
and image aperture angle of SM, respectively [17].

In the system, there are four variables, α1; α2; β1;
β2, which are PM obscuration ratio caused by SM,
SM obscuration ratio caused by TM, SM magnifica-
tion, and TM magnification, respectively; they can
express all of the concerned parameters, including

the original profile and third-order aberration
coefficients:

α1 � l2
l01

� h2

h1
; (1)

α2 � l3
l02

� h3

h2
; (2)

β1 � l02
l2

� u2

u0
2

; (3)

β2 � l03
l3

� u3

u0
3
: (4)

The normalized profile parameters (normalized re-
spect the system focal length) of the initial structure
can be expressed based on paraxial optical theory: r1,
r2, r3, d1, d2 are the PM radii of curvature, SM radius
of curvature, TM radius of curvature, distance be-
tween PM and SM, and distance between SM and
TM, respectively:

r1 � 2
β1β2

; (5)

r2 � 2α1
�1� β1�β2

; (6)

r3 � 2α1α2
1� β2

; (7)

d1 � 1 − α1
β1β2

; (8)

d2 � α1�1 − α2�
β2

: (9)

Following Eqs. (5)–(9), r1, r2, r3, d1, d2 are directly
expressed by α1; α2; β1; β2, which means, from a set of
α1; α2; β1; β2, these structure parameters can be deter-
mined uniquely.

In the three-mirror system, there are relationships
between third order aberration coefficients, that is,

Fig. 1. Initial configuration of coaxial three mirrors.
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Seidel spherical aberration coefficient SI, Seidel
coma aberration coefficient SII, Seidel astigmatism
aberration coefficient SIII, and the design variables
α1; α2; β1; β2:

SI�
1
4

h
�−k1−1�β31β32�k2α1β32�1�β1�3−k3α1α2�1�β2�3

�α1β
3
2�1�β1��1−β1�2−α1α2�1�β2��1−β2�2

i
; (10)

SII �
k2�α1−1�β32�1�β1�3

4β1β2
−

k3�α2�α1 −1��β1�1−α2��
4β1β2

· �1�β2�3�
�α1−1�β32�1�β1��1−β1�2

4β1β2

−

�α2�α1−1��β1�1−α2���1�β2��1−β2�2
4β1β2

−

1
2
; (11)

SIII�
k2β2�α1−1�2�1�β1�3

4α1β21
−

k3�α2�α1−1��β1�1−α2��2
4α1α2β21β

2
1

· �1�β2�3�
β2�α1−1�2�1�β1��1−β1�2

4α1β21
−

1

4α1α2β21β
2
1

· �α2�α1−1��β1�1−α2��2�1�β2��1−β2�2−
1

α1β1

·β2�α1−1��1�β1��1−β1�−
�α2�α1−1��β1�1−α2��

α1α2β1β2

· �1�β2��1−β2�−β1β2�
β2�1�β1�

α1
−

1�β2
α1α2

. (12)

The relationship between aberration coefficient and
α1; α2; β1; β2 can be expressed by a set of equations:

2
664

SI

SII

SIII

3
775�

2
664
A1�β1;β2� B1�β1;β2� C1�α1;α2;β2�
A2�0� B2�α1;β1;β2� C2�α1;α2;β1;β2�
A3�0� B3�α1;β1;β2� C3�α1;α2;β1;β2�

3
775

×

2
664
−k1
−k2
−k3

3
775�

2
664
D1�α1;α2;β1;β2�
D2�α1;α2;β1;β2�
D3�α1;α2;β1;β2�

3
775; (13)

where k1, k2 and k3 denote the conic of PM, SM, and
TM. Ai, Bi, Ci, Di (i � 1; 2; 3) are functions
of α1; α2; β1; β2.

In order to achieve the goal of integrating the PM
and TM,

(1) the PM and TM have the same axial posi-
tion, d1 � −d2;

(2) the PM and TM have the same radius of
curvature, r1 � r3;

(3) the PM and TM have the same conical coeffi-
cient, k1 � k3;

(4) the aberration coefficients are equal to 0.

Noting that we let k1 � k3, generally, there must
be SI ≠ SIII. Considering that spherical aberration
is on-axis aberration and easily corrected, SIII is
set to 0. Therefore, given the original α1 and α2, the
other parameters β1; β2; k1, k2 can be derived from
these equations. The relationships between α and
β are

β1 � 1 − α1
α1�α2 − 1� ; (14)

β2 � α2 − 1
1 − α1α2

: (15)

From the above analysis, we can obtain a set of
original structure parameters, including curvature
radius of PM, SM (the TM’s curvature radius is equal
to PM’s), distance between PM and SM (distance be-
tween SM and TM is equal to the absolute value PM
and SM), and conic constant k1 and k2 (the value of k3
is equal to k1).

In this system, the PM and TM have the same ax-
ial position, radius of curvature and conic, and hence
they can be integrated as a monolithic mirror in the
fabrication and alignment. This is a fine condition in
which we can achieve the design goal; the OTS’s PM
and TM could be integrated on a single substrate.
The residual aberrations can be corrected by kinds of
optimizing methods, such as optimizing surface
shape parameters, changing the off-axis amount,
adding the higher-order aspherical term, and so on.
This optimizing process can be achieved with the
optical design software CODE V and Zemax via
establishing merit function, setting optimizing
boundary condition after the initial configuration
is given.

3. Analysis and Application of Optical Freeform
Surface

Based on the analysis of the previous section, the in-
itial configuration of the OTS whose PM and TM can
be integrated on a single substrate was obtained.
However, the off-axis aberration is still difficult to
correct, because there is very limited design DOF, es-
pecially when we add many more restrictions on the
parameters of PM and TM. So increasing design
DOFs by other methods is an essential and effective
way to achieve a wide FOV of.

Freeform surfaces are a category of nonrotational
symmetric surfaces that have strong ability in aber-
ration correction due to multi-DOFs compared with
conventional optical surfaces. It has begun to be
widely used in illumination systems and imaging
systems since the development of manufacturing
technology.

Zernike polynomial surfaces and XY polynomial
surfaces are two common optical freeform surfaces.

The Zernike surface is defined by the conical sur-
face plus additional aspheric terms defined by the
Zernike coefficients, while these terms directly
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correspond to the geometric aberration coefficients
[18]. The surface sag is of the form

z � cr2

1�
���������������������������������
1 − �1� k�c2r2

p �
XN
i�1

AiZi�ρ;φ�; (16)

where c is the curvature (the reciprocal of the radius),
r is the radial coordinate in lens units, k is the conic
constant, ρ is the normalized radial ray coordinate,
and φ is the angular ray coordinate.N is the number
of Zernike coefficients in the series. Ai is the coeffi-
cient on the ith Zernike standard polynomial, and
its unit is millimeter.

The XY polynomial surface supports a basic conic
aspheric surface upon which the polynomial aspheric
terms are added. Combining the XY polynomial and
optical system coordinate, x represents the sagittal
direction of the optical system and y represents
the tangential direction. The surface sag is of the
form

z � cr2

1�
���������������������������������
1 − �1� k�c2r2

p �
XN
i�1

AiEi�x; y�; (17)

where N is the number of polynomial coefficients in
the series and Ai is the coefficient on the ith XY poly-
nomial, and its unit is millimeter.

The polynomials are a power series in x and y.
Compared to the Zernike polynomial, XY polyno-

mial surfaces are easier to process due to the consis-
tence with the numerical control (NC) optical
expression form, although the aberrations are not
explicitly expressed. Therefore, in this paper, an
XY polynomial surface was employed. In order to
keep the system axially symmetric, only even order
terms of X are retained in the design, and hence the
XY polynomial surface is established as an even func-
tion of X, expressed as

z � cr2

1�
���������������������������������
1 − �1� k�c2r2

p � A01x0y1 � A20x2y0

� A02x0y2 � A03x0y3 � � � � � A80x8y0. (18)

In the following example, we will see that the aber-
ration performance distribution is X-symmetric in
different FOVs.

4. Design Example

As an example, an OTS with SM set as the stop was
designed with a focal length of 1200 mm and F-
number of 12, and the rectangle FOVof 10° × 4° with
α1 � 0.455 and α2 � 1.1was determined according to
the theory above. The initial configuration is shown
in Fig. 2.

The modulation transfer function (MTF) of initial
configuration is shown in Fig. 3. The wavefront error
(WFE) RMS is 0.4095λ (λ � 632.8 nm). The perfor-
mance is not good enough as an initial configuration
but is acceptable anyway.

The optical system configuration parameters were
obtained after further optimization, which was
shown in Table 1. In this system, the axial positions
of the PM and TM are equal, and both of the PM and
TM are with the same radius of curvature and conic.
The difference is that the PM adopts the high-order
aspheric surface, while the TM adopts the XY poly-
nomial surface. The XY polynomial coefficients are
shown in Table 2.

The system imaging optical path is shown in Fig. 4.
In the fabrication, the effective part of the PM and
TM can be grinded to the same spherical surface
on a single substrate, and different high-order
aspherical surface and XY polynomial surface will

Fig. 2. Initial configuration.

Fig. 3. MTF of initial configuration.

Table 1. Configuration Parameters

Aspheric Surface High-Order Term

Surface Type Radius (mm) Distance (mm) Conic 6th 8th 10th Mirror Size (mm)

PM Even Asphere −1489.4 −406.8 −1.7402 −6.0274e − 17 6.7990e − 22 −5.2044e − 27 260 × 200
SM Conic −624 −406.8 −1.8983 Φ50
TM XY Polynomial −1489.4 −600 −1.7402 213 × 145
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be figured at the corresponding parts, which is shown
in Fig. 5.

The OTS has a good imaging quality, at the wave-
length of 632.8 nm: theMTF is close to the diffraction
limit at 50l p/mm (shown in Fig. 6). The maximum
WFE RMS is 0.0126λ (shown in Table 3). The distor-
tion grid absolute value is less than 1%, which is
shown in Table 4. The RMS radius of image spot
is within the Airy spot (the diameter of the Airy disk
is 18.528 μm). In particular, it should be noted that

because the new XY polynomial that we adopt on TM
is established as an even function of x, in the end we
achieve an axial symmetrical imaging quality about
the x axis that can be proven by the spot diagram
shown in Table 5. The axial symmetry aberration
performance brings convenience to alignment and
testing for OTS, and it makes the alignment of the
OTS easier.

5. Tolerance Analysis

The manufacturing and alignment tolerances have
been analyzed in the Monte Carlo method; 16 toler-
ances and compensators have been used, and they
are random RMS surface error, radius delta, conic

Fig. 4. System imaging optical path.

Fig. 5. Effective part of the PM and TM.

Table 2. Polynomial Parameters of Freeform TM

No. Item Coefficient Aij No. Item Coefficient Aij No. Item Coefficient Aij No. Item Coefficient Aij

1 X1Y0 0 10 X4Y0
−5.0680e − 011 19 X1Y4 0 28 X7Y0 0

2 X0Y1 3.7014e − 009 11 X3Y1 0 20 X0Y5
−2.0290e − 013 29 X6Y1

−9.1690e − 019
3 X2Y0

−1.3710e − 004 12 X2Y2
−2.9650e − 010 21 X6Y0 6.2147e − 016 30 X5Y2 0

4 X1Y1 0 13 X1Y3 0 22 X5Y1 0 31 X4Y3 3.9609e − 018
5 X0Y2

−1.3790e − 004 14 X0Y4
−1.6180e − 010 23 X4Y2 1.6520e − 015 32 X3Y4 0

6 X3Y0 0 15 X5Y0 0 24 X3Y3 0 33 X2Y5
−2.3490e − 017

7 X2Y1
−9.1300e − 009 16 X4Y1 1.1878e − 013 25 X2Y4

−1.0610e − 014 34 X1Y6 0
8 X1Y2 0 17 X3Y2 0 26 X1Y5 0 35 X0Y7 5.4357e − 018
9 X0Y3

−1.5630e − 008 18 X2Y3
−2.0540e − 012 27 X0Y6 1.5116e − 015 36 X8Y0

−3.0140e − 020

Fig. 6. Modulation transfer function (MTF).

Table 3. WFE (Reference Wave λ � 0.6328 μm)

FOV (0°;−4°) (0°;−6°) (0°;−8°) (2.5°;−4°) (2.5°;−6°)
WFE (RMS) 0.0115λ 0.0084λ 0.0114λ 0.0088λ 0.0127λ
FOV (2.5°;−8°) (5°;−4°) (5°;−6°) (5°;−8°)
WFE (RMS) 0.0122λ 0.0109λ 0.0136λ 0.0144λ

Table 4. Distortion Grid Value

FOV (0°;−4°) (0°;−6°) (0°;−8°) (2.5°;−4°) (2.5°;−6°)
Rad. Dist. (%) −0.19 −0.21 −0.07 −0.2 −0.35
Tan. Dist. (%) 0 0 0 0.1 −0.01
FOV (2.5°;−8°) (5°;−4°) (5°;−6°) (5°;−8°)
Rad. Dist. (%) −0.37 −0.02 −0.44 −0.92
Tan. Dist. (%) −0.25 0.34 0.34 0.06
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constant delta, surface x displacement, surface y dis-
placement, and surface tilt (both in tangential and
sagittal directions). The thickness between PM
(TM) and SM and the back focal length are set as
compensators. The tolerance values are shown in
Table 6. Noting that SM is set as stop, the surface
error of PM and TM are subaperture error. The
PM and TM subaperture areas are Φ100 mm and
Φ50 mm, respectively, calculated in the footprint plot
of CODE V. The performance summary is shown in
Table 7. Based on such allocation, this system has
a good performance with λ∕14�0.0714λ� WFE.

6. Conclusion

In this paper, we proposed an OTS design that has
the PM and TM integrated as a single mirror. It re-
duces the alignment DOF from 12 to 6 and lowers the
alignment difficulty. In addition, the weight and cost
of the PM and TM support structures also decrease.
In order to increase the design DOF, an XY polyno-
mial freeform surface, with only even order terms of
X, is employed, and makes it possible to achieve a
wide FOV imaging. The axial-symmetry property

of traditional OTS is reserved, which bring conven-
ience to the integration and test. Furthermore,
tolerance analysis was carried out, and the final
WFE was about λ∕14while the tolerance values were
realizable.
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